

Matemática 2006

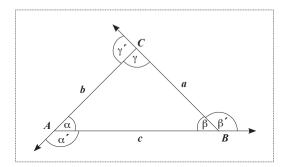
Tutorial Nivel Básico

Triángulos I

Triángulos 1

Marco Teórico

- 1. Definición: polígono de 3 lados.
- 2. Elementos primarios:
- a) Vértices: A, B, C



b) Lados:
$$\overline{AB} = c$$
, $\overline{BC} = a$, $\overline{AC} = b$

Se cumple que:

i) La suma de dos lados es siempre mayor que el tercer lado.

$$a+b>c$$

$$b+c>a$$

$$a+c>b$$

- ii) La diferencia positiva de dos lados es siempre menor que el tercer lado.
- c) Ángulos interiores: $\angle BAC = \alpha$, $\angle CBA = \beta$, $\angle ACB = \gamma$

Se cumple que:

i)
$$\alpha + \beta + \gamma = 180^{\circ}$$

- ii) A mayor ángulo se opone mayor lado y a menor ángulo se opone menor lado. Ejemplo: $\alpha > \beta > \gamma \Rightarrow a > b > c$
- d) Ángulos exteriores:

Se cumple que:

i)
$$\alpha' + \beta' + \gamma' = 360^{\circ}$$

ii) Un ángulo exterior es igual a la suma de los ángulos interiores no adyacentes a él.

$$\alpha' = \beta + \gamma$$

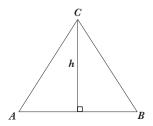
$$\beta' = \alpha + \gamma$$

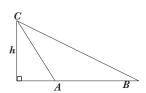
$$\gamma' = \alpha + \beta$$

3 Flementos secundarios.

a) Altura: h

Perpendicular trazada desde un vértice al lado opuesto o a su prolongación. Ortocentro (H): punto de intersección de las alturas.

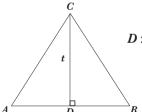




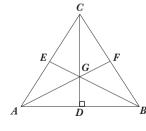
b) Transversal de gravedad: t

Trazo que une un vértice con el punto medio del lado opuesto.

Centro de gravedad (G); punto de intersección de las transversales, las divide en la razón de 2:1



D: punto medio

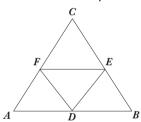


D,E,F: puntos medios G: centro de gravedad

$$\overline{GD} = x$$
, $\overline{CG} = 2x$

c) Mediana:

Trazo que une los puntos medios de dos lados consecutivos. Cada mediana es paralela al lado opuesto y mide la mitad.



D,E,F: puntos medios \Rightarrow

$$\overline{EF} = \frac{\overline{AB}}{2}, \overline{FD} = \frac{\overline{BC}}{2}, \overline{ED} = \frac{\overline{AC}}{2}$$

$$\overline{EF} //\overline{AB}, \overline{DE} //\overline{AC}, \overline{FD} //\overline{BC}$$

Además se forman 4 triángulos iguales (congruentes).

Tutorial

d) Bisectriz: b

Divide al ángulo en dos partes iguales.

Incentro: punto de intersección de las bisectrices, que equidista de los tres lados y corresponde al centro de la circunferencia inscrita al triángulo.

- 4. Clasificación de los triángulos según sus ángulos:
- Acutángulo: 3 ángulos agudos
- Rectángulo: 1 ángulo recto
- Obtusángulo: 1 ángulo obtuso
- 5. Clasificación de los triángulos según sus lados:
- Escaleno: 3 lados distintos.

Sus 3 ángulos son distintos.

Isósceles: 2 lados iguales (el lado distinto se llama base).

Los ángulos ubicados en la base son iguales.

Equilátero: 3 lados iguales.

Sus 3 ángulos son iguales.

6. Generalidades:

i) Área =
$$\frac{base \cdot altura}{2}$$

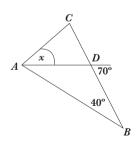
$$\Delta$$
 equilátero: Área = $\frac{(lado)^2}{4} \cdot \sqrt{3}$

$$h = \frac{lado \cdot \sqrt{3}}{2}$$

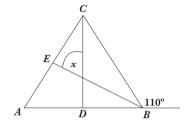
ii) Perímetro: suma de sus lados.

Ejercicios

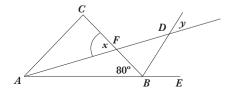
- \overline{AD} bisectriz del $\angle BAC$, x = ?
 - A) 30°
 - 40° B)
 - C) 70°
 - D) 110°
 - E) Falta información



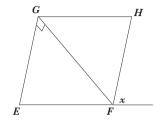
- 2. AC = AB, BE bisectriz del $\angle CBA$ y CD bisectriz del $\angle ACB$, x = ?
 - A) 20°
 - B) 40°
 - C) 55°
 - D) 70°
 - E) Otro valor



- 3. AC = AB, AD bisectriz del $\angle BAC$ y BD bisectriz del $\angle EBC$, x + y = ?
 - A) 50°
 - 60° B)
 - C) 90°
 - D) 100° E) 130°

