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Abstract

Efficient parallel learning algorithms are proposed for training a powerful modular neural

network, the hierarchical mixture of experts (HME). Parallelizations are based on the concept

of modular parallelism, i.e. parallel execution of network modules. From modeling the speed-

up as a function of the number of processors and the number of training examples, several

improvements are derived, such as pipelining the training examples by packets. Compared

to experimental measurements, theoretical models are accurate. For regular topologies, an

analysis of the models shows that the parallel algorithms are highly scalable when the size

of the experts grows from linear units to multi-layer perceptrons (MLPs). These results are

confirmed experimentally, achieving near-linear speedups for HME-MLP. Although this work

can be viewed as a case study in the parallelization of HME neural networks, both algorithms

and theoretical models can be expanded to different learning rules or less regular tree architec-

tures.
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1. Introduction

Although neural networks have inherent massively parallel features, their distrib-
uted aspects have been proved difficult to be captured on current parallel computers
[7,20,25]. There are several ways to parallelize neural networks, according to the ar-
chitecture of the network [36], or taking advantage of the matricial learning rule cal-
culations [27], or parallelizing the presentation of examples [22]. Hopp and Prechelt
[11] recognize three nested levels of parallelism in neural algorithms: connection par-
allelism (parallel execution on sets of weights), node parallelism (parallel execution
of operations on sets of neurons), and example parallelism (parallel execution of ex-
amples on replicated networks). Anyway, it is still a challenge to propose a generic
approach providing good performance without special considerations about the spe-
cific model of neural networks or the technical characteristics of the parallel com-
puter. For modular neural networks a higher level of parallelism is conceivable,
modular parallelism, i.e. parallel execution of network modules. While fine-grain
parallel implementations are adequate for deeper levels of parallelism such as con-
nection parallelism, a coarse-grain parallel implementation seems more appropriate
for modular parallelism. The main purpose of this article is to emphasize the interest
of modular parallelism on the basis of a widely detailed case study in the parallel
training of hierarchical mixture of experts (HME) neural networks.

Murre [21] has analyzed the performance of the CALM (categorizing and learning
module) learning algorithm for modular neural networks implemented on transput-
ers. Assuming a balanced distribution of modules over processors, Murre showed
that the topology of the processor network can strongly reduce data transfer time.
Modularity imposes regular constraints on the connectivity that can be used to im-
plement more efficient routing schemes. Even on high massively parallel machines,
where a network can be mapped by a one-to-one allocation of neurons to processors,
the communications must be optimized, e.g. in [19], Mattes et al. implemented a bal-
anced spanning tree of the interconnection network. Fine-grain parallel implementa-
tions can be adequate for deep levels of parallelism such as connection or node
parallelism, but a coarse-grain parallel implementation seems to be more appropriate
for modular parallelism. Moreover, fine-grain implementations are convenient for
specific and regular applications only, such as image processing by simple learning
algorithms like Hebbian rule [19].

Most work on parallel neural networks has dealt with the parallelization of the
error back-propagation learning algorithm for training multi-layer perceptrons
(MLPs) [17,23,26,28,34]. Sudhakar and Murthy [35] have presented a taxonomy of
the existing schemes to parallelize the back-propagation algorithm. They classified
the parallelization schemes into four categories: network partitioning, pattern parti-
tioning, hybrid partitioning and heuristic partitioning. The network partitioning
schemes include both node and connection parallelism [17]. Pattern partitioning di-
vides the pattern set among several processors, either by replicating the network on
every processor and each processor works with a subset of the pattern set [2,23] or by
pipelining the computation at each layer of the network [27]. Hybrid schemes mix
pattern partitioning with network partitioning. Heuristic schemes deal with the neu-
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ral network graph partitioning for mapping onto specific parallel computer systems.
Hendrickson and Leland [9] give a good overview of heuristic methods to generate
approximate solutions to graph partitioning. Hendrickson and Kolda [10] survey
some recent work on alternative models to the standard approach to graph partition-
ing.

A survey about multiprocessor simulation of neural networks [24] concludes sug-
gesting the importance of promoting the concept of coarse-grained modular neural
networks for an efficient parallel implementation. The present article starts from this
point of view and develop a work based on the parallelization of a modular neural
network architecture.

From the connectionist point of view also, modular architectures of neural net-
works offer advantages over a single network in multi-class or multi-task problems
[12], especially regarding learning speed, generalization capabilities, and representa-
tion capabilities. The HME model [13,15] can discover a recursive decomposition of
the input space into nested regions and can learn separate associative mappings within
each region. Learning is treated as a maximum likelihood problem. The learning rule
most usually applied to the HME model is the expectation-maximization (EM) algo-
rithm [4]. The mixture of experts model has been applied successfully to classification
and regression problems [5,14,37–39], including time series prediction [18,40].

A hierarchical mixture of linear experts (with single softmax units as gating net-
works) run orders of magnitude faster than standard back-propagation networks
[15]. More sophisticated expert and gating networks such as MLPs can be required
for more complex applications [37,40]. In such conditions, the HME learning phase
becomes highly time consuming. This argument is a motivation for studying parallel
implementations of HME models. Moreover, since the HME model can be seen as a
tree with neural networks at both terminal and nonterminal nodes, its architecture is
suitable for a modular, coarse-grain, parallel implementation allocating one subnet-
work per processor. Thus our approach is to take advantage of the HME network tree
architecture, instead of the computational aspects of the EM algorithm. Distributed
versions of the EM algorithm have been developed for specific applications not re-
lated toHMEmodels such as positron emission tomography image reconstruction [8].

This article proposes and discusses several versions of parallel learning algorithms
for HME models. Starting from measurements for a few processors, with single units
as expert and gating networks, we build theoretical models and prove that the pro-
posed parallel algorithms are highly scalable to MLP networks. The running time
performance is compared for the sequential and parallel algorithms applied to a re-
gression problem generated with a mixture of Gaussians.

2. HME connectionist model

2.1. The HME architecture

The HME architecture (Fig. 1) is a tree in which the gating networks lie at the
nonterminal nodes and the expert networks lie at the leaves of the tree. The task
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of each expert is to approximate a function over a region of the input space. The task
of the gating network is to assign the most convenient expert to each input vector.
Fig. 1 facilitates to introduce the terminology for a HME tree, on a mixture of four
experts, where~xx is the input vector, lij is the output (expected value) of the ijth ex-
pert, gið~xxÞ is the output of the top gating network denoting the prior probability for
the pattern to be generated by the left or right branch of the root, and gj=ið~xxÞ is the
output of the ith bottom gating network denoting the prior probability that the pat-
tern is generated by the ijth expert. In addition, t is the target (desired output),
Pijðt=~xxÞ is the probability associated with the ijth expert.

Assuming that experts are mutually exclusive, the overall probability, P ðt=~xxÞ, and
the expected value at the network output, lð~xxÞ, are given by:

P ðtj~xxÞ ¼
X
i

gið~xxÞ
X
j

gjjið~xxÞPijðtj~xxÞ;

lð~xxÞ ¼
X
i

gið~xxÞ
X
j

gjjið~xxÞlijð~xxÞ;

using notations defined for the two-level depth tree shown in Fig. 1, notations that
can be easily extended to larger HME networks with a binary tree architecture.

2.2. The EM learning algorithm

Jordan and Jacobs [15] have proposed an EM algorithm for training HME mod-
els. EM is an iterative approach to maximum likelihood based on the repetition of
two steps: an estimation (E) step and a maximization (M) step. In Jordan and
Jacobs’s algorithm, the E step consists in calculating the conditional and joint pos-
terior probabilities, which are interpreted as the expected values of missing indica-
tors, using the current values of the parameters. The conditional posterior
probabilities at the bottom gating networks hj=i, and at the top gating network hi,
are defined respectively as

Fig. 1. HME neural network architecture.
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hjji ¼
gjjiPijðtj~xxÞ
Piðtj~xxÞ

and hi ¼
gi
P

j gjjiPijðtj~xxÞ
P ðtj~xxÞ :

The joint posterior probabilities are defined as hij ¼ hihj=i.
The M step finds the optimal parameters of the model that maximize the expected

value of the log-likelihood on the whole data set. The M step reduces to solve a sep-
arate maximum likelihood problem for each expert and gating network, applying the
iteratively reweighted least-squares algorithm. The targets of the expert networks are
the desired outputs of the examples, while the targets of the gating networks are the
posterior probabilities.

2.3. The sequential learning algorithm

This section presents our version of the sequential EM algorithm, based on the
description given in [15], with the addition of the update rule for the variances pro-
posed in [40]. The variance of the ijth expert can be computed as

r2
ij ¼

PN
s¼1 h

s
ijðts � ls

ijÞ
2 þ kr2

oijPN
s¼1 h

s
ij þ k

;

where r2
oij is a prior variance, and kP 0 is the belief in that prior value. When k ¼ 0,

the variance of the ijth expert is calculated as the weighted average of the squared
errors. The weight is given by hsij, the joint posterior probability that expert ijth
generated pattern s, for s ¼ 1; . . . ;N . The denominator normalizes the weightings for
that expert. The case k ¼ 0 corresponds exactly to the maximum likelihood update.
When k takes a large value, the variance of the ijth expert is r2

oij, independent of the
data. The need to introduce a prior variance comes from the fact that the maximum
likelihood variance update is statistically unreliable when expert ij wins only a few
patterns.

For each step of the sequential EM algorithm, operations are performed on the
whole example set. This version is optimal in the sense that it minimizes the number
of forward and backward crossings through the tree. The algorithm is divided into
subroutines and described with names of variables corresponding to the two-level
tree architecture shown in Fig. 1, with four experts.

1. Randomly initialize the weights for all expert and gating networks.
2. Follow recursively the tree structure, visiting nodes from bottom to top:

• on a terminal node (i.e. a node holding an expert network):
(a) calculate the outputs lijð~xxÞ;
(b) calculate the Gaussian probabilities Pijðtj~xxÞ;

• on a nonterminal node (i.e. a node holding a gating network):
(a0) calculate the prior probabilities gjjið~xxÞ at the bottom gating networks and

gið~xxÞ at the top gating network (i.e. root node),
(c) calculate the likelihoods liðtj~xxÞ ¼

P
j gjjið~xxÞPijðtj~xxÞ at intermediate nodes and

P ðtj~xxÞ at the root node,
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(d) calculate the expected values (i.e. outputs) lið~xxÞ at intermediate nodes and
lð~xxÞ at the root node.

3. Follow recursively the tree structure, visiting nodes from top to bottom:
• on a nonterminal node (gating network):
(e) calculate the conditional posterior probabilities: hjji and hi,
(e0) calculate the joint posterior probabilities: hij ¼ hihjji,
(g) update the weights V of the current gating network;

• on a terminal node (expert network):
(f) update the variances r2

ij,
(g) update the weights W of the current expert network;

• on the root node only:
(h) compute a stop criterion and go back to step 2, unless the criterion is sat-

isfied.

2.4. HME with linear experts

First consider a hierarchical mixture of linear experts in which the experts are sin-
gle linear units computing a weighted sum of their inputs, whereas the gates are sin-
gle softmax units. The weight update step implies to solve a set of independent linear
systems by Cholesky decomposition, one for each expert and gating network [15]. If
rL denotes the gradient of the log-likelihood, DH is the weight adjustment vector (H
is the vector of free parameters of the corresponding network) and F is minus the
expected value of the Hessian matrix, then the linear systems respect the equation
FDH ¼ rL. It can be shown that F ¼ X tPX , where X t is the transposed input matrix
and P is a diagonal matrix. Moreover the gradient of the log-likelihood is X tPd,
where P is the above mentioned diagonal matrix and d is an expression that depends
on the local error.

In a more general HME model, every node is a MLP which develops a classical
back-propagation learning algorithm [32]. The case of MLPs as expert and gating
networks will be considered later in Section 7.

3. Parallel algorithm

Efficient parallel implementations of neural networks are often based on a decom-
position of the example set into blocks, which are learned simultaneously on different
processors, and thus modifying the behavior of the training algorithm. Usually they
take advantage of the robustness of the neural learning processes, e.g. back-propa-
gation learning [23,26,28,33], Kohonen self-organizing maps [3], prototype-based in-
cremental classifier [31], in order to perform as well as the sequential algorithm, and
faster, although in a different way. On the contrary, we propose a parallel algorithm,
based on a modular architectural decomposition, which respects exactly the behavior
of the sequential EM algorithm. The parallel algorithm has a coarse granularity and
assumes that the computation to be realized between two consecutive communica-
tions is sufficiently expensive.
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The EM algorithm presented in the previous section supports different types of
stopping criteria (e.g. number of iterations, error level, etc.). The choice should be
specified for each application and set of experiments. For all our experiments, a
number of iterations has been fixed. As the error only depends on the network archi-
tecture and the number of learning iterations, this strategy allows us to check the
correctness of each parallel implementation: for an equally sized tree, the sequential
and parallel final errors must exactly match.

3.1. Mapping the HME on a network of processors

The computational tasks are decomposed into two types of modules: each expert
module is in charge of an expert neural network, and each gating module is in charge
of both a gating neural network and the computation done at the corresponding
node of the tree. This strategy yields an efficient mapping, with highly interconnected
parts of the network mapped onto a same processor, in order to reduce the number
of communications.

For a binary tree with ne experts at the leaves, 2	 ne � 1 processors are required
to implement one module per processor. Fig. 2 shows the mapping onto seven pro-
cessors and the communication paths for a complete binary tree with four experts.

3.2. Parallel version of the learning algorithm

The parallel program starts by initializing the mapping and the modules. The
2	 ne � 1 processes (expert and gating modules) are spawned recursively on the pro-
cessors of the parallel machine. Each module reads the whole training set and initial-
izes its weights randomly. The main loop of the algorithm (a cycle) consists of three
parts: expert module algorithm; inner-level gating module algorithm; and root gating

Fig. 2. Communication paths between modules.
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module algorithm. When the stop criterion is satisfied, a message is sent by the root
module to all the other modules, recursively in the tree, and all the modules halt. We
describe below the mapping of the subroutines and the intermediate data communi-
cations of the parallel learning algorithm, for each type of module, with the nota-
tions introduced for describing the sequential learning algorithm.

For all the expert modules: Apply each of the following steps to all the examples in
the training set:

(a) calculate the outputs lijð~xxÞ;
(b) calculate the Gaussian probabilities Pijðt=~xxÞ;
� send the Gaussian probabilities and outputs to its parent in the tree;
� receive the joint posterior probabilities from its parent in the tree;
(f) update the variances r2

ij;
(g) update the weights W.

For all the inner-level gating modules: Apply each of the following steps to all the
examples in the training set:

(a0) calculate the prior probabilities gj=ið~xxÞ;
� receive the likelihoods from its two children (in a binary tree);
(c) calculate the new likelihood liðtj~xxÞ ¼

P
j gjjið~xxÞPijðtj~xxÞ;

� send the likelihood to its parent;
(e) calculate the conditional posterior probabilities hj=i;
� receive the outputs from its two children;
(d) calculate the outputs (i.e. expected values) lið~xxÞ;
� send the outputs to its parent;
� receive the conditional posterior probabilities from its parent;
(e0) calculate the joint posterior probabilities hij ¼ hihj=i;
� send the joint posterior probabilities to its two children;
(g) update the weights V1;

For the gating module at the root of the tree: Apply each of the following steps to
all the examples in the training set:

(a0) calculate the prior probabilities gið~xxÞ
� receive the likelihoods from its two children;
(c) calculate the new likelihood P ðt=~xxÞ;
(e) calculate the conditional posterior probabilities hi;
� send the conditional posterior probabilities to its two children;
(g) update the weights V2;
� receive the outputs from its two children;
(d) calculate the global output lð~xxÞ;
(h) calculate the error and evaluate the stop criterion;
continue until the criterion is satisfied (or send stop messages).
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3.3. Scheduling the computation and intermediate data communications

A deep analysis of the sequential algorithm described in Section 2.3, has high-
lighted the feasibility of delaying receptions of intermediate outputs until data are
absolutely needed, in order to overlap communications and computations [6]. The
scheduling of this algorithm can be represented on a temporal diagram, with one line
per processor, and for one cycle long.

Fig. 3 exemplifies a temporal diagram for the case of a binary tree with four ex-
perts. Such a temporal diagram is a schematic diagram only, since the computation
times of all steps of the algorithm are represented as being equal, which is not real-
istic. However, this theoretical time diagram is useful as a basis for achieving fur-
ther improvements. Experimental time diagrams will be presented in following
sections.

3.4. The test problem

In order to measure the running times of both the sequential program and the
parallel one, the approximation of a mixture density of two Gaussians has been con-
sidered. The mixture is denoted by:

a1Nðl1; r
2
1Þ þ a2Nðl2; r

2
2Þ; ð1Þ

where li is the mean, r2
i is the variance of the ith Gaussian Nðli; r

2
i Þ and the ai are

the mixture coefficients. In this problem experts have to learn the parameters li and
r2
i , while the gating networks have to learn the mixture proportions ai. The purpose
of testing the program on this mixture of Gaussians is to obtain experimental time
measurements and to collect information on the behavior of the speedup perfor-
mance both as a function of the number of processors and the size of the example set.
Both sequential and parallel algorithms have the same learning behavior and con-
sequently the same performance, for a fixed tree architecture, hence the performance
of the HME algorithm, in terms of the quality of approximation of the mixture of
Gaussians, will not be addressed.

Fig. 3. Schematic temporal diagram (linear units).
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4. Parallel implementation of HME with linear experts

The parallel program has been implemented at the University of Chile, on a Matra
Capitan computer. The Matra Capitan is a MIMD parallel computer. In order to
make the Capitan scalable, the topology is a ring of ‘‘hyper-nodes’’ capable of 50
Mb/s bidirectional communications. Each hyper-node is a cluster of six nodes. The
six processors within a hyper-node are on the same bus, capable of 40 Mb/s transfer.
Each processor has its own private memory, but a small part is shared and used as
buffers by ‘‘CapNet’’: the communication software from Matra. However, the porta-
ble ‘‘message passing interface’’ (MPI) communication library has been used instead
of CapNet, in order to make the software (written in C) portable to other MIMD
computers with distributed memory, as well as to clusters of workstations. Indeed,
MPI, using CapNet, hides low-level mechanisms from the C program [30]. However,
using MPI over CapNet, it is not possible to allocate a specific processor to a given
task, which makes precise time measurements difficult since intra-hyper-node and
inter-hyper-node communication times are not equal. Hopefully, thanks to the deter-
ministic placement algorithm of MPI, a given HME architecture usually leads to a
specific placement and to accurate results.

Experiments have been performed on a machine which has two hyper-nodes, with
12 ‘‘Micro-Sparc II’’ processors running at 85 MHz, with 32 MB of memory. One
more node, a ‘‘service node’’, running the SUN Solaris Operating System, under-
takes to compile programs and to initialize and control the machine.

4.1. Experimental time measurements

First experiment: Two different architectures of the HME network were simu-
lated: (i) two experts and one gating modules with three processors, and (ii) four ex-
perts and three gating modules with seven processors. A large set of 10,000 examples
was randomly generated and the networks were trained on subsets of data of differ-
ent sizes. Fig. 4 shows how the speedup grows with the sample size, saturating
quickly at a maximum value of 2.6 with three processors and 4.5 with seven proces-
sors.
Second experiment: The size of the dataset was fixed to 8000 examples and the

number of processors varied from 3 to 11. Note that the HME architecture is no
longer a complete tree since the number of processors is not equal to 2n � 1 for an
integer value of n. Fig. 5 presents the speedup as a function of the number of pro-
cessors, for a fixed sample size.

For the parallel learning algorithm described in Section 3.2, the speedup grows
linearly (up to 11 processors), but it is far from being equal to the number of proces-
sors, due to communication overhead and idle time (i.e. when a processor is wasting
time, waiting for a message). However, a speedup of 6.6 for 11 processors is cheering,
compared to several other parallel learning algorithms for neural networks. The
main explanation for idle time is that the current algorithm is based on the tree ar-
chitecture of the HME model. The tree must be traversed once from bottom to top
and once from top to bottom, at each cycle. Hence, expert modules and even inter-
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mediate gating modules must wait for results computed by their children and parent
modules in the tree, alternatively.

Fig. 6 shows an experimental time diagram for a seven node tree, for one cycle of
the parallel learning algorithm and has to be compared to the schematic temporal

Fig. 4. Speedup as a function of the sample size (linear units).

Fig. 5. Speedup as a function of the number of processors (linear units).
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diagram of Fig. 3. Load of each processor is shown in black, message sending is de-
picted in grey and idle time in white. Fine arrows link the starting time of an emission
to the end reception time on the receiving processor.

In order to explain the experimental results and to predict the behavior of the par-
allel algorithm for higher numbers of processors or larger sample sizes, it is necessary
to build a detailed model of the temporal behavior of the parallel algorithm. More-
over, this modeling will be applied for proving, in a further section, that the same
algorithm scales up nicely when MLPs are used as expert and gating networks, in-
stead of single units.

Note that the actual communication time is different for inter-hyper-node and
intra-hyper-node communications. It also depends on the load of the communica-
tion network of the parallel machine, i.e. on the number of simultaneous communi-
cations. Hence the experimental communication time can vary slightly, even for
constant length messages, which is hard to be modeled. These variations will not
be taken into account in the theoretical models presented in further sections.

5. Modeling

A formal expression for the running time of the longest path can be derived from
the temporal diagram of Fig. 3. The running time can be expressed as a sum of cal-
culation times TkðsubroutineÞ, and communication times Tm which are assumed
equal for all the messages (as in Fig. 3). The following notation is introduced:
A ¼ aþ bþ f þ g is the concatenation of all the subroutines computed by each ex-

Fig. 6. Experimental time diagram (linear units). Load of each processor is shown in black, message send-

ing is depicted in grey and idle time in white.
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pert module and B ¼ a0 þ cþ dþ eþ g corresponds to the common computation at
all the gating modules. The latter excludes the noncommon tasks, e.g. the step (h),
which is computed only at the root-level gating module (calculation of the overall
error of the HME network and evaluation of the stop criterion).

5.1. Speedup as a function of the number of processors

For a general binary tree of depth H P 1, with ne expert modules at the leaves,
implemented on np processors, the run time Tseq of the sequential algorithm described
in Section 2.3, and the run time Tpar of the parallel algorithm described in Section 3.2,
are as follows:

Tseq ¼ neTkðAÞ þ ðne � 1ÞTkðBÞ þ ðne � 2ÞTkðe0Þ þ TkðhÞ; ð2Þ

Tpar ¼ TkðAÞ þ HTkðcÞ þ ðH � 1ÞTkðe0Þ þ TkðeÞ þ 2neTm: ð3Þ

Note that the relationship between the number of processors and the number of
expert modules in a binary tree is np ¼ 2	 ne � 1. Making use of this relationship
and rearranging the terms in Eqs. (2) and (3), the following expressions for Tseq and
Tpar, as a function of the number of processors, are obtained:

Tseq ¼ a0 þ a1 	 np; ð4Þ
where

a0 ¼ 1
2
TkðAÞ � TkðBÞ � 3	 Tkðe0Þ
� �

þ TkðhÞ;
a1 ¼ 1

2
TkðAÞ þ TkðBÞ þ Tkðe0Þ
� �

;

�

Tpar ¼ b0 þ b01 	 H þ b1 	 np; ð5Þ
where

b0 ¼ TkðAÞ � Tkðe0Þ þ TkðeÞ þ Tm;
b01 ¼ TkðcÞ þ Tkðe0Þ;
b1 ¼ Tm:

8<
:

In a binary tree, the number of processors np is lower bounded by 2H þ 1 and upper
bounded by 2Hþ1 � 1, i.e. H ¼ Oðlog2 npÞ.

The speedup S can be expressed as a function of the overhead function
To ¼ npTpar � Tseq, as defined in [16]:

S ¼ Tseq
Tpar

¼ np
1þ To

Tseq

: ð6Þ

From its definition, the overhead function includes the communication overhead and
the idle time of all processors. From our modeling, the overhead function is as
follows:

To ¼ k0 þ k1 	 np þ k12 	 H 	 np þ k2 	 n2p; ð7Þ
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where

k0 ¼ � 1
2
TkðAÞ � TkðBÞ � 3	 Tkðe0Þ
� �

� TkðhÞ;
k1 ¼ 1

2
TkðAÞ � TkðBÞ � 3	 Tkðe0Þ
� �

þ TkðeÞ þ Tm;
k12 ¼ TkðcÞ þ Tkðe0Þ;
k2 ¼ Tm:

8>>><
>>>:

The speedup can be calculated from (4), (6) and (7). The theoretical model indicates
that the speedup cannot exceed a maximum value given by an asymptotic approx-
imation of its expression, for np increasing towards infinity:

lim
np!1

SðnpÞ �
a1
b1

¼ TkðAÞ þ TkðBÞ þ Tkðe0Þ
2	 Tm

;

quantity strongly dependent on the ratio between computation and communication
times which is available on the parallel computer.

5.2. Speedup as a function of the sample size

For each communication phase, we assume that the size of the message is linear in
the number of examples N, i.e. the sample size. Hence Tm ¼ Ts þ N 	 T 0

m, where Ts is
the startup time of the communication and T 0

m the transfer time for elementary real
data. Likewise, for each calculation phase the computation times are modeled as lin-
ear in the sample size. For each subroutine TkðsubÞ ¼ kinitðsubÞ þ N 	 T 0

kðsubÞ, where
kinit is an initialization time and T 0

k is the calculation time of elementary real data.
Thus the computation times in (4), (5) and (7) can be expressed as ai ¼ kai þ
N 	 a0i, bi ¼ kbi þ N 	 b0i, and ki ¼ kki þ N 	 k0i , respectively, where the kindex are con-
stants. For very large sample sizes, asymptotic behavior is obtained when N goes to
infinity:

lim
N!þ1

SðNÞ � a00 þ a01np
b00 þ b001H þ b01np

:

The limit enhances the fact that the speedup saturates at a maximum value, which
depends on the number of processors, when the sample size grows towards infinity.
This result confirms the experimental speedup curves shown in Fig. 4.

5.3. Theoretical speedup vs. experimental speedup

Measurements of experimental speedup were performed on a HME network of
four experts, mapped onto seven processors, for learning a mixture of two Gaussians
from a data set of 8000 examples. The calculation times, in seconds, were measured
separately for all the phases specified by letters in the temporal diagram of Fig. 3.
The measurements were averaged over several cycles. In all cases the standard devi-
ation was less than 0.001. The calculation times are as follows: TkðAÞ ¼ 0:247,
TkðBÞ ¼ 0:194, TkðcÞ ¼ 0:009, TkðeÞ ¼ 0:022, Tkðe0Þ ¼ 0:014, and TkðhÞ ¼ 0:040. The
communication time Tm, in seconds, is harder to be modeled since the distribution
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of measurements is not Gaussian (the mean value 0.009 is much higher than the me-
dian 0.006). The following range of values for the communication time has been con-
sidered: Tm ¼ 0:009 0:005, which covers about 60% of the cases. The constants
defined in the modeling were estimated as follows (for Tm ¼ 0:009 s):

• for Eq. (4): a0 ¼ 0:044, a1 ¼ 0:228,
• for Eq. (5): b0 ¼ 0:262, b01 ¼ 0:024, b1 ¼ 0:009,
• for Eq. (7): k0 ¼ �0:044, k1 ¼ 0:035, k12 ¼ 0:024, k2 ¼ 0:009.

From these values, the limit of the speedup, when the number of processors goes to
infinity, is a1=b1 ¼ 25.

Fig. 7 shows both the theoretical speedup (the line with error bars including the
deviation of the communication time from the mean) and the experimental speedup
(x-mark) as a function of the number of processors. The theoretical estimation is
quite accurate. All the experimental values are within the error bars, except for
the case of three processors where the estimation is slightly pessimistic. This result
suggests that the average communication time for three processors is faster than with
seven processors, since the measurements have been based on the latter configura-
tion. Explanations for this behavior can be the difference between intra-hyper-node
and inter-hyper-node communication times, as well as the increasing (with np) num-
ber of simultaneous communications.

Next, we compare theoretical speedup and experimental speedup as a function of
the sample size. The experimental communication and calculation times, per elemen-
tary data, as well as the initialization times of each subroutine, were estimated from

Fig. 7. Theoretical (—) and experimental (	 marks) speedups.

P.A. Est�eevez et al. / Parallel Computing 28 (2002) 861–891 875



running a HME network of four experts and three gating modules on seven proces-
sors, learning from 2000, 4000 and 8000 data. The calculation times were measured
for all the phases specified by letters in the temporal diagram of Fig. 3. The measure-
ments were averaged over several cycles. The calculation times, in milliseconds, were
as follows: T 0

kðAÞ ¼ 0:031, T 0
kðBÞ ¼ 0:025, T 0

kðcÞ ¼ 0:002, T 0
kðeÞ ¼ 0:003, T 0

kðe0Þ ¼
0:002, and T 0

kðhÞ ¼ 0:005. The initialization times were as follows: kA ¼ 0:190,
kB ¼ 0:272, kc ¼ 0:067, ke ¼ 0:150, ke0 ¼ 0:110, and kh ¼ 0:077. The startup time
per communication was Ts ¼ 3:3 ms. The range of elementary transfer times corre-
sponding to the range of values taken above for the communication times is, in mi-
croseconds, T 0

m 2 ½0:09; 1:34�.
Fig. 8 shows both the theoretical speedup (the lines) and the experimental speedup

(x- and -o marks) as a function of sample size. The experimental curves are the same
as in Fig. 4. Due to the variation of communication time for three and seven proces-
sors, different transfer times were applied to each calculation: T 0

m ¼ 0:09 ls for three
processors and T 0

m ¼ 0:7 ls for seven processors. From these values, the limit of the
speedup, when the sample size goes to infinity, is S ¼ 2:60 for three processors and
S ¼ 4:74 for seven processors, which well matches the results in Fig. 4.

6. Pipelining packets of examples

6.1. Principle and model

A way to improve the speedup is to pipeline the examples by packets in order to
overlap calculations and communications. A calculation cycle in a gating module can

Fig. 8. Theoretical (- - -) and experimental (� and 	 marks) speedups as a function of sample size.
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start with the first examples, even if the computations of the expert module are not
achieved for the whole training set. Since it would be too much time consuming to
send intermediate results after each example, the messages are split into a few num-
ber of packets. Both along the bottom-up and the top-down paths, each packet of
results is sent as soon as calculated, hence the next module in the tree can start its
computation earlier. Thus the overall idle time is reduced. The parallel time for a
p-packet pipeline is denoted by T p

par. For the degenerated case p ¼ 1, T 1
par corresponds

to the time of the version without pipelining, given by (5). This expression can be de-
composed in two terms: the computation TkðAÞ performed by expert modules, and
the computation TkðRÞ performed on other processors, plus the communication time:

T 1
par ¼ TkðAÞ þ TkðRÞ þ ðnp þ 1ÞTm ¼ TkðAÞ þ 2Tm þ TkðRÞ þ ðnp � 1ÞTm|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Idle time for experts

; ð8Þ

where TkðRÞ ¼ HðTkðcÞ þ Tkðe0ÞÞ þ TkðeÞ � Tkðe0Þ.
The purpose of the pipelining is to reduce as much as possible the idle time of a

processor holding an expert module, TkðRÞ þ ðnp � 1ÞTm, thus shortening the critical
path. Fig. 9 illustrates a schematic temporal diagram of the critical path, for a seven
nodes tree, and a two-packet pipeline. Steps presented in italic are performed on the
second packet of examples. On the expert modules, in the p-packet algorithm, the
whole steps (a) and (b) must be over before starting the first part of steps (f) and (g).

The communication time for the p-packet algorithm is modeled as T p
m ¼

Ts þ ð1=pÞNT 0
m, where N is the sample size, pP 2 is the number of packets. The par-

allel running time is modeled as:

T p
par ¼ TkðAÞ þ 2pT p

m þ ðp � 1Þmax 0; T p
cp

�
� 1

p
ðTkðaÞ þ TkðbÞÞ

�

þmax 0; T p
cp

�
� p � 1

p
ðTkðfÞ þ TkðgÞÞ

�
; ð9Þ

where T p
cp is the critical path time:

T p
cp ¼

1

p
TkðRÞ þ ðnp � 1ÞTs þ

1

p
ðnp � 1ÞNT 0

m:

Fig. 9. Critical path diagram for the two-packets version (linear units).
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From (9) it is easy to see that four cases can occur, depending on which arguments of
the maximum functions take the maximum values. Note that TkðaÞ þ TkðbÞ is greater
than TkðfÞ þ TkðgÞ, for all sample sizes, in the experimental conditions of this article.
For this reason the computation of the term TkðaÞ þ TkðbÞ is split in p portions, while
the calculation of term TkðfÞ þ TkðgÞ is done in two steps. Note that all communi-
cations convey packets of size N=p.

Case I: T p
cp < ððp � 1Þ=pÞðTkðfÞ þ TkðgÞÞ and T p

cp < ð1=pÞðTkðaÞ þ TkðbÞÞ
In this case, T p

par ¼ TkðAÞ þ 2pT p
m, i.e. computations end on time and experts do not

waste time. From this last expression and (4), the overhead of the p-packet pipeline
can be computed as:

T p
o ¼ k0 þ k01np; ð10Þ

where

k01 ¼
1

2
ðTkðAÞ � TkðBÞ � Tkðe0ÞÞ þ 2Tm þ 2ðp � 1ÞTs; ð11Þ

and k0 is the same coefficient as in (7). The coefficient k0 and the first term on the
right side of k01 in (11) represent the idle time in the gating modules, which cannot be
reduced with the p-packet approach.

Note that the overhead function (7) of the one-packet algorithm is a quadratic
function of the number of processors, while the overhead function (10) for the
p-packet algorithm in Case I is linear in np. The speedup for the p-packet algorithm
can be calculated from (4), (6) and (10). The theoretical model indicates that the
speedup will be almost linear for np sufficiently large:

Sp � np

1þ k0
1

a1

� � :

Case II: T p
cp > ð1=pÞðTkðaÞ þ TkðbÞÞ and T p

cp > ððp � 1Þ=pÞðTkðfÞ þ TkðgÞÞ
In this case:

T p
par ¼ TkðAÞ þ 2pT p

m þ pT p
cp �

p � 1

p
ðTkðaÞ þ TkðbÞ þ TkðfÞ þ TkðgÞÞ

¼ TkðAÞ þ 2pT p
m þ pT p

cp �
p � 1

p
TkðAÞ

¼ 1

p
TkðAÞ þ 2pT p

m þ TkðRÞ þ pðnp � 1ÞTs þ ðnp � 1ÞNT 0
m

¼ 1

p
TkðAÞ þ TkðRÞ þ pðnp þ 1ÞTs þ ðnp þ 1ÞNT 0

m

¼ 1

p
TkðAÞ þ TkðRÞ þ ðp � 1Þðnp þ 1ÞTs þ ðnp þ 1ÞTm: ð12Þ

In order to measure the gain of the pipelined version, T p
par has to be compared to T 1

par,
i.e., (8) and (12). The speedup is increased if the difference T 1

par � T p
par is positive, i.e.

when:
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1

p
TkðAÞ � ðnp þ 1ÞTs > 0: ð13Þ

Eq. (13) implies that there is a critical sample size (a lower bound Ncritic) for obtaining
a speedup gain. From TkðAÞ ¼ kA þ NT 0

kðAÞ and (13), we obtain:

Ncritic ¼
pðnp þ 1ÞTs � kA

T 0
kðAÞ

� pðnp þ 1ÞTs
T 0
kðAÞ

: ð14Þ

Case III: ð1=pÞðTkðaÞ þ TkðbÞÞ > T p
cp > ððp � 1Þ=pÞðTkðfÞ þ TkðgÞÞ

In this case:

T p
par ¼ TkðAÞ þ 2pT p

m þ T p
cp �

p � 1

p
ðTkðfÞ þ TkðgÞÞ

¼ TkðAÞ þ 2Tm þ 2ðp � 1ÞTs þ T p
cp �

p � 1

p
ðTkðfÞ þ TkðgÞÞ: ð15Þ

From (8) and (9), T 1
par can be rearranged as follows:

T 1
par ¼ TkðAÞ þ pT p

cp � ðp � 1Þðnp � 1ÞTs þ 2Tm: ð16Þ

The speedup of the p-packet version is increased with respect to the one-packet
version if the difference T 1

par � T p
par is positive:

ðp � 1ÞT p
cp þ

p � 1

p
ðTkðfÞ þ TkðgÞÞ � ðp � 1Þðnp þ 1ÞTs > 0;

T p
cp �

1

p
ðTkðaÞ þ TkðbÞÞ þ

1

p
TkðAÞ � ðnp þ 1ÞTs > 0:

ð17Þ

This implies that ð1=pÞTkðAÞ � ðnp þ 1ÞTs > �1 > 0, where �1 ¼ ð1=pÞðTkðaÞþ
TkðbÞÞ � T p

cp > 0 due to the condition of Case III. The former inequality implies that
(13) must be satisfied, therefore the sample size should be at least Ncritic. A similar
expression to (14) can be easily deduced for this case.

Case IV: ððp � 1Þ=pÞðTkðfÞÞ þ TkðgÞ > T p
cp > ð1=pÞðTkðaÞ þ TkðbÞÞ

In this case:

T p
par ¼ TkðAÞ þ 2pT p

m þ ðp � 1ÞT p
cp �

p � 1

p
ðTkðaÞ þ TkðbÞÞ

¼ TkðAÞ þ 2Tm þ 2ðp � 1ÞTs þ ðp � 1ÞT p
cp �

p � 1

p
ðTkðaÞ þ TkðbÞÞ: ð18Þ

Subtracting (18) from (16), we obtain the condition for a speedup gain:

T p
cp þ

p � 1

p
ðTkðaÞ þ TkðbÞÞ � ðp � 1Þðnp þ 1ÞTs > 0;

1

p � 1
T p
cp �

1

p
ðTkðfÞ þ TkðgÞÞ > ðnp þ 1ÞTs �

1

p
TkðAÞ:

ð19Þ

This implies that ð1=pÞTkðAÞ � ðnp þ 1ÞTs > �2 > 0 where �2 ¼ ð1=pÞðTkðfÞ þ TkðgÞÞ�
ð1=ðp � 1ÞÞT p

cp > 0 due to the condition of Case IV. As in Case III, the former
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inequality implies that (13) must be satisfied, therefore the sample size should be at
least Ncritic.

The condition of Case I implies approximately that:

np 6
minðT 0

kðaÞ þ T 0
kðbÞ; ðp � 1ÞðT 0

kðfÞ þ T 0
kðgÞÞÞ � T 0

kðRÞ
ðp=NÞTs þ T 0

m

þ 1: ð20Þ

Likewise, the condition of Case II implies approximately that:

np P
maxðT 0

kðaÞ þ T 0
kðbÞ; ðp � 1ÞðT 0

kðfÞ þ T 0
kðgÞÞÞ � T 0

kðRÞ
ðp=NÞTs þ T 0

m

þ 1: ð21Þ

From (20) and (21) it can be seen that as np increases for a fixed packet size N=p, the
sequence I ! III ! II holds if T 0

kðaÞ þ T 0
kðbÞ > ðp � 1ÞðT 0

kðfÞ þ T 0
kðgÞÞ. On the con-

trary, as N=p increases for a fixed np, the inverse sequence II ! III ! I holds. If
T 0
kðaÞ þ T 0

kðbÞ < ðp � 1ÞðT 0
kðfÞ þ T 0

kðgÞÞ then Case IV occurs instead of Case III.
The factor ðp � 1Þ=p weighing the term TkðfÞ þ TkðgÞ in (9) is convenient for small

values of p. This factor can be easily changed without altering the main results de-
scribed above. Let us consider the case where the factor is changed to 1=p. Changing
also this factor in the conditions of Cases I, II, III and IV, it is easy to see that the
analysis of Cases I and IV will remain unaltered. In Case II the critic sample size will
be greater than that given in (14), while in Case III the critic sample size will be greater
than (14) only if ðp � 2Þððnp þ 1ÞTs � T p

cpÞ > 0.

6.2. Two-packet parallel learning algorithm

In this section the two-packet learning algorithm is presented. This version as-
sumes that the critical path respects the scheme of Fig. 9. Since steps ða0Þ, (g) and
(d) in gating networks are out of the critical path, they can be split or located in
the most convenient way. For example, step (d) (calculation of outputs) can be de-
layed till the end of the cycle, since outputs are needed only in the last step (h) of the
root gating network (calculation of the error).

For all the expert modules: Apply each of the following steps to half the examples
in the training set:

(a/2) calculate the outputs lijð~xxÞ;
(b/2) calculate the Gaussian probabilities Pijðt=~xxÞ;
� send the first half Gaussian probabilities to its parent in the tree;
(a/2) calculate the outputs lijð~xxÞ;
(b/2) calculate the Gaussian probabilities Pijðt=~xxÞ;
� receive the first half joint posterior probabilities from its parent in the tree;
� send the second half Gaussian probabilities to its parent in the tree;
(f/2) update the variances r2

ij;
(g/2) update the weights W;
� send the first half outputs to its parent in the tree;
� receive the second half joint posterior probabilities from its parent in the tree;
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(f/2) update the variances r2
ij;

(g/2) update the weights W;
� send the second half outputs to its parent in the tree.

For all the inner-level gating modules: Apply each of the following steps to half the
examples in the training set, except for step (a0) which is split into 3/4 and 1/4 of the
training examples:

(3/4 a0) calculate the prior probabilities gj=ið~xxÞ;
� receive the first half likelihoods from its two children;
(c/2) calculate the new likelihood liðtj~xxÞ ¼

P
j gjjið~xxÞPijðtj~xxÞ;

� send the first half likelihood to its parent;
(e/2) calculate the first half conditional posterior probabilities hj=i;
(1/4 a0) calculate the prior probabilities gj=ið~xxÞ;
� receive the first half conditional posterior probabilities from its parent;
(e0/2) calculate the first half joint posterior probabilities hij ¼ hihj=i;
� send the first half joint posterior probabilities to its two children;
� receive the second half likelihoods from its two children;
(c/2) calculate the new likelihood liðtj~xxÞ ¼

P
j gjjið~xxÞPijðtj~xxÞ;

� send the second half likelihood to its parent;
(e/2) calculate the second half conditional posterior probabilities hj=i;
(g/2) update the weights V1;
� receive the second half conditional posterior probabilities from its parent;
(e0/2) calculate the second half joint posterior probabilities hij ¼ hihj=i;
� send the second half joint posterior probabilities to its two children;
� receive the first half outputs from its two children;
(d/2) calculate the first half outputs lið~xxÞ;
� send the first half outputs to its parent;
(g/2) update the weights V1;
� receive the second half outputs from its two children;
(d/2) calculate the second half outputs lið~xxÞ;
� send the second half outputs to its parent.

For the gating module at the root of the tree: Apply each of the following steps to
half the examples in the training set, except for step (a0) which is split into 3/4 and 1/4
and step (g) which is calculated at once:

(3/4 a0) calculate the prior probabilities gið~xxÞ;
� receive the first half likelihoods from its two children;
(c/2) calculate the new likelihood P ðt=~xxÞ;
(e/2) calculate the first half conditional posterior probabilities hi;
� send the first half conditional posterior probabilities to its two children;
(1/4 a0) calculate the prior probabilities gið~xxÞ;
� receive the second half likelihoods from its two children;
(c/2) calculate the new likelihood P ðt=~xxÞ;
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(e/2) calculate the second half conditional posterior probabilities hi;
� send the second half conditional posterior probabilities to its two children;
(g) update the weights V2;
� receive the first half outputs from its two children;
(d/2) calculate the first half global output lð~xxÞ;
(h/2) calculate the first half error;
� receive the second half outputs from its two children;
(d/2) calculate the second half global output lð~xxÞ;
(h/2) calculate the second half error and evaluate the stop criterion.

A second version of the two-packet learning algorithm was also implemented. In
version 2, for all the expert modules the reception of the second half joint posterior
probabilities from its parent in the tree was performed before sending the first half
outputs to its parent in the tree. The rest of the modules remain the same.

6.3. Experimental time measurements

Fig. 10 illustrates an experimental time diagram measured on a two-packet pipe-
line algorithm learning from 8000 examples and mapped onto seven processors. A
visual comparison between Figs. 6 and 10 shows that the idle time, depicted in white,
has been strongly reduced in the two-packet pipeline.

Fig. 10. Experimental time diagram for the pipelined version (linear units). Load of each processor is

shown in black, message sending is depicted in grey and idle time in white.
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Fig. 11 shows experimental and theoretical speedups (for a communication time
Tm ¼ 0:009 s) as a function of the number of processors, for 8000 examples. Two sets
of experimental results are plotted (� and þ marks), corresponding to versions 1 and
2 of the two-packet algorithm, respectively. The lines correspond to the theoretical
models for a one-packet pipeline (solid line) and for a two-packet pipeline (dashed
line), with the same coefficients for the modeling obtained in Section 5.3. Note that
the speedup is rather sensitive to the communication time, but all experimental
points in Fig. 11 are within the range of values given in Section 5.3.

The influence of the sample size is illustrated by Fig. 12, with and without pipe-
line, for seven processors. Two sets of experimental results are plotted for versions
1 and 2 of the two-packet pipeline (� and þ marks), and another set for the one-
packet pipeline (� marks). The lines correspond to the theoretical models for the
one-packet pipeline (solid line) and the two-packet pipeline (dashed line), with the
same coefficient values as in Section 5.3.

The theoretical models are quite accurate, since the intersection of the two curves
can be explained. From (21) it can be deduced that Case II prevails for a sample size
N < 4080, otherwise Case III predominates. From (14), the theoretical critical sam-
ple size is Ncritic � 1716, matching well the experimental result of Fig. 12, where the
two curves intersect for a sample size just over Ncritic.

Given the experimental time measurements for the example considered, the theo-
retical model of Section 6.1 implies that no significant speedup enhancement (<2%)
can be obtained with a three-packet algorithm with respect to a two-packet algo-
rithm, due to the additional communication overhead. This result was confirmed

Fig. 11. Speedup as a function of np, with (- - -) and without (—) pipelining. Experimental results are plot-

ted for version 1 (� marks) and version 2 (þ marks) of the two-packet algorithm.
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experimentally with a three-packet pipeline algorithm, which is not described here
for the sake of space.

From (9) it can be seen that while all calculation times are reduced when p in-
creases, the startup communication time in expression T p

cp remains the same. There-
fore, the arguments within the maximum function in (9) tend to grow with p. For
single units a fraction of the calculation time becomes comparable to the term
ðnp � 1ÞTs. In the next section we consider the case of MLP networks instead of sin-
gle units.

7. Parallel implementation of HME with MLP neural networks

All the lessons learned from the implementation of the HME model with single
units can be applied to propose an accurate model and an efficient implementation
for the more elaborate model of HME, with MLPs as expert and gating nodes.

When considering the HME model with MLP neural networks, there are five vari-
ables that could affect the different steps of the parallel algorithms proposed in the
previous sections. These variables are:

1. The number of examples, N. This parameter affects all steps and messages. Since
all examples are applied to every network, this parameter must be the same every-
where.

2. The number of inputs, ni (dimension of the input vector). This parameter affects
steps (a) and (g) in experts, and steps (a0) and (g) in gating networks, but does not

Fig. 12. Speedup as a function of the sample set size, with pipelining (- - -) and without pipelining (—).

Experimental results are plotted, with pipelining (� and þ marks, for versions 1 and 2 of the two-packet

algorithm) and without pipelining (� marks).
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affect the size of messages. Parameter ni could be different for each expert or gat-
ing network.

3. The number of hidden units, nh. Without loss of generality a single hidden layer is
assumed. This parameter affects steps (a) and (g) in experts, and steps (a0) and (g)
in gating networks, but does not affect the size of messages. Parameter nh could be
different for each expert or gating network.

4. The number of outputs, no (dimension of output vector). This parameter affects
all steps in experts, besides steps (d) and (h) in gating networks. Parameter no also
affects the size of output messages. However, since the calculation and communi-
cation of outputs are not in the critical path, it is assumed that the size of mes-
sages remains fixed. By model construction parameter no must be the same for
every expert.

5. The number of branches, nb. It corresponds to the number of outputs in gating
networks. In the models described in Sections 5 and 6, a binary tree was assumed.
Parameter nb affects all steps in gating networks, except step (h). This parameter
does not affect the size of messages. For symmetry reasons, it is convenient that
parameter nb be the same at each level of the hierarchical tree architecture.

In the following section, the case of HME neural networks with regular topologies
is considered, i.e. experts of the same size, as well as gating networks of the same size.
This assumption entails a good load balancing over processors. The case of irregular
topologies will be commented in the discussion.

7.1. Scalability analysis with MLP networks

The isoefficiency function can be used as a metric of scalability [16]. This function
prescribes the growth rate of the problem size required to keep efficiency at a given
value as np increases. For scalable parallel systems, efficiency can be maintained at a
fixed value if the ratio To=Tseq in (6) is kept at a constant value. For a desired value E
of efficiency, the following relationship holds,

Tseq ¼ K 	 To; ð22Þ
where K ¼ E=ð1� EÞ is a constant depending on the efficiency to be maintained.

Of particular interest is the case of scaling up the size of expert and gating net-
works, from a single unit to MLP neural networks. The size of experts is a function
of the following parameters: nie inputs, nhe hidden units and no outputs. It is assumed
that all experts are of the same size. Likewise, the size of gating networks is a func-
tion of the following parameters: nig inputs and nhg hidden units (nb ¼ 2 is fixed for
a binary tree). It is assumed that all gating networks are of the same size. A large
enough data set is assumed, such that N � nie, nhe, nig, nhg, no.

From (4), (7) and (22) the isoefficiency function yields,

T 0
seq þ DTseq ¼ KðTo þ DToÞ;

T 0
seq þ Da0 þ Da1np ¼ KðTo þ Dk0 þ Dk1np þ Dk12Hnp þ Dk2n2pÞ;

ð23Þ
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where To is the overhead function and T 0
seq is the sequential run time when

nhe ¼ nhg ¼ 0, nie ¼ nig ¼ 0, no ¼ 1 and nb ¼ 2, i.e. a single unit with only a bias input
and a single output. DTo is the increase in the overhead function and DTseq is the
increase in the sequential run time, when scaling up expert and gating networks by
means of the parameters nie, nhe, no, nig and nhg.

From the discussion of the previous section, we know that the four parameters
(nie, nhe, nig and nhg) changing the size of expert and gating networks only affect steps
(a) and (g) in experts, and steps (a0) and (g) in gating networks (see temporal diagram
of Fig. 3). Parameter no affects all steps in experts, besides steps (d) and (h) in gating
networks. In particular, the size of messages will remain the same as with single
units. Under these conditions, we have:

Da0 ¼
1

2
ðDTkðAÞ � DTkðBÞÞ þ DTkðhÞ;

Da1 ¼
1

2
ðDTkðAÞ þ DTkðBÞÞ;

Dk0 ¼ �Da0;

Dk1 ¼ Da0 � DTkðhÞ;
Dk12 ¼ 0;

Dk2 ¼ 0:

ð24Þ

Replacing these values in (23) and assuming that TkðBÞ ¼ aTkðAÞ with a a real con-
stant, we have:

T 0
seq þ Da0 þ Da1np ¼ KðTo þ Da0ðnp � 1Þ � DTkðhÞnpÞ;

Da0ð1þ KÞ þ ðDa1 � KðDa0 � DTkðhÞÞÞnp ¼ KTo � T 0
seq;

ð1
2
ð1� aÞð1þ KÞ þ 1

2
ð1� K þ að1þ KÞÞnpÞDTkðAÞ ¼ KTo � T 0

seq � ð1þ KÞDTkðhÞ:
ð25Þ

Substituting Ta ¼ 1
2
ð1� aÞð1þ KÞ þ 1

2
ð1� K þ að1þ KÞÞnp in (25) and rearranging

terms yields,

DTkðAÞ ¼
KTo � T 0

seq � ð1þ KÞDTkðhÞ
Ta

: ð26Þ

Note that To is a quadratic polynomial in np, T 0
seq is linear in np, and Ta is also linear in

np. From (26) it is concluded that to keep a fixed efficiency, the size of expert and
gating networks should grow linearly in np, i.e. DTkðAÞ ¼ OðnpÞ and DTkðBÞ ¼ OðnpÞ.
Moreover, the models constructed in Sections 5 and 6 have assumed a critical path
where the size of the gating networks is no greater than the size of experts, i.e. a6 1.

In particular when ni ¼ nie ¼ nig, nh ¼ nhe ¼ nhg and no ¼ 1, both expert and gat-
ing networks will grow by the same amount with ni and nh. This condition implies
that a ¼ 1, Ta ¼ np and DTkðhÞ ¼ 0. Therefore DTo ¼ 0, i.e. the extra overhead time
is zero. Eq. (26) is reduced to:
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DTkðAÞ ¼
KTo � T 0

seq

np
: ð27Þ

If the learning algorithm is error back-propagation, outputs of nh þ 1 units need
to be calculated in the forward phase. Likewise, in the backward phase, the error is
back-propagated through the same number of units and the weights are updated. A
rough estimation of the extra calculation time required by a MLP with respect to the
single unit case is nh 	 ðTr þ TdÞ, where Tr is the calculation time of a single sigmoidal
hidden unit plus the calculation time of a single linear output unit with nh weights in
the forward phase, and Td is the calculation time of deltas and gradients from the
output unit to the hidden units and from the hidden units to the inputs, in the back-
ward phase. Both Tr and Td are functions of the number of inputs, ni.

Replacing DTkðAÞ � nhðTr þ TdÞ in (27), and solving for the number of hidden
units, yields

nh �
KTo � T 0

seq

ðTr þ TdÞnp
: ð28Þ

Since To is a quadratic polynomial in np and T 0
seq is linear in np, in Eq. (28), the linear

term in np dominates the growth, i.e. nh ¼ OðnpÞ gives the overall asymptotic iso-
efficiency function of our parallel system, which confirms its good scalability.

7.2. Experimental time measurements

New versions of the sequential algorithm and the one-packet parallel algorithm
were implemented to cope with MLPs as expert and gating networks. In the M step
of the EM algorithm, the error back-propagation learning algorithm was used in-
stead of the iteratively reweighted least squares algorithm. The computation times
appearing as coefficients in expression (28) were measured for a HME network learn-
ing a mixture of two Gaussians from a data set of 8000 examples and mapped onto
seven processors. Experimentally estimated parameters, for nh ¼ 0 are, in seconds:

k0 ¼ �0:0076; k1 ¼ 0:0141; k12 ¼ 0:0341; k2 ¼ 0:009;

T 0
seq ¼ 1:657 and Tr þ Td ¼ 0:148:

From the experimental value Tr þ Td ¼ 0:148, the absolute value of the relative
error between the measured parallel run time and the predicted parallel run time
is less than 5% in average for nh ¼ 1; . . . ; 40. Likewise, the relative error between
the measured sequential run time and the predicted one is less than 5% in average
for nh ¼ 1; . . . ; 5 (the sequential program runs out of memory for larger networks).

Fig. 13 shows experimental (� and � marks) and theoretical (solid lines) speedup
curves parameterized in the number of hidden units, for nh ¼ 0; . . . ; 10. The experi-
mental time measurements for nh ¼ 0 were used to estimate the theoretical model.
Since the sequential program runs out of memory for nh P 5, the sequential time
for nh ¼ 10 was estimated as T 0

seq þ npnhðTr þ TdÞ. In Fig. 13, fully experimental

P.A. Est�eevez et al. / Parallel Computing 28 (2002) 861–891 887



speedups are marked by stars, while half experimental speedups are marked by
circles. For nh ¼ 10 near-linear speedups are reached, as can be checked in the table.

7.3. Discussion

In this work, equal sized experts have been assumed, the same for gates. Also a
binary tree has been assumed. A case of particular interest is when only one gating
network is used for K experts. In this case the number of branches is nb ¼ K. If the
size of the gating network is smaller than the size of the experts, then the critical path
will be quite similar to what was assumed in our models. On the other hand, if the
size of the gating network is greater than the size of the experts, then the critical path
will be given by the gating network computations. In this case, the partition of the
K-ary gating network in a binary subtree of gating networks could be a good way
of parallelizing the gating network computations, and our original model could be
recovered.

When considering irregular topologies, for example experts and gates of arbitrary
sizes, the problem of load balancing should be solved. One approach to solve this
problem is graph partitioning [10]. Unfortunately, graph partitioning is a NP-com-
plete problem, and heuristics methods must be used. The HME neural network can
be seen as a directed graph, where vertices represent computations and edges repre-
sent data dependencies. The amount of work in a vertex could be represented by a

Fig. 13. Experimental (� and � marks) vs. theoretical (—) speedup as a function of the number of proces-

sors np and the number of hidden units nh (for HME-MLP).

Number of processors 3 5 7 9 11
Experimental speedup 2.92 4.79 6.58 8.42 10.12
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weight. Similarly, a weight is associated with each edge, corresponding to the amount
of communication it represents. The schematic temporal diagram of Fig. 3, gives an
idea of the resulting graph for a HME network (we have to make explicit the data
dependencies within experts and gates). Here computations represent calculations
over the whole expert or gating network. For irregular HME networks, the graph
partitioning scheme could result in the computation of part of an expert network
and part of a gating network over the same processor, no longer mapping experts
or gates onto different processors.

For fixed irregular topologies, the load can be estimated from the amount of con-
nections in the network, and a static load balancing approach could be used. A more
challenging problem is the case of dynamically changing HME networks. This oc-
curs when using growing HME algorithms [37] or pruning HME algorithms [14].
Prechelt [29] has addressed the problem of developing a compiler for efficient imple-
mentation of dynamic irregular neural networks, although modular neural networks
are not included.

8. Conclusion

We have shown that the modularity of HME neural architecture makes it suitable
for parallelization. A simple version of the model, with single units as expert and gat-
ing networks, has been implemented both as a portable sequential program (written
in C), and as a portable parallel program (also in C) using the MPI communication
library (available on most parallel computers, and for PC clusters running most op-
erating systems). The parallel algorithm has been optimized by pipelining examples
into packets. A theoretical model and experimental measurements showed the limits
of too small expert and gating neural networks. It has been shown that for regular
topologies the proposed parallel algorithms are highly scalable when the size of the
expert and gating networks grows from single units to MLPs. Since the speedup
depends on the size of expert and gating networks, it is easier to reach higher,
near-linear speedups, with HME-MLP.

This work can be considered as a case study in the parallelization of HME net-
works trained by the EM algorithm. The models presented here apply straightfor-
wardly to different optimizations of the weights in the expert and gating networks
in the M-step, such as several second order methods [1,37,38,40]. Some of the con-
cepts presented here may be applied to Bayesian methods for training mixtures of
experts, that combine the standard EM learning algorithm with re-estimation of
hyper-parameters of priors on gate and expert parameters [37,38].

Furthermore, parallel machines provide the necessary amount of memory re-
quired by large real-world applications. In conclusion, our parallel algorithm for
training a hierarchical mixture of neural experts has been shown to be efficient
and capable of overcoming the limitations of the sequential algorithm for processing
real applications on complex problems and large data bases. They confirm the inter-
est of parallelizing modular neural networks on the basis of modular parallelism, i.e.
parallel execution of network modules.

P.A. Est�eevez et al. / Parallel Computing 28 (2002) 861–891 889



Acknowledgements

Supported by INCO-DC under the PARALIN European Project and Conicyt-
Chile under grants Fondef 1022 and Fondecyt 1980909. The French participation
to this work has been initiated at LIP laboratory, URA CNRS 1398, until 1998,
Ecole Normale Sup�eerieure de Lyon, France.

References

[1] K. Chen, L. Xu, H. Chi, Improved learning algorithms for mixture of experts in multiclass

classification, Neural Networks 12 (1999) 1229–1252.

[2] M. Cosnard, J.-C. Mignot, H. Paugam-Moisy, Implementations of multilayer neural networks on

parallel architectures, in: IEE Proceedings of 2nd International Special Seminar on Parallel Digital

Processors, vol. 334, 1991, pp. 43–47.

[3] V. Demian, J.-C. Mignot, Implementation of the self-organizing feature map on parallel computers,

Computers and Artificial Intelligence 14 (1) (1996) 63–80.

[4] A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data via the EM

algorithm, Journal of the Royal Statistical Society B 39 (1) (1977) 1–38.

[5] P.A. Est�eevez, R. Nakano, Hierarchical mixture of experts and max–min propagation neural networks,

in: Proceedings of ICNN’95, IEEE International Conference on Neural Networks, Perth, Australia,

vol. 1, 1995, pp. 651–656.

[6] P.A. Est�eevez, H. Paugam-Moisy, D. Puzenat, M. Ugarte, Modular parallel implementation for HME

neural networks, in: Proceedings of PDPTA’98 International Conference on Parallel and Distributed

Processing Techniques and Applications, Las Vegas, USA, vol. 4, 1998, pp. 1365–1372.

[7] J. Ghosh, K. Hwang, Mapping neural networks onto message-passing multicomputers, Journal of

Parallel and Distributed Computing 6 (2) (1989) 291–330.

[8] J. Gregor, D.A. Huff, A computational study of the focus-of-attention EM–ML algorithm for PET

reconstruction, Parallel Computing 24 (1998) 1481–1497.

[9] B. Hendrickson, R. Leland, The Chaco User’s Guide, version 2.0, Technical Report SAND95-2344,

Sandia National Labs., Alburquerque, NM, 1995.

[10] B. Hendrickson, R. Leland, Graph partitioning models for parallel computing, Parallel Computing 26

(2000) 1519–1534.

[11] H. Hopp, L. Prechelt, CuPit-2: A Portable parallel programming language for artificial neural

networks, in: A. Sydow (Ed.), Proceedings of the 15th IMACS World Congress Scientific

Computation Modeling and Applied Math., vol. 6, Wissenschaft and Technik Verlag, Berlin, 1997,

pp. 493–498.

[12] R.A. Jacobs, M.I. Jordan, A.G. Barto, Task decomposition through competition in a modular

connectionist architecture: The what and where vision tasks, Cognitive Science 15 (1991) 219–250.

[13] R.A. Jacobs, M.I. Jordan, S.E. Nowlan, G.E. Hinton, Adaptive mixture of experts, Neural

Computation 3 (1991) 79–87.

[14] R.A. Jacobs, F. Peng, M.A. Tanner, A Bayesian approach to model selection in hierarchical mixture

of experts architectures, Neural Networks 10 (1997) 231–241.

[15] M.I. Jordan, R.A. Jacobs, Hierarchical mixture of experts and the EM algorithm, Neural

Computation 6 (1994) 181–214.

[16] V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduction to Parallel Computing, Benjamin/

Cummings, CA, 1994.

[17] V. Kumar, S. Shekkar, M.B. Amin, A scalable parallel formulation of the backpropagation algorithm

for hypercubes and related architectures, IEEE Transactions on Parallel Distributed Systems 5 (1994)

1073–1090.

[18] M. Mangeas, A.S. Weigend, C. Muller, Forecasting electricity demand using nonlinear mixture of

experts, in: Proceedings of WCNN’95, World Conference on Neural Networks, vol. 2, 1995, pp. 48–53.

890 P.A. Est�eevez et al. / Parallel Computing 28 (2002) 861–891



[19] J. Mattes, D. Trystram, J. Demongeot, Parallel image processing using neural networks: Applications

in contrast enhancement of medical images, Parallel Processing Letters 8 (1) (1998) 63–76.

[20] M. Misra, Parallel Environments for Implementing Neural Networks, Neural Comp. Survey.

Available from http://www.icsi.berkeley.edu/�jagota/NCS, 1998, pp. 60–113.
[21] J.M.J. Murre, Transputers and neural networks: An analysis of implementation constraints and

performance, IEEE Transactions on Neural Networks 4 (2) (1993) 284–292.

[22] H. Paugam-Moisy, Optimal speedup conditions for a parallel back-propagation algorithm, in:

Proceedings of CONPAR’92-VAPP V, Lecture Notes in Computer Science, vol. 682, Springer-Verlag,

1992, pp. 719–724.

[23] H. Paugam-Moisy, Parallel neural computing based on network duplicating, in: I. Pitas (Ed.), Parallel

Algorithms for Digital Image Processing Computer Vision and Neural Networks, Wiley, New York,

1993, pp. 305–340.

[24] H. Paugam-Moisy, Multiprocessor simulation of neural networks, in: M. Arbib (Ed.), The Handbook

of Brain Theory and Neural Networks, MIT Press, Cambridge, MA, 1995, pp. 605–608.

[25] H. Paugam-Moisy, Neural networks: From massively parallel processing towards modular

distributed processing, in: Proceedings of the VIII Congreso Latino-americano de Control

Automatico, Vina del Mar, Chile, vol. 1, 1998, pp. 31–36.

[26] H. Paugam-Moisy, A. P�eetrowski, Parallel neural computation based on algebraic partitioning, in: I.

Pitas (Ed.), Parallel Algorithms for Digital Image Processing, Computer Vision and Neural

Networks, Wiley, New York, 1993, pp. 259–304.

[27] A. P�eetrowski, G. Dreyfus, C. Girault, Performance analysis of a pipelined back-propagation parallel

algorithm, IEEE Transactions on Neural Networks 4 (1993) 970–981.

[28] A. P�eetrowski, Algorithmes Parall�eeles de R�eetro-propagation des Erreurs pour les R�eeseaux de

Neurones, Ph.D. Thesis, MASI, Universit�ee P. et M. Curie, Paris, France, 1993.

[29] L. Prechelt, Exploiting domain-specific properties: Compiling parallel dynamic neural network

algorithms into efficient code, IEEE Transactions on Parallel and Distributed Systems 10 (11) (1999)

1105–1117.

[30] L. Prylli, CAPNX, un environement NX, PVM et MPI multi-utilisateurs sur MCS Capitan, Research

report 95-48, ENS-Lyon, France, 1995.

[31] D. Puzenat, Parall�eelisme et Modularit�ee des Mod�eeles Connexionnistes, Ph.D. Thesis, LIP, ENS Lyon,

France, 1997.

[32] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning internal representations by error propagation,

in: Parallel Distributed Processing, vol. 1, MIT Press, Cambridge, MA, 1986, pp. 318–362.

[33] P. Saratchandran, N. Sundarajan, S.K. Foo, Parallel Implementations of Backpropagation Neural

Networks on Transputers, World Scientific, Singapore, 1996.

[34] J.J.E. So, T.J. Downar, R. Janardhan, H.J. Siegel, Mapping conjugate gradient algorithms for

neutron diffusion: applications onto SIMD, MIMD, and mixed-mode machines, International

Journal of Parallel Programming 26 (2) (1998) 183–207.

[35] V. Sudhakar, C. Siva Ram Murthy, Efficient mapping of backpropagation algorithm onto a network

of workstations, IEEE Transactions on Systems, Man and Cybernetics, Part B 28 (6) (1998) 841–848.

[36] S. Wang, Reducing the communication cost in simulating layered neural networks on a hypercube

machine, in: Proc. of Parallel Computing’89, Elsevier, Amsterdam, 1989, pp. 375–380.

[37] S.R. Waterhouse, Classification and Regression using Mixture of Experts, Ph.D. Thesis, Department

of Engineering, University of Cambridge, UK, 1997.

[38] S.R. Waterhouse, A.J. Robinson, Classification using hierarchical mixture of experts, in: Proc. IEEE

Work. on Neural Networks for Signal Processing, 1994, pp. 177–186.

[39] S.R. Waterhouse, A.J. Robinson, Nonlinear prediction of acoustic vectors using hierarchical mixture

of experts, in: Proceedings of NIPS’94, Advances in Neural Information Processing Systems, MIT

Press, Cambridge, MA, 1994, pp. 835–842.

[40] A.S. Weigend, M. Mangeas, A.N. Srivastava, Nonlinear gated experts for time series: Discovering

regimes and avoiding overfitting, International Journal of Neural Systems 6 (4) (1995) 373–399.

P.A. Est�eevez et al. / Parallel Computing 28 (2002) 861–891 891

http://www.icsi.berkeley.edu/~jagota/NCS
http://www.icsi.berkeley.edu/~jagota/NCS

	A scalable parallel algorithm for training a hierarchical mixture of neural experts
	Introduction
	HME connectionist model
	The HME architecture
	The EM learning algorithm
	The sequential learning algorithm
	HME with linear experts

	Parallel algorithm
	Mapping the HME on a network of processors
	Parallel version of the learning algorithm
	Scheduling the computation and intermediate data communications
	The test problem

	Parallel implementation of HME with linear experts
	Experimental time measurements

	Modeling
	Speedup as a function of the number of processors
	Speedup as a function of the sample size
	Theoretical speedup vs. experimental speedup

	Pipelining packets of examples
	Principle and model
	Two-packet parallel learning algorithm
	Experimental time measurements

	Parallel implementation of HME with MLP neural networks
	Scalability analysis with MLP networks
	Experimental time measurements
	Discussion

	Conclusion
	Acknowledgements
	References


