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Abstract 

In this paper we apply modular neural network models to 
classify sleep-waking states in infants. The performances of 
three connectionist models are compared: a) multilayer 
perceptron (MLP), b) mixture of experts (ME) and c) fuzzy 
ganglionar lattice (FGL). We propose a new methodology 
for enhancing neural classifiers based on input variable 
selection and confusion error analysis using expert criteria. 
The ME model resulted more robust than MLP and FGL 
models in presence of inconsistent or noisy data. Input 
variable selection and confusion error analysis using expert 
criteria, led to parsimonious models with less parameters and 
better classification rates. 

known example of ANN is the feedforward multilayer 
perceptron (MLP) [16]. The MLP corresponds to the 
standard global neural network approach. 

On the other hand, modular neural networks decompose a 
complex function or task into a set of simpler functions or 
subtasks [1,11,17,20]. They present overall advantages over 
single MLPs in terms of generalization, interpretability of 
the models and learning speed [11]. An example of modular 
neural network is the so-called Mixture of Experts (ME) [10- 
13]. The underlying idea is simple: instead of using a global 
neural network, the ME model learns several local models 
called experts, and simultaneously learns to partition the 
input space into regions. 

1. Introduction 

The identification of sleep-waking states in infants allows to 
study different aspects of child neurofunctional 
development, as well as pathologies associated to such states 
[8,15]. The sleep-waking states are usually recognized by 
visual inspection of  paper polysomnographic recordings of 
EEG (electroencephalogram), EOG (electrooculogram), 
EMG (electromyogram) and other physiological signals. 
This procedure is time consuming and requires the presence 
of a highly trained expert. Computarized polysomnographic 
systems have recently been developed to reduce paper 
consumption (an 8 hours paper record consists of over 1,000 
pages), decrease storage needs, reduce expert analysis time 
and allow for high-quality data presentation [24]. 

Holzmann et al. [9] developed an expert system for 
classifying sleep-waking states in infants. This system is 
based on Fuzzy Ganglionar Lattices (FGLs), which intend to 
emulate the human expert reasoning [8]. The FGL aims to 
grasp the expert's mental model and to generate explanations 
[8,15]. 

Artificial neural networks (ANN) excel at pattern 
recognition applications, since they are universal 
approximators and can constitute optimal Bayesian 
classifiers [16]. ANN are robust in the presence of 
inconsistent and noisy data, and generalize well to unknown 
patterns. Moreover, there exist powerful learning algorithms 
associated to ANN models [21]. A drawback of ANN 
compared to knowledge-based systems is their lacking of 
symbolic reasoning and semantic representation. A well- 

In this paper we apply modular neural network models to 
classify sleep-waking states in infants. In particular we 
compare the performances of three connectionist models: a) 
MLP, b) ME and c) FGL. In addition we propose a new 
methodology to enhance the interpretability of neural 
classifiers based on input variable selection and confusion 
error analysis using expert criteria. 

2. Three Connectionist  Models  

2.1 Fuzzy Ganglionar Lattices 

The fuzzy glangionar lattice model [8] intends to emulate the 
human expert reasoning, representing it as a sequence of 
elementary reasoning units (ERs). Such ERs are realized by 
a nonlinear operator, denoted by the fimction pER, where p 
is the number of antecedents [8,15]. Fig. 1 illustrates this 
operator, which is characterized as follows: 

2P-I p 

pER(x)= ~.f.~coiHx~ v + 0 3  o , (1) 
i=1 j=| 

where xj corresponds to the j - th component o f  the input 
vector x Eg~ p, co i is the weight  associated to the i-th term in 

the sum and bij is a binary index that determines the 

participation of the j-th input in the i-th term. The total 
number of parameters in a pER is 2 p. The nonlinearity of this 
operator is given by the products between two or more 
antecedents. Such products allow to incorporate the expert's 
evaluation of the conjunction of groups of antecedents [ 15]. 
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Fig. 1 Elementary reasoning unit in a FGL. 

The expansion of  the original input space to include cross- 
product terms, allows the pER operator to have a simpler 
architecture. For example, it is well known that the 
exclusive-OR Boolean function is not linearly separable and 
cannot be solved by a single perceptron. A hidden layer is 
required to solve this problem. Alternatively, if the two- 
dimensional input space is expanded to include the product 
of both inputs, the problem becomes linearly separable [ 14]. 
Besides FGLs, there are several neural network models 
based on the idea of including high order terms in their 
elementary units [14]. A drawback of  this approach is the 
combinatorial explosion of  input components. One way to 
deal with this problem is to limit the number of  inputs (fan- 
in) to each elementary unit and use a hierarchical lattice 
[8,15]. The pER coefficients are adjusted by gradient descent 
method with momentum [ 15]. 

2.3 Mixture of Experts 

The ME model automatically decomposes complex tasks 
into simpler subtasks, partitioning the input space into local 
regions and assigning expert networks to each region 
[10,12,22]. The so-called gating networks allows this 
partition to happen. Fig. 2 illustrates the ME model for K 
experts (or local neural networks) and a single gating 
network. 
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2.2 Global Neural Networks 

A MLP is a collection of  processing elements called 
neurons, interconnected by links of  different strengths or 
weights. It has been shown that a three-layered MLP, with 
an input layer, a hidden layer and an output layer, is a 
universal approximator, if there are enough hidden units 
[16]. This result establishes that a MLP with one hidden 
layer can build any mapping from the input space to the 
output space (classes). 

The most popular learning algorithm is error 
backpropagation based on gradient descent. However, the 
rate of  convergence of  gradient descent methods is often 
very slow, since the successive descent directions have a 
tendency to interfer, i.e. a minimization in one direction can 
spoil the minimization previously achieved in another 
direction [21]. For this reason second order quasi Newton or 
conjugate gradient methods are preferred, which are usually 
one or two orders of  magnitude faster than first order 
methods [21]. In this paper we use a quasi-Newton second 
order algorithm called BPQ for training MLPs [18]. 

Standard neural network models are considered black boxes, 
and it is difficult to explain why certain patterns are 
classified as members of  one class or another. In part this is 
due to the complexity of  the resulting nets and to the 
distributed representation of  knowledge. However, it is 
possible to extract rules from a trained global neural network 
through pruning and discretizing operations [19]. In this 
paper we use an input pruning method based on the weight 
elimination method developed in [2], expanded in [5] to the 
elimination of  inputs. 

Fig. 2 Mixture of experts. The system output is the weighted 
sum of  the K expert outputs, where the weights are the 
gating network outputs. 

For classification problems, soflmax activation functions are 
used in both expert and gating network units. The softmax 
function is defined as follows: 

exp(u e ) 
Y e ~_.:iL 1 exp(u i ) (2) 

where ui represents the i - th linear combination of  inputs. It 
has been shown that Ye can be interpreted as the probability 

that the estimation belongs to the £ - t h  class, under a 
multinomial distribution for L classes [12]. 

In the ME model, learning is treated as a maximum 
likelihood problem. In particular the Expectation- 
Maximization (EM) algorithm is used [3]. The EM 
algorithm consists of  two steps, the E-step (expectation) and 
the M-step (maximization). In the E-step the expected values 
of the so-called hidden variables are calculated, using the 
current estimation of  parameters and the observed data. With 
this information, in the M-step the likelihood is maximized, 
and the parameters of  the model are updated. There are 
several ways to implement the M-step. In this work we use 
an extension of  the BPQ algorithm [18]. A detailed 
description of the EM algorithm for a mixture of  experts and 
examples of its application to pattern classification can be 
found in [4,6,7,22,23]. 
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3. Class i f i ca t ion  o f  S l e e p - W a k i n g  States  

Sleep-waking states are classified as wakefulness (WA), 
rapid-eye movement sleep (REMS) and quiet or non-REM 
sleep (NREM). In turn, NREM is subdivided into four 
distinct stages, from NREM 1 to NREM4. 

Holzmann et al. [9] have developed a model of sleep-waking 
states based on signal patterns found in EEG, EOG and 
EMG activities that allows the identification of  the following 
five sleep-waking states: WA, NREM1, NREM2, 
NREM3&4, and REMS. The model considers the following 
five fundamental characteristics: predominance of  slow-delta 
(SD) waves in EEG, predominance of  theta (TH) waves in 
EEG, presence of  sleep spindles (SS) in EEG, presence of 
rapid eye movements (REM) in EOG and predominance of  
muscle tone (MT) in EMG. 

Fig. 3 shows examples of  the five kinds of signal patterns 
searched for in the polysomnographic recordings: SD, TH, 
SS, REM and MT. Signals are analyzed on a page basis, 
with each page lasting 20 or 30 s. The detection of specific 
patterns in the EEG, EOG and EMG signals is difficult due 
to the presence of noise and artifacts. Artifacts occur due to 
body movements, electrode displacements and other 
interfering signals, such as EEG presence in the EOG 
channel. The predominant background activity in the EEG is 
established whenever the pattern is present more than a 
certain percentage of  the page, which implies the setting of 
thresholds. In [9] a full description of the detection 
algorithms for signal patterns is given. These algorithms 
determine a value in the [0, 1] interval for each of the five 
signal patterns. In the case of SS and REM a single event 
within a time window suffices to establish its presence. 
Following the standard accepted by sleep experts a criterion 
of minimum state duration of  1 rain. is adopted. 

In [9] an expert characterization model of sleep-waking 
states is presented. This model is summarized in Table 1, 
and relates the characteristics described above to the states. 

The sleep database built in [9] was available for this study. 
Each input-output pattern consists of  the five characteristics 
mentioned as inputs, and one of the five states considered as 
output. A total of 880 pages from three recordings were 
included, with one input-output pattern per page. The 
recordings were taken during children naps lasting two to 
three hours. For comparison purposes, in this paper we use 
the same data partition than in [9]. The training set was 
composed only of data without artifacts (241 pages). Two 
validation-test sets were prepared, one without artifacts, 
SNA (135 pages for validation and 139 pages for testing), 
and one with artifacts, SWA (165 pages for validation and 
177 pages for testing). 23 pages marked as indeterminate 
sleep were discarded in this study, because the total number 
of examples for this class was too small for training. 

Theta Waves 

Slow Delta Waves 

Steep Spindles 

( '; 
"'- , . . . , . , , . , . . . . ,Y 

Rapid Eye Movements 

Muscle Tone 
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Fig. 3 Samples of signal patterns searched for in EEG (theta 
waves, slow delta waves and sleep spindles), in EOG (rapid 
eye movements) and in EMG (muscle tone). 

Table 1 
Expert characterization model for sleep-waking states in 
infants. YES/NO indicates which characteristics must be 
present or absent in each state, and X stands for don't care. 

State/Charact. SD TH SS 
WA NO X NO 

NREM1 NO YES NO 
NREM2 NO X YES 

NREM3&4 YES NO X 
REMS X YES NO 

REM MT 
YES YES 
NO X 
NO X 
NO X 
YES NO 

4. Resul t s  

For the FGL model 5 elementary reasoning units were used, 
one for each state. The expert characterization model given 
in Table 1 was used to determine the antecedents for each 
unit as follows: 

WA = WA (SD, SS, REM, MT) 
NREM1 = NREM1 (SD, TH, SS, REM) 
NREM2 = NREM2 (SD, SS, REM) 
NREM3&4 = NREM3&4 (SD, TH, REM) 
REMS = REMS (TH, SS, REM, MT) 

The resulting FGL had 80 parameters, including cross- 
products up to third or fourth order, depending on the 
number of antecedents. The FGL model was trained using 
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gradient descent. The learning rate and the momentum factor 
were independently determined for each elementary 
reasoning unit. The combination of learning rate and 
momentum used were as follows: WA: 0.01, 0.005; 
NREMI:  0.005, 0.0025; NREM2: 0.04, 0.02; NREM3&4: 
0.04, 0.02; REMS: 0.02, 0.0005. 

The MLP architecture consisted of  5 inputs units, N hidden 
units and 5 output units. To determine the optimal number of  
hidden units, N was varied from 3 to 9. It resulted that the 
best architecture was 6 hidden units for the SNA dataset and 
7 hidden units for the SWA dataset. Thus, the total number 
of  weights associated to each model is 72 for the SNA case 
and 82 for the SWA case. The MLP models were trained 
using BPQ for 300 epochs. 

A ME architecture of  two expert networks and a single 
gating network, all without hidden units, was used. The 5 
original inputs were fed into all modules. The total number 
of  weights was 54. The ME model was trained using the EM 
algorithm, with the BPQ algorithm in the M-step. 

Table 2 shows the percentage of  correct classifications 
obtained with the SNA dataset, for each one of  the three 
connection±st models considered. Table 3 shows the results 
obtained with the SWA dataset. The numbers given 
correspond to the average and standard deviation of ten trials 
with random weight initializations. Pairwise two-tailed t- 
tests show that there are no statistical differences at the level 
of  significance 0.01 on the test set, among the three 
connection±st models, for both datasets. Note however that 
the ME model gave the minimum variance, with the 
minimum number of  parameters. 

Table 2 
Percentage of correct classifications for the SNA dataset. 

Model 
MLP 

Training 
100.0±0.0 

Validation 
96 .6±0 .7  

Test 
92 .0±0.9  

FGL 96 .7±2.2  94 .0±2.5  93.4±1.2  
ME 100.0±0.0 97 .3±0.3  92 .7±0.7  

Table 3 
Percentage of correct classifications for the SWA dataset. 

Model 
MLP 

Training Validation 
100.0±0.0 88 .8±0.7  

Test 
80.4 ± 1.1 

RG 96 .6±2.2  86 .8±2.4  81.1±1.7  
ME 99.5±0.5  89 .6±0.6  81.4±1.1 

Table 4 
Percentage of correct classifications for the SNA dataset 

after filtering outputs by the criterion of 1 min. state 
duration. 

Model 
MLP 
FGL 
ME 

Training Validation 
100.0±0.0 98 .7±2.5  
97 .7±1.7  97 .3±2 .0  
100.0±0.0 100.0±0.0 

Test 
94 .1±1.9  
97 .1±0.7  
93.9±1.5  

Table 5 
Percentage of correct classifications for the SWA dataset 

after filtering outputs by the criterion of 1 min. state 
duration. 

After learning convergence, the raw outputs of  all models 
were filtered using the criterion of  minimum state duration. 
Pattern variations lasting less than 1 rain. were discarded, 
thus the sleep state from the previous interval prevailed. 
Tables 4 and 5 show the results of  filtering outputs for the 
models obtained with the SNA dataset and the SWA dataset, 
respectively. The beneficial effect of  filtering becomes clear 
by comparing Tables 2, 3, 4 and 5. All results are enhanced, 
e.g. the ME model performance rises from 81.4% to 90.1% 
of correct classifications in the SWA test set. Once again no 
statistical differences were found at the level of  significance 
0.01 on the test set, among the three connection±st models 
after filtering, for both datasets. 

As a second step in comparing the three connection±st 
models, input selection was applied. The FGL model already 
includes variable selection, since inputs to the elementary 
reasoning units were selected according to the expert 
characterization model of  Table 1. For the MLP model, each 
one of  the five inputs was eliminated in tum and the 
resulting nets were trained again. Results showed that the 
five combinations of  pruned MLPs performed worse than the 
non-pruned MLP, confirming the expert criteria that all five 
inputs are relevant. 

Model 
MLP 

Training Validation Test 
100.0 + 0.0 93.0 + 1.7 89.9 + 1.5 

FGL 97.7 + 1.7 92.6 + 2.0 87.9 + 2.2 
ME 100.0 + 0.0 93.4 + 0.2 90.1 + 1.7 

For the ME model, since the same inputs are applied to the 
expert and gating networks, it is feasible to eliminate some 
inputs in each network. After priming the ME model for the 
SWA dataset, the following inputs were selected: 

Expertl: SS, REM and MT 
Expert2: SD, TH, REM and MT 
Gating Network: SD, SS and REM 

Fig. 4 shows the outputs of  the gating network over the 
training set for a given simulation. The upper and lower 
graphs correspond to the outputs associated to experts 1 and 
2, respectively. In both graphs the x-axis corresponds to the 
training pattern number (e.g. training samples 1-70 
correspond to the WA state). It can be clearly observed that 
expert 1 is associated to the WA and REMS states, and 
expert 2 to all NREM stages. This partition is in agreement 
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with the expert characterization model given in Table 1. The 
WA and REMS states can be distinguished from all NREM 
stages by the presence/absence of  REM in the EOG signal. 
The partition further shows that the sleep-waking states can 
be decomposed into two groups of  linearly separable classes, 
one group of two classes (WA and REMS) and another of  
three classes (NREM1, NREM2 and NREM3&4). 

Table 6 shows the percentage of  correct classifications 
obtained for the ME model with the SWA dataset, after 
applying input variable selection. The resulting model called 
pruned ME-SWA was then trained with both datasets. No 
statistical differences were found at the level of  significance 
0.01 on the test set, between the pruned and non-pruned ME 
models. Table 7 shows the results for the pruned ME-SWA 
model after filtering outputs by the criterion of  1 min. state 
duration. 

As a next step, an analysis of  the confusion errors of  the 
pruned ME model was performed. Most confusions were 
between NREM1 and REMS states. From the expert 
characterization model of  Table 1, it can be seen that the 
main difference between both states is the presence or 
absence of  REM. This analysis led to the binarization of  the 
REM input using a threshold close to zero. Table 8 shows 
the percentage of correct classifications for the pruned SWA 
model after binarizing the REM input. Comparing these 
results with those shown in Table 6, it can be observed that 
binarization of  REM led to a gain of  about 5 percentage 
points on the test set for both datasets. The number of  
confusions between NREM1 and REMS was reduced by 
half. Table 9 shows the results for the ME model after 
pruning, binarizing and filtering. 

Table 6 
Percentage of correct classifications for the pruned ME- 

SWA model on both datasets. 

Dataset Training Validation Test 
SWA 95.9 + 0.2 89.0 ± 0.7 82.4 ± 1.1 
SNA 96.2 ± 1.3 95.0 ± 0.6 88.8 ± 1.0 

Table 7 
Results for the pruned ME-SWA model after filtering 

outputs by the criterion of  1 re_in, state duration. 

Dataset Training 
SWA 99.2±0.1 
SNA 99.3±0.2  

Validation Test 
93 .2±1 .2  93.7±0.8  
98 .7±0 .4  93 .9±1.6  

Table 8 
Percentage of  correct classifications for the pruned ME- 

SWA model after binarizing the REM input. 

Dataset Training Validation Test 
SWA 97.1 ± 1.9 91.5 ± 1.0 87.1 ± 1.3 
SNA 96.7 ± 1.6 96.1 ± 1.0 94.6 ± 1.2 

Table 9 
Results for the pruned & binarized ME-SWA model after 

filtering by the criterion of  1 min. state duration. 

Dataset Training 
SWA 99.4±0.4  
SNA 99 .3±1 .6  

Validation Test 
96 .6±0 .7  94 .3±1.6  
98 .8±0 .6  98 .6±0.0  
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Fig. 4. Outputs of  the gating network of the ME model for 
the SWA dataset, after applying input selection. The x-axis 
corresponds to training pattern numbers (e.g. training 
samples 1-70 correspond to the WA state). The y-axis 
indicates the output value in the [0, 1 ] interval. 

Tables 10 and 11 show the final results for the three 
connectionist models on both the SWA and SNA datasets. 
Since FGL was mainly used as a reference from previous 
work, the REM binarization was not applied to it. The MLP 
results include REM binarization. The ME results include 
REM binarization and input variable selection. There are 
statistical differences at the level of  significance 0.05 on the 
SWA test set, between the ME model and the MLP model, 
and between the ME model and the FGL model. No 
significant statistical differences were found among the three 
models for the SNA dataset. 

Table 10 
Final results for FGL, MLP and ME models on the SWA 

dataset. 

Model 
FGL 

Training Validation 
97 .7±1.7  

Test 
92 .6±2 .0  87.9±2.2 

MLP 100.0±0.0 96 .7±0 .8  90 .7±0.4  
ME 99 .4±0 .4  96 .6±0.7  94 .3±1.6  
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Table 11 
Final results for FGL, MLP and ME models on the SNA 

dataset. 

Model 
FGL 

Training Validation Test 
9 7 . 7 ± 1 . 7  9 7 . 3 ± 2 . 0  9 7 . 1 ± 0 . 7  

MLP 100 .0±0 .0  9 9 . 9 ± 0 . 2  9 8 . 6 ± 0 . 0  
ME 9 9 . 3 ± 1 . 6  9 8 . 8 ± 0 . 6  9 8 . 6 ± 0 . 0  

5. Conclusions 

A new methodology for building modular neural network 
models based on selection of  input variables and confusion 
error analysis has been successfully applied to the 
classification o f  infant sleep-waking states. The resulting 
model has better classification rates and less parameters.  

The performances of  FLG, MLP and ME were compared on 
two datasets. For the data set without artifacts, the error 
performances o f  all three models were similar. For the 
dataset with artifacts, the ME model showed better 
classification rates on an independent test set than the MLP 
and FGL models. Moreover,  the ME model obtained has no 
hidden units nor high order terms, and is easily interpretable 
in terms o f  the expert characterization model o f  sleep- 
waking states in infants. The ME model resulted more robust 
than the other models  in the presence of  inconsistent or noisy 
data. 
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