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utomatic detection of defects on
wood boards and grading of the products
into quality categories is one of the key
areas of interest in the forest products in-
dustry. A defect is considered to be any
characteristic that makes wood unsuit-
able for a given use. With the aim of im-
proving yield and increasing productiv-
ity, in the last decades several automated
visual inspection systems for lumber
have been proposed. In the early 1980s,
Conners et al. (1983) and McMillin et al.
(1984) proposed an automated lumber
processing system that combined com-
puterized axial tomography and com-
puter vision, to locate internal knots in
logsandsurfacedefects inwoodboards.

Kline et al. (1998) evaluated the per-
formance of a color camera machine vi-
sion system for lumber processing in a
furniture rough mill. The study used 134
red oak boards and five defect catego-
ries: wane, knot, split, hole, and void

(false defects). The performance criteria
was the yield of dimension parts that can
be obtained from lumber. Automated
rough mill yield using the prototype
lumber inspection system was found to
be 56.3 percent compared to 69.1 per-
cent (estimated optimum) and 65.6 per-
cent (observed yield from a furniture
rough mill).

A review of methods for automated
defect detection and grading has been
provided by Szymani and McDonald
(1981) and Pham and Alcock (1998).

Figure 1 shows an automated visual in-
spection framework to detect wood
surface defects, which is subdivided into
five modules: image acquisition, image
segmentation, feature extraction, feature
selection, and classification.

The most common data-acquisition
method is based on optical cameras.
Several studies have shown that color
vision offers advantages over grayscale
images for automated visual inspection
of wood. According to the literature,
adding color information to black and
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Abstract
A genetic algorithm was used to determine an appropriate set of features for automatic defect classification of radiata pine boards.

The study was performed using a low-cost machine vision system composed of a color video camera, a frame grabber, and a micro-
computer. The following 10 defect categories were considered, plus clear wood: birds eye & freckle, bark & pitch pockets, wane, split,
blue stain, stain, pith, dead knot, live knot, and hole. A database was built containing color images of 2,958 board faces. A total of
16,800 feature vectors were extracted from these images, and partitioned into training, validation, and test sets. Each vector was com-
posedof182featuresmeasured in thesegmentedobjectsand inwindowsaround theobjects.Byusing featureselectionalgorithms,64
out of 182 original features were selected and used as inputs to a multilayer perceptron neural network classifier, without reducing the
classification performance. Using the set of features evolved by a genetic algorithm, the best off-line performance obtained was 74.5
percent of correct classifications on the test set. The classification performance on a reduced database with 7 defect categories
reached 87.8 percent. An online system evaluation yielded 80 percent of correct classifications with 10 defect categories plus clear
wood. The study shows that the genetic selection of features allows us to identify the most relevant features for complex classification
problems, such as wood defect classification, where the best features are unknown.



white data enhances the recognition rate
from 5 to 20 percentage points (Conners
et al. 1985, Lampinen et al. 1994, Funck
et al. 2000). Conners et al. (1985)
showed that almost all of the useful
color information could be retained us-
ing only two of the three color compo-
nents (the red and blue channels).

Besides optical scanners, a variety of
different sensors have been investigated
to detect wood defects. These include
radio-frequency (Steele et al. 2000), mi-
crowave (Szymani and McDonald
1981), infrared camera (Quin et al.
1998), x-ray (McMillin et al. 1984, Con-
ners et al. 1997), gamma ray (Karsulovic
et al. 1999) and ultrasound (Karsulovic
et al. 2000). Most of these sensing tech-
nologies remain experimental. Recent
developments have used a multiple sen-
sor approach to scanning, since all grad-
ing features cannot be consistently de-
tected with a single sensing mechanism
(Conners et al. 1997, Astrand and
Aström 2000, Kline et al. 2000,
Nyström 2000).