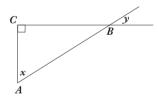


- 4. $\overline{EG} = \overline{GF} = \overline{GH} = \overline{FH}, x = ?$
 - A) 45°
 - 60° B)
 - C) 75°
 - D) 105°
 - E) 110°

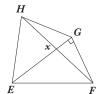


Tutorial

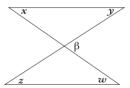
- 5. Si en el $\triangle ABC$ se tiene que $38^{\circ} < x < 46^{\circ}$, entonces:
 - A) $38^{\circ} < v < 46^{\circ}$
 - B) $44^{\circ} < v < 52^{\circ}$
 - C) $84^{\circ} < v < 96^{\circ}$
 - D) 134° < ν <142°
 - E) Ninguno de ellos



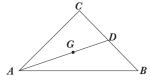
- 6. $\triangle EGH$ equilátero, $\triangle EGF$ isósceles, x = ?
 - A) 45°
 - B) 60°
 - C) 75°
 - D) 105°
 - E) 120°



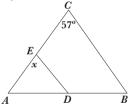
- 7. x + y + z + w en función de β es:
 - A) 2β
 - B) 4β
 - C) $180^{\circ} + \beta$
 - D) 360° 2β
 - E) Falta información



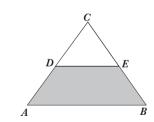
- 8. $\overline{AD} = 9$ cm, G centro de gravedad, D punto medio, $\overline{AG} = ?$
 - A) 3 cm
 - B) 4 cm
 - C) 4,5 cm
 - D) 5 cm
 - E) 6 cm



- 9. D, E puntos medios de sus lados respectivos entonces x = ?
 - A) 33°
 - B) 57°
 - C) 90°
 - D) 123°
 - E) Ninguno de ellos

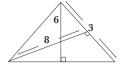


- 10. D, E puntos medios de sus lados respectivos, área del $\triangle ABC = 16$ cm². Determine el área achurada.
 - A) 4 cm²
 - B) 6 cm²
 - C) 8 cm²
 - D) 12 cm²
 - E) Falta información

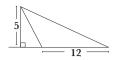


II. Determine el área de los siguientes triàngulos:

a)



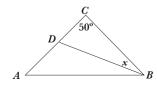
b)



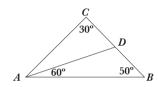
c)

d)

- 12. $\triangle ABC$ isosceles de base \overline{AC} , D punto medio, x = ?
 - A) 25°
 - B) 40°
 - C) 50°
 - D) 65°
 - E) 80°

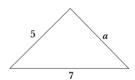


13. Determine el lado mayor entre los triángulos ACD y ABD.

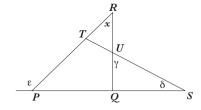


Tutorial

- 14. Determine el menor valor entero que puede tomar "a" para que el triángulo exista.
 - A) 1
 - B) 2
 - C) 3
 - D) 4
 - E) 5



15. Determine x en función de γ , δ y ϵ



Respuestas

Preg.	Alternativa
1	A
2	D
3	E
4	C
5	В
6	C
7	A
8	E
9	В
10	D
11	a) 12 b) 30 c) 35 d) $16\sqrt{3}$
12	В
13	\overline{AC}
14	C
15	$x = \varepsilon - \gamma - \delta$

I. La alternativa correcta es la letra A)

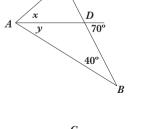
En $\triangle ADB$

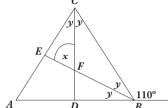
$$70^{\circ} = y + 40^{\circ}$$
 (\angle exterior)
 $70^{\circ} - 40^{\circ} = y$ (Despejando y)
 $30^{\circ} = y$

Como
$$\overline{AD}$$
 bisectriz $\Rightarrow x = y$

$$\therefore x = 30^{\circ}$$

$$\Rightarrow \angle CBE = y$$
$$\angle EBA = y$$





$$y + y + 110^\circ = 180^\circ$$
 (\angle extendido)

$$2\nu = 180^{\circ} - 110^{\circ}$$
 (Despejando ν)

$$2y = 70^{\circ}$$

$$y = \frac{70^{\circ}}{2}$$
 (Simplificando)

$$y = 35^{\circ}$$

Como
$$\overline{AC} = \overline{AB} \implies \angle ACB = \angle CBA$$
 y como \overline{CD} bisectriz $\implies \angle ACD = y$, $\angle DCB = y$

x, \angle exterior del \triangle *FBC*

$$\Rightarrow x = y + y$$

(Reemplazando
$$y$$
)

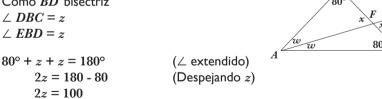
$$x = 35^{\circ} + 35^{\circ}$$

$$x = 70^{\circ}$$

$$\therefore x = 70^{\circ}$$

3. La alternativa correcta es la letra E)

Como
$$\overline{AC}$$
 = \overline{AB} \Rightarