

Matemática 2006

Tutorial Nivel Avanzado

Probabilidad y estadística

Probabilidad y estadística Marco Teórico

1. Probabilidad P(#)

L.I Definición:

La probabilidad de ocurrencia de un determinado suceso podría definirse como la proporción de veces que ocurriría dicho suceso si se repitiese un experimento o una observación en un número grande de ocasiones bajo condiciones similares. Entonces, la probabilidad se mide por un número entre cero y uno; si un suceso no ocurre nunca, su probabilidad asociada es cero, mientras que si ocurriese siempre su probabilidad sería igual a uno. Así, las probabilidades suelen venir expresadas como decimales, fracciones o porcentajes. Para medir la probabilidad de que ocurra un evento dado, uno de los métodos más utilizados es la **Regla de Laplace** que define la probabilidad de un suceso como el cuociente entre casos favorables y casos posibles.

P(A) = Casos favorables / casos posibles

Ejemplos:

a) Probabilidad de que al lanzar un dado salga el número 3: El caso favorable es tan sólo uno (que salga el tres), mientras que los casos posibles son seis (puede salir cualquier número del uno al seis). Por lo tanto:

$$P(A) = 1 / 6 = 0.166$$
 (o si se prefiere, 16.6%)

b) Probabilidad de que al lanzar un dado salga un número impar: En este caso, los casos favorables son tres (que salga el uno, el tres o el cinco), mientras que los casos posibles siguen siendo seis. Por lo tanto:

$$P(A) = 3 / 6 = 0.50$$
 (o si se prefiere, 50%)

Algunas propiedades básicas del cálculo de probabilidades:

1.2 Para un suceso A. la probabilidad de que suceda su complementario (o equivalentemente. de que no suceda A) es igual a uno menos la probabilidad de A:

$$P(A) + P(\overline{A}) = 1 \Rightarrow P(\overline{A}) = 1 - P(A)$$

Donde \overline{A} denota al suceso contrario o suceso complementario de A.

Ejemplo: Si la probabilidad de que ocurra un evento es $\frac{3}{4}$, ¿cuál es la probabilidad de que dicho evento no ocurra?

Si la probabilidad de que ocurra un evento es $\frac{3}{4}$, la probabilidad de que suceda su complementario(que no suceda el evento) es igual a uno menos la probabilidad del evento:

Probabilidad que NO suceda el evento = $1 - \frac{3}{4} = \frac{1}{4}$ Por lo tanto, la probabilidad de que dicho evento no ocurra es de $\frac{1}{4}$

1.3 Si un fenómeno determinado tiene dos posibles resultados: A y B mutuamente excluyentes, es decir, que NO pueden darse de forma simultánea, como ocurre en el lanzamiento de una moneda al aire, la probabilidad de que una de esas dos posibilidades ocurra se calcula como la suma de las dos probabilidades individuales:

$$P(A \circ B) = P(A) + P(B)$$

Si un fenómeno determinado tiene dos posibles resultados: A y B mutuamente incluyentes, es decir, que pueden darse de forma simultánea, como ocurre en el lanzamiento de dos monedas al aire, la probabilidad de que esas dos posibilidades ocurran se calcula como la multiplicación de las dos probabilidades individuales:

$$P(A y B) = P(A) \cdot P(B)$$

2. Estadística descriptiva

Es la ciencia que trata de la recolección, presentación, análisis y uso de datos para tomar decisiones. Incluye las técnicas que se relacionan con el resumen y la descripción de datos numéricos, gráficas, tablas y diagramas que muestran los datos y facilitan su interpretación.

a) Población:

Es una colección de todos los elementos que estamos estudiando y acerca de los cuales intentamos establecer conclusiones. Se caracteriza por contar con alguna cualidad común que permite agruparlos.

b) Muestra:

Es una colección de algunos de los elementos que componen una población y que son representativos de dicha población.

c) Muestra aleatoria:

Es una muestra al azar. Para que se considere propia y representativa de la población, deberá ser al azar

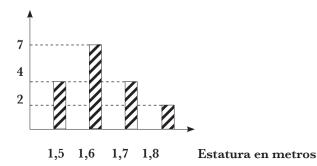
- d) Frecuencia absoluta: Número de veces que se repite un dato.
- e) Distribución de frecuencia: Representación estructurada, en forma de tabla, de toda la información que se ha recogido sobre la variable que se estudia.
- **2.1 Media aritmética o promedio** (\bar{X}) : La media se calcula al sumar los valores de un conjunto y al dividir el valor de su suma entre el número de valores del mismo.
- 2.2 Mediana (Md): Es el valor central de una serie cuando los valores se ordenan según su magnitud, y es aquel que divide a una serie de tal forma que 50% de los valores son menores o iguales que él, y el 50% de los valores son mayores o iguales que él.
- 2.3 Moda (Mo): Es el valor que con más frecuencia se presenta en un conjunto de datos, es muy fácil de determinar, basta con observar detenidamente al conjunto de datos y ver cuál es el que más se repite. Además, puede ocurrir que una distribución tenga dos o más valores que se repitan con la misma frecuencia, en tal caso se tienen dos o más modas, también puede ocurrir que no exista ningún valor que se repita y entonces no habrá moda.

Eiercicios

- 1. En una comuna de Santiago hay 500.000 habitantes. Si la probabilidad de que un habitante sea hombre es $\frac{2}{5}$, ¿cuántas mujeres hay en la comuna?
 - 50.000 A)
 - B) 100.000
 - C) 200.000
 - D) 300.000
 - E) 400.000
- 2. ¿En cuál de los siguientes eventos la probabilidad de ocurrencia es igual a 1?
 - A) Que un mes tenga 30 días.
 - B) Que un año tenga 365 días.
 - C) Que en un dado normal salga un número par.
 - D) Que en un dado normal salga un número primo o par.
 - E) Que en una moneda salga cara o sello.
- 3. Si la probabilidad de que granice en Puerto Montt es (x 1)², ¿cuál es la probabilidad de que no granice en Puerto Montt?
 - A) 0
 - B) 1

 - D)
 - $x^2 2x$ $2x x^2$ E)

- 4. En una heladería hay 12 hombres y 18 muieres. Se sabe que 4 de esos hombres y 12 de esas mujeres prefieren helado de manjar y el resto de limón. Si se elige una persona al azar, ¿cuál es la probabilidad de que esa persona sea hombre y prefiera el helado de manjar?
 - A)
 - B)
 - C)
 - D)
 - E)
- 5. ¿Cuál(es) de las siguientes afirmaciones es(son) verdadera(s)?
 - Una probabilidad toma valores entre el cero y el uno (inclusive). I.
 - II. Una probabilidad toma valores entre el cero y el cien (inclusive).
 - III. Una probabilidad puede ser representada en forma de porcentaje.
 - Sólo I A)
 - Sólo II B)
 - C) Sólo III
 - Sólo I y III D)
 - E) Sólo II y III


- 6. Al lanzar dos dados comunes, ¿cuál es la probabilidad de que la diferencia entre los números obtenidos sea 3?

 - E)
- 7. Al lanzar un dado común, ¿cuál(es) de las siguientes aseveraciones es(son) verdaderas(s)?
 - l) La probabilidad de obtener un número par es $\frac{1}{2}$
 - II) La probabilidad de obtener un múltiplo de 2 es $\frac{1}{4}$
 - III) La probabilidad de obtener un número primo es $\frac{4}{2}$
 - A) Sólo I
 - B) Sólo II
 - C) Sólo III
 - Sólo I y III D)
 - Sólo II y III E)

- 8. Al sacar una letra de la palabra **PARALELEPÍPEDO**, ¿cuál(es) de las siguientes afirmaciones es(son) verdadera(s)?
 - La probabilidad de sacar una P es $\frac{3}{14}$ I)
 - La probabilidad de sacar una A es $\frac{1}{7}$ II)
 - La probabilidad de sacar una vocal es $\frac{3}{7}$ III)
 - Sólo I A)
 - B) Sólo II
 - Sólo I y II C)
 - D) Sólo I y III
 - E) I, II y III
- 9. Dado los siguientes datos 2, 2, 6, 3, 6, 1, 6, 1, 2, 4, ¿cuál es la media (promedio) de las modas?
 - A) 2
 - B) 3
 - C) 4
 - D) 5
 - E) 6
- 10.En una muestra representativa de variables cuantitativas, ¿cuál(es) de las siguientes afirmaciones es(son) siempre verdadera(s)?
 - I) La media(promedio) es igual a la mediana.
 - II) Siempre existe media(promedio).
 - III) Siempre existe moda.
 - A) Sólo II
 - B) Sólo III
 - C) Sólo I y III
 - D) Sólo II y III
 - E) I, II y III

Para responder las preguntas 11, 12 y 13, utilice la información del gráfico siguiente:

Frecuencia

- 11. El gráfico de la figura muestra la estatura de todas las personas de una familia. De acuerdo con esta información, ¿cuántas personas conforman esta familia?
 - A) 20
 - B) 17
 - C) 13
 - D)
 - E) 4
- 12. ¿Cuál(es) de las siguientes afirmaciones es(son) verdadera(s)?
 - La moda es 1,6 metros. I)
 - La mediana es 1,7 metros. II)
 - La frecuencia de la moda es 7. III)
 - Sólo I A)
 - B) Sólo II
 - C) Sólo III
 - Sólo I y III D)
 - I, II y III E)

13.; Cuál es la media aritmética (promedio) de los datos del gráfico?

- A) 1,62
- B) 3.38
- C) 3,6
- 11.2 D)
- 27.6 E)
- 14. Dada los datos 7, 10, 12, 13, 20, 25, cuál de ellos se debe eliminar para que la media (promedio) entre los restantes sea 15?
 - A) 7
 - B) 10
 - C) 12
 - D) 13
 - E) 20
- 15. La siguiente tabla muestra la distribución de sueldos de los trabajadores de una compañía. ¿Cuál (es) de las siguientes afirmaciones es (son) siempre verdadera (s)?

Tipo de sueldo	Número de trabajadores	Sueldo en pesos
Muy alto	3	4.000.000
Alto	5	1.200.000
Medio	4	600.000
Bajo	3	200.000

- I) La mediana está en el tipo de sueldo alto.
- Hay exactamente 7 personas que ganan menos de 600.000 pesos. II)
- III) Si sumamos el sueldo de las tres personas del rango muy alto y las tres personas del rango bajo, obtenemos un valor superior al de sumar el sueldo de las 5 personas del rango alto y las cuatro del rango medio.

- A) Sólo I
- B) Sólo II
- C) Sólo III
- D) Sólo I y II
- E) Sólo I y III

Respuestas

Pregunta	Respuesta
1	D
3	E
3	E
5	A
	D
6	E
7	D
8	C C
9	C
10	A
11	В
12	D
13	A
14	С
15	A

Solucionario

1) Alternativa correcta D

Si la probabilidad de que un habitante sea hombre es $\frac{2}{5}$, quiere decir que $\frac{2}{5}$ de la población son hombres, o sea, $\frac{2}{5}$ · 500.000 = 200.000 hombres. Como hay 500.000 habitantes, si 200.000 son hombres, hay necesariamente 300.000 mujeres.

2 Alternativa correcta F

Una probabilidad es igual a 1 cuando los casos favorables son iguales a los casos posibles, es decir, cuando existe un 100% de posibilidades de que un evento ocurra.

- A) Que un mes tenga 30 días: Esta afirmación no cumple el enunciado, pues un mes puede tener 28, 29(febrero), 30 ó 31 días.
- B) Que un año tenga 365 días: Esta afirmación no cumple el enunciado, pues un año puede tener 365 ó 366 (en un año bisiesto).
- C) Que en un dado normal salga un número par: Esta afirmación no cumple el enunciado, pues un dado normal (seis caras) posee números pares e impares.
- D) Que en un dado normal salga un número primo o par: Esta afirmación no cumple el enunciado, pues los números 2, 3 y 5 son primos y los números 2, 4 y 6 son pares, por lo tanto, no se está considerando al número 1.
- Que en una moneda salga cara o sello: Esta afirmación sí cumple el enunciado, pues las únicas posibilidades que tenemos al lanzar una moneda es que salga cara o sello.

3. Alternativa correcta E

Para un suceso A, la probabilidad de que suceda su complementario (o equivalentemente, de que no suceda A) es igual a uno menos la probabilidad de A:

$$P(A) + P(\overline{A}) = 1 \Rightarrow P(\overline{A}) = 1 - P(A)$$

Por lo tanto, si la probabilidad de que granice en Puerto Montt es $(x - 1)^2$, la probabilidad de que **no** granice en Puerto Montt es de:

$$1 - (x - 1)^2$$
 (Desarrollando el cuadrado de binomio)

$$1 - (x^2 - 2x + 1)$$
 (Sacando el paréntesis)

$$1 - x^2 + 2x - 1$$
 (Restando términos semejantes)

$$-x^2 + 2x + 6 + 2x - x^2$$

4. Alternativa correcta A

Los casos favorables son los 4 hombres que prefieren el helado de manjar, los casos posibles son todas las 30 personas (12 hombres y 18 mujeres); luego, la probabilidad de que la persona elegida sea hombre y prefiera el helado de manjar es de: $\frac{4}{20}$

5. Alternativa correcta D

I. Una probabilidad toma valores entre el cero y el uno (inclusive). Esta afirmación es verdadera, por propiedades de probabilidades.

II. **Una probabilidad toma valores entre el cero y el cien** (inclusive). Esta afirmación es **falsa**, pues una probabilidad sólo toma valores entre 0 y 1, para tomar valores entre 0 y 100 debiese ser expresada en forma de porcentajes.

III. **Una probabilidad puede ser representada en forma de porcentaje**. Esta afirmación es **verdadera**, pues, en algunos casos, las probabilidades pueden representarse en forma de porcentajes.

6 Alternativa correcta F

Existen seis casos favorables en los cuales la diferencia de los dados es 3:

Además, los casos totales son 36 (utilizando principio multiplicativo en los casos totales individuales de cada dado $6 \cdot 6 = 36$)

Luego, dada la fórmula de probabilidad: Casos favorables Casos posibles

La probabilidad de que la diferencia entre los números obtenidos sea 3 es:

$$\frac{\text{Casos favorables}}{\text{Casos posibles}} = \frac{6}{36}$$
 (Simplificando por 6)
$$= \frac{1}{6}$$

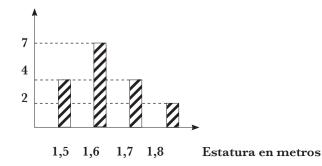
- 7. Alternativa correcta D
 - I) La probabilidad de obtener un número par es $\frac{1}{2}$: Esta afirmación es verdadera, pues los casos favorables son tres (2, 4 y 6) y los casos posibles seis (1, 2, 3, 4, 5 y 6); luego, la probabilidad es de $\frac{3}{6}$, simplificando obtenemos $\frac{1}{2}$.
 - ll) La probabilidad de obtener un múltiplo de 2 es $\frac{1}{4}$: Esta afirmación es falsa pues los casos favorables son tres (2, 4 y 6) y los casos posibles seis (1, 2, 3, 4, 5 y 6), luego la probabilidad es de $\frac{3}{6}$ simplificando obtenemos $\frac{1}{2}$.
 - III) La probabilidad de obtener un número primo es $\frac{1}{2}$: Esta afirmación es **verdadera** pues los casos favorables son tres (2, 3 y 5) y los casos posibles seis (1, 2, 3, 4, 5 y 6); luego, la probabilidad es de $\frac{3}{6}$, simplificando obtenemos $\frac{1}{2}$.

8 Alternativa correcta C.

la palabra PARALELEPÍPEDO posee 14 letras, es decir existen 14 casos posibles.

- l) La probabilidad de sacar una P es $\frac{3}{14}$: Esta afirmación es verdadera, pues existen 3 casos favorables (tres letras P en la palabra paralelepípedo).
- II) La probabilidad de sacar una A es $\frac{1}{2}$: Esta afirmación es verdadera pues existen 2 casos favorables (dos letras A en la palabra paralelepípedo). Luego la probabilidad es de $\frac{2}{14}$. simplificando $\frac{1}{2}$.
- III) La probabilidad de sacar una vocal es $\frac{3}{7}$: Esta afirmación es falsa pues existen 7 casos favorables (siete vocales en la palabra paralelepípedo). Luego, la probabilidad es de $\frac{7}{14}$, simplificando $\frac{1}{2}$.

9. Alternativa correcta C


Como los datos que más se repiten son el dos y el seis, tenemos una muestra con dos modas, al promediarlas: $\frac{2+6}{2}$ = 4

10. Alternativa correcta A

En una muestra, media y mediana pueden ser iguales o distintas, por lo tanto, la afirmación I es falsa. En una muestra de variables cuantitativas siempre existirá por lo menos un dato, por consiguiente se podrá calcular media y mediana. Sin embargo, si en una muestra todos los datos son iguales, no existe moda. Por lo tanto, la afirmación II es verdadera y la afirmación III es falsa.

11 Alternativa correcta B

Frecuencia

De acuerdo con los datos del gráfico, se desprende que hay 4 personas que miden 1,5 metros, 7 personas que miden 1,6 metros, 4 personas que miden 1,7 metros y 2 personas que miden 1,8 metros. Por lo tanto, el número de personas de la familia es de:

$$4 + 7 + 4 + 2 =$$
 (Sumando)

17 personas

12. Alternativa correcta D

La moda es el dato con la mayor frecuencia en este caso, 1,6 metros, que tiene una frecuencia de siete. Por lo tanto, la afirmación I y la afirmación III son **verdaderas**.

La mediana es el valor central y al existir 17 datos, la mediana corresponderá al noveno dato, que corresponde a una estatura de 1,6 metros, por lo tanto, la afirmación II es **falsa.**

13 Alternativa correcta A

Para calcular la suma de todos los datos, basta con multiplicar cada altura por su respectiva frecuencia, de donde obtenemos:

$$1.5 \cdot 4 + 1.6 \cdot 7 + 1.7 \cdot 4 + 18.2 =$$

(Multiplicando)

(Sumando)

27.6

Dividiendo el resultado por el número de datos:

$$\frac{27,6}{17}$$
 = 1,62

14. Alternativa correcta C

El valor que debemos eliminar es el 12, pues al promediar el resto, obtenemos 15:

$$\frac{7+10+13+20+25}{5} = \frac{75}{5} = 15$$

15. Alternativa correcta A

Tipo de sueldo	Número de trabajadores	Sueldo en pesos
Muy alto	3	4.000.000
Alto	5	1.200.000
Medio	4	600.000
Bajo	3	200.000

La mediana es el valor central y al existir 15 datos la mediana corresponderá al octavo dato, que corresponde al tipo de sueldo alto, por lo tanto la afirmación I es **verdadera.**

Sólo hay 3 personas que ganan **menos** de 600.000 (sueldo bajo), por lo tanto la afirmación II es **falsa.**

Ya que las tres personas de sueldo muy alto ganan 4 millones de pesos, su sueldo suma 12 millones, más las tres personas de sueldo bajo que ganan 200.000 tenemos 600.000, lo que suma 12.600.000 de pesos.

Las cinco personas de sueldo alto suman 6.000.000 de pesos, más los 2.400.000 de las cuatro personas de sueldo medio tenemos 8.400.000, por lo tanto la afirmación III es verdadera.

Mis notas

Grupo Educacional Cepech