Low-cost systems, based on general
purpose computers including a video
camera, an image capture board, and a
microcomputer, are flexible and allow
many different algorithm options for im-
age segmentation, feature extraction,
feature selection, and defect classifica-
tion. The aim of the image segmentation
stage is to divide the image into clear
wood and defects. Pham and Alcock
(1996) found that a major weakness in

the process is segmentation. This is of-
ten the most time-consuming part of the
process. Segmentation usually does not
locate all defects properly, especially de-
fects such as sound knots, which have a
similar appearance to clear wood. There
are a wide variety of segmentation algo-
rithms to choose from. Histogram-based
thresholding is a simple and fast
method; however, grain lines in clear
wood can appear to be as dark as defects.
Funck et al. (2000) analyzed the perfor-
mance of a wide range of segmentation
algorithms on images of Douglas-fir ve-
neer, concluding that region-based algo-
rithms have the greatest promise.

After the image segmentation stage,
defect areas called objects are isolated.
Windows are defined as square- or rect-
angular-shaped areas of the image cen-
tered in the object geometrical center.
The process of calculating features from
the objects or windows is called feature
extraction. Most often features describe
shape, size, and intensity levels, includ-
ing color.

Feature selection is the process of
forming a smaller subset of features
from the original feature set that satis-
fies a certain error classification crite-
rion. Genetic algorithms (GAs) seem
suitable for solving the feature selection
problem due to their inherent parallel-
ism, their guided search of the most
promising regions, their ability to find
and maintain multiple optima, and their
ability to optimize a non-analytical cri-

terion (Mitchell 1996). The use of GAs
for selecting features for defect classifi-
cation of wood boards has been reported
elsewhere (Estévez and Caballero 1998;
Estévez et al. 1998, 1999). In a different
approach, Patton and King (2000) have
applied GAs to optimize the location of
knot anomalies in wood using infrared
images.

The classification module has fea-
tures as inputs and defect categories as
outputs. There are many types of classi-
fiers that have been employed to classify
wood products. Among the most com-
mon are multilayer perceptron (MLP)
neural networks (Haykin 1994). Learn-
ing results from the repeated presenta-
tion of a training set of examples to the
MLP. The presentation of the entire set
of training examples to the learning al-
gorithm is called an epoch (Haykin
1994). Cho et al. (1991) compared an
MLP, a rule-based system, and a k-near-
est neighbor classifier. The MLP ob-
tained the best classification results
(81%). Pham and Alcock (1999a) com-
bined several neural classifiers to im-
prove the performance achieved with in-
dividual classifiers in wood defect
identification.

Pham and Alcock (1999b) compared
the usefulness of different features for
classifying nine classes of defects on
images of birch wood boards.
Thirty-two features were implemented
and compared using an MLP neural net-
work. Features were extracted from
segmented objects and from windows
around the objects. When used individu-
ally, the object features and the window
features were comparable to one another
with performances of around 74 per-
cent. The best performance was
achieved when all features were employ-
ed together, reaching 85.2 percent.

In this paper, a feature selection study
is made to determine an appropriate set
of features in the inputs to a neural net-
work classifier for automatic defect
classification of radiata pine boards.
The study is based on a low-cost ma-
chine vision system composed of a color
video camera, an image capture board,
and a microcomputer.

Methods

Wood sample
A sample of about 1,500 dry radiata

pine (Pinus radiata D. Don) board spec-
imens was selected. The lumber was ob-
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Figure 1. — Automated visual inspection system for wood boards. A feature selec-
tion stage based on a genetic algorithm is added to the conventional framework to
select an appropriate feature subset as inputs to a neural network classifier.



tained from a rough mill in southern
central Chile. Sample board thicknesses
were 2.15 cm or 3.3 cm; board widths
ranged from 6 cm to 15 cm; and board
lengths were between 10 cm and 30 cm.
Although at the rough mill board lengths
are over 2 m, shorter samples were pro-
vided for this study, each one represent-

ing a particular defect. Each board face
was manually labeled, according to its
largest defect, into one of the following
10 categories: birds eye & freckle, bark
& pitch pockets, wane, split, blue stain,
stain, pith, dead knot, live knot, and hole
(Fig. 2). Defect-free boards were
grouped into the clear wood category.

An identifier was marked on one side of
the board along with an arrow pointing
to an arbitrary forward direction. A for-
ward direction was defined in order to
distinguish between 180-degree rota-
tions of boards while being processed
through the system. At least 100 board
specimens were collected per each of
the 11 categories just mentioned.

Hardware
The imaging system was composed of

a National Television Standard Com-
mittee (standard television video signal
format used in the United States)
(NTSC) color video camera, a frame
grabber IM-PCI-AM-CLR from Im-
aging Technology, and a 333-MHz
Pentium-II PC with 128 MB RAM,
running under Windows NT. Lighting
was a mixture of two frontal halogen
lights and ceiling fluorescent lamps.
The halogen light sources were located
on one side of the conveyor belt, with
an angle of approximately 45 degrees
(Fig. 3). On the other side of the con-
veyor belt a white wall acted as a light
diffuser, as shown in Figure 3, and
lights were adjusted to obtain a uniform
illumination over the board samples.
The available hardware allowed us to
scan only one side per run.

Software
The image-processing system soft-

ware was written in C++ and consisted
of image acquisition, image segmenta-
tion, feature extraction, and classifica-
tion modules. The image-acquisition
module acquired images, detected the
boards on the conveyor belt, and elimi-
nated the background. The system ac-
quired images using the frame grabber
with a resolution of 640 by 480 pixels,
but only odd lines were considered to
avoid interlacing. Therefore, resolution
of the image was reduced to 320 by 240
pixels. Images were in red, green, and
blue (RGB) containing 256 intensity
levels in each channel. The camera was
configured for a 16.4-cm field of view,
covering completely the board width on
the conveyor belt. The camera produced
color images with 14.6 pixels per cm
both cross-board and down-board reso-
lution. The conveyor belt speed was
fixed at about 0.3 m/sec. There were no
fences to ensure straight movement
through the scanning system. To intro-
duce invariance to small displacements
and to 180-degree rotations in relation to
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Figure 2. — Image samples of each of the 11 categories considered. In the top row,
left to right, birds eye, pocket, and wane; in the second row, left to right, split, blue
stain, and stain; in the third row, left to right, pith, dead knot ,and live knot; in the bot-
tom row, left to right, hole and clear wood.

Figure 3.— Automated visual inspection system with a view of the video camera, illu-
mination system, and conveyor belt.



the camera field of view, every board
face was fed through the system six
times, three times in the forward direc-
tion and three times in the reverse direc-
tion (180-degree rotation). Thus six
scanned color images for each board
face were stored in the computer for fur-
ther processing. As many of the boards
were not truly rectangular, in order to
completely avoid void defects, the im-
age segmentation algorithm for elimi-
nating the background cut out 1 mm to 2
mm on each board boundary, generating
images with no void defects.

The image segmentation module per-
formed the following five steps for each
of the four channels (RGB + Gray): edge
detection, image binarization, Boolean
OR operation of the previous images,
morphological closing (dilation-ero-
sion), and selection of the five largest
objects detected. Segmentation was per-
formed by histogram-based multiple
thresholding.

The feature extraction module extrac-
ted features from objects and windows
of 64 by 64 pixels centered in the object
geometrical center. There were 182 fea-
tures extracted, including: 35 object
geometrical features measured on the
binarized gray image (e.g., area, perime-
ter, average radius, aspect ratio, first and
second order moments, etc.); 100 object
color features (25 features measured in
each of the four channels, e.g., object
histograms were divided into 5 fixed
parts according to their intensity levels:
very bright, bright, midrange, dark and
very dark); and 47 window color fea-
tures (e.g., mean and variance of win-
dow histograms, mean and variance at
the edge of windows). This set of 182
features served as the basis for our fea-
ture selection study.

The classification module employed
MLP neural networks as classifiers. All
networks had one hidden layer with an
Ni-Nh-No architecture, where Ni is the
number of inputs, Nh is the number of
hidden units, and No is the number of
outputs or categories. Networks were
trained by a second-order Back-Propa-
gation Quasi-Newton learning algo-
rithm (BPQ) (Saito and Nakano 1997),
which uses an adaptive step-length. The
objective function minimized was the
sum of square errors plus a penalty term
consisting of the sum over all squared
weights. The penalty term was weighted
by a regularization factor. For each sim-

ulation, the weights were randomly ini-
tialized. The data were normalized in the
range [0,1] and randomly split into train-
ing, validation, and test sets. To avoid
overfitting and to achieve good general-
ization, all networks were trained using
the training data and tested on the vali-
dation data every 10 epochs. The set of
weights giving the minimum validation
error was saved and tried on an inde-
pendent test set. To improve the perfor-
mance achieved with individual classifi-
ers, the combination of three or five
neural classifiers was carried out by
simple averaging of their outputs
(Sharkey 1999).

Feature selection
The GA-based feature selection me-

thod proposed by Estévez and Caballero
(1998) was used in this study. Each indi-
vidual in the GA population represents a
feature subset as a binary string, where a
“0” in the i-th position indicates that the
i-th original feature is excluded from the
feature subset, and a “1” indicates that
the feature is present. To evaluate the fit-
ness of an individual, the selected fea-
ture subset is fed into a neural network
classifier of fixed architecture, and
trained by BPQ learning. The GA fit-
ness function combined two optimiza-
tion criteria: 1) minimization of the error
rate of the classifier; and 2) mini-
mization of the number of features. The
following parameters were used (see
Estévez and Caballero 1998 for details):
P = 20 (population size); l = 0.01
(weighting factor in fitness function that
penalizes the number of features); M =
3, g = 0.6, and d =10 percent (mutation
parameters); pc =1 (probability of cross-
over); G = 20 (number of generations).
MLP networks with 20 hidden units
were trained for 300 epochs by using
BPQ learning, with a regularization fac-
tor e = 0.1.

The GA method, although very effec-
tive in finding a global optima, is com-
putationally expensive since at each
generation a population of P neural net-
works have to be trained until conver-
gence. The search space of the feature
selection problem faced in this work was
large with a 182-dimensional feature
space. For these reasons, the original
feature space was reduced by using the
Mutual Information Feature Selection
(MIFS) algorithm (Battiti 1994), before
employing the GA search. The mutual
information method offers advantages

over other methods based on linear de-
pendence (e.g., correlation), since it can
measure arbitrary relations between
variables and is invariant under a vari-
able transformation. The MIFS algo-
rithm ranks features from the most in-
formative to the less informative, based
on the mutual information between in-
put features and output classes. The pa-
rameter b used by MIFS was set to 0.7
(Battiti 1994). The F most informative
features according to MIFS were se-
lected, with F = 10, 20, ..., 170; and tried
as inputs to an MLP neural classifier.
MLPs of architecture F-20-11 were
trained by using BPQ learning for 2,000
epochs and a regularization factor e =
0.1. The performance of the MLP classi-
fier was measured as the average per-
centage of correct classifications on the
validation set, using two trials for each
combination of parameters.

Image database
A database containing color images

(640 by 480 pixels) of radiata pine
boards was developed at the University
of Chile. Table 1 shows the number of
board faces and the total amount of im-
ages in the database. As explained in the
software section, six color images were
acquired for each board face. In total,
17,748 images (2,958 ³ 6) were col-
lected.

The segmentation module delivered
the five largest objects detected in each
image, ordered by their area size. Each
object (potential defect) was visually
compared with the actual object, identi-
fied as one of the 10 defect categories or
as clear wood, and manually labeled.
The clear wood category contained seg-
mented objects as dark as defects, most-
ly grain lines. For each image stored in
the database, a target file was created
identifying each object detected.

In the feature extraction stage, 182
features were extracted from each ob-
ject. Out of the more than 70,000 seg-
mented objects in the 17,748 images, a
total of 16,800 feature vectors were ex-
tracted. As some defect categories were
more frequent than others, the number
of samples per category ranged from
1,400 to 11,000. To obtain an unbiased
classifier, 1,400 samples were randomly
chosen per each of the 10 defect catego-
ries. By random selection, 12,000 fea-
ture vectors were assigned to the train-
ing set, 2,400 to the validation set, and
2,400 to the test set. The samples on the
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test set corresponded to different boards
from those used for training or valida-
tion. Each defect category had 1,000
samples for training, 200 samples for
validation, and 200 samples for test.

However, the clear wood category had
2,000 samples for training, 400 samples
for validation, and 400 samples for test.
As the primary distinction should be be-
tween defect areas and clear wood, the

correct identification of dark grain lines
as clear wood is of the highest impor-
tance. By using more data for the clear
wood category than for the other catego-
ries, a bias of the classifier towards clear
wood was introduced.

The feature selection study was per-
formed using the database just de-
scribed, which is composed of 16,800
feature vectors for 11 categories (10 de-
fect categories plus clear wood). The
best features evolved by the GA were
tested on the classification of the 11 cat-
egories and also with a reduced database
representing 7 defect categories. The re-
duced database contained 1,400 sam-
ples of the categories birds eye &
freckle, wane, split, blue stain, pith,
dead knot, live knot and hole; but for
classification purposes dead knots and
live knots were merged into one cate-
gory: knots. As before, each defect cate-
gory had 1,000 samples for training, 200
samples for validation, and 200 samples
for test.

Results
As explained in the methods section,

the MIFS algorithm was used first to re-
duce the search space. Figure 4 shows
the classification performance as a func-
tion of the number of features selected
by MIFS. The classification perfor-
mance grew from 58.5 percent with 10
features to 75.5 percent with 110 fea-
tures. Increasing the number of features
over 110 did not improve the classifica-
tion performance. In fact, when all fea-
tures were used, the classification per-
formance was 75.4 percent. To verify
the effective dimensionality of the data,
principal components analysis was per-
formed. It was found that at least 110
principal components are needed to
reach a classification performance of
75.5 percent. The MIFS results indicate
that 72 out of 182 features appear to be
redundant or irrelevant for the classifi-
cation task. By eliminating those 72 fea-
tures, the search space was reduced to
110 features.

The GA method was applied to the re-
duced search space. As explained in the
methods section, each individual repre-
sented a subset of input features to the
MLP classifier. With the GA procedure,
46 out of 110 features were eliminated.
About half of the eliminated features
presented very low mutual information
with the categories (classes), as mea-
sured by the MIFS method, which is
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Table 2. — Simulation results on the validation and tests sets, using all original fea-
tures and the GA best-evolved individual.

All GA

No. of features 182 64

Validation set Mean (%) 75.2 75.0

Standard 0.67 0.63

deviation

p-value 0.35

Test set Mean (%) 72.4 72.1

Standard 0.84 0.35

deviation

p-value 0.26

Table 1. — Image database.

Category Board faces No. of images

Birds eye & freckle 237 1,422

Bark & pitch pockets 269 1,614

Wane 208 1,248

Clear 255 1,530

Split 222 1,332

Stain 244 1,464

Blue stain 292 1,752

Pith 202 1,212

Dead knot 295 1,770

Live knot 471 2,826

Hole 263 1,578

Total 2,958 17,748

50

55

60

65

70

75

80

0 20 40 60 80 100 120 140 160 180

Number of Features

C
la

ss
if

ic
at

io
n

P
er

fo
rm

an
ce

[%
]

All Features

MIFS Selected
Features

Figure 4.— Classification performance on the validation set with all the original fea-
tures (--), and as a function of the number of selected features by the mutual informa-
tion feature selection algorithm ( ).



based on information theory. Figure 5
shows the characteristics of three se-
lected features that are useful to discrim-
inate between categories.

The best-evolved individual had 64
features comprised of 13 object geomet-
rical features, 30 object histogram fea-
tures, and 21 window histogram fea-

tures. Table 2 shows the simulation re-
sults on the validation and test sets, us-
ing the entire set of features (ALL) and
the best-evolved individual (GA). Ten
runs were carried out in each case, with
random initializations of weights.
Pairwise two-tailed t-tests showed that
the means obtained by GA and ALL

were not significantly different at the
0.01 level of significance (p-value >
0.01), both in the validation and test sets.

Table 3 shows the classification re-
sults on the test set with 11 categories,
using a combination of 5 neural classifi-
ers. MLP networks with 20 hidden units
were trained for 5,000 epochs, with reg-
ularization factors e = 0.01; 0.03; 0.1;
0.1; 0.1. The classification perfor-
mances of the individual classifiers on
the test set were 73.3, 71.9, 72.3, 72.6,
and 73.0 percent. By averaging the out-
puts of the five classifiers, a gain of 1.2
percentage points was obtained to reach
a 74.5 percent classification perfor-
mance. Results in Table 3 show that 4
out of 11 categories had a performance
over 80 percent of correct classification
in the test set: split, blue stain, pith, and
hole. The worst performance was stains,
followed by pockets and live knots.
Most confusions within the stain cate-
gory occurred with clear wood and birds
eye; most confusions within the pocket
category occurred with dead knots and
splits; most confusions within the live
knot category occurred with dead knots.
Table 4 shows the classification perfor-
mance on the test set for the reduced da-
tabase with seven defect categories, us-
ing a combination of three neural
classifiers. MLP networks with 60 hid-
den units were trained for 5,000 epochs,
with regularization factors e = 0.001;
0.01; 0.05. The classification perfor-
mance of the individual classifiers on
the test set were 87.2, 87.0, and 87.1 per-
cent. By averaging the outputs of the
three classifiers, a gain of 0.6 percentage
points was obtained to reach 87.8 per-
cent. In Table 4, all categories except
wane have a classification performance
over 80 percent, showing that the se-
lected features are adequate to identify
them.

To evaluate the defect detection rate
of the system, a sample of 55 board
faces, 5 per each of the 11 categories,
was randomly chosen. On this set, 145
real defects were visually found. The
system correctly detected 95 percent of
these defects. Non-detected defects in-
cluded small and bright birds eye, very
thin splits, and some stains. This high
defect detection rate was achieved at the
expense of increasing the detection of
false-positives, i.e., dark grain lines seg-
mented as defects. On the same set of
boards, the system automatically seg-
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Figure 5. — Normalized intensity of three selected features as a function of the
number of samples ordered by category: a) intensity variance in red channel; b)
aspect ratio; c) minimum distance to one of the horizontal edges of the board image.
Letters on the x-axes mark the beginning of one of the 10 defect categories: stain
(st), birds eye (be), blue stain (bs), wane (wa), split (sp), hole (ho), pith (pi), pocket
(po), dead knot (dk), and live knot (lk). Each defect category has been represented
with 1,000 samples. The clear wood category (cl) has been represented by the first
2,000 samples.

Table 3.— Percentage of correct classifications on the test set for 10 defect categories
plus clear wood, obtained with a combination of 5 neural classifiers.

Category Test

(%)

Birds eye & freckle 77.0

Bark & pitch pockets 60.5

Wane 72.5

Clear 77.0

Split 86.0

Stain 40.0

Blue stain 89.0

Pith 81.5

Dead knot 75.0

Live knot 61.0

Hole 99.5

Total 74.5



mented 231 objects, 60 percent of which
corresponded to real defects. The cor-
rect classification rate of false-positives
was 77 percent and were classified as
clear wood.

In Table 5, preliminary online evalua-
tion results of the current system are
presented. For this evaluation, a sample
of 33 board faces, 3 per each of the 11
categories, was randomly chosen. Each
board was fed through the system three
times in the forward direction and three
times in the reverse direction. The sys-
tem automatically acquired an image of
the board moving on the conveyor belt,
and then started the serial execution of
the segmentation, feature extraction,
and classification stages. The online
system evaluation yielded 80 percent of
correct classifications with 10 defect
categories plus clear wood. The scan-
ning results were inmediately displayed
on the computer monitor.

Summary
A database was developed containing

17,748 images of wood board faces,
corresponding to 10 categories of de-
fects plus clear wood. A total of 16,800
feature vectors were extracted from
these images for system training, valida-
tion, and test. By using feature selection
algorithms, approximately 65 percent of
the original 182 features was eliminated,
without reducing the classification per-
formance. A mutual information feature
selection algorithm was used first to re-
duce the dimensionality of the original
search space from 182 dimensions to
110 dimensions (about 40%). The GA-
based feature selection algorithm was
employed to find out the best subset of
features, which was reduced to 64 fea-
tures. The best overall off-line perfor-
mance obtained by a combination of
neural classifiers on a test set was 87.8
percent of correct classifications with 7
defect categories, and 74.5 percent with

10 defect categories plus clear wood. In
addition, the system was evaluated on-
line, yielding a performance of 80 per-
cent of correct classifications with 11
categories. Results here include the ef-
fect of misaligned wood boards through
the system.

Conclusions
Contrary to linear projection methods

such as principal components, feature
selection algorithms can reduce the
computational requirements of online
inspection systems by eliminating re-
dundant or irrelevant features. The GA-
based feature selection algorithm, as
well as the mutual information feature
selection algorithm, employed in this
work, can be directly applied to enhance
other automated visual inspection sys-
tems based on different technologies or
multiple-sensors.

Improvement of the recognition rate
of the stain, pocket, live knot, and clear
wood categories is needed. This could
be done by creating new features with
higher information content and also by
enhancing the segmentation process,
which is a key factor to correctly distin-
guish clear wood from defects. Enhanc-
ing the system illumination and adding
color constancy should improve defect
identification.

Although the current state of the art
seems to indicate that automated visual
inspection of wood should combine
multiple sensors to get a performance at
the level required by the industry, rapid
technological advancements both in
computer and optical cameras may help
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Table 4. — Percentage of correct classifications on the test set for seven defect cate-
gories, obtained with a combination of three neural classifiers.

Category Test

Birds eye & freckle
(%)
83.0

Wane 75.5

Split 89.5

Blue stain 95.5

Pith 90.0

Knot 81.8

Hole 99.0

Total 87.8

Table 5. — Percentage of correct classifications for images acquired online.

Board 1 Board 2 Board 3 Average

Category Forward Reverse Forward Reverse Forward Reverse Forward Reverse Total

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (%) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Birds eye
& freckle 0 0 67 100 0 33 22 44 33

Bark & pitch
pockets 100 100 100 67 100 67 100 78 89

Wane 100 100 100 100 100 100 100 100 100

Clear 100 33 100 100 100 100 100 78 89

Split 100 100 100 100 100 100 100 100 100

Stain 100 100 0 33 100 100 67 78 73

Blue stain 100 33 100 100 100 33 100 55 78

Pith 100 100 100 100 100 100 100 100 100

Dead knot 0 0 100 100 100 67 67 56 62

Live knot 100 67 0 0 100 67 67 45 56

Hole 100 100 100 100 100 100 100 100 100

Total 84 76 80



to introduce low-cost visual inspection
systems for improving yield in the forest
products industry.
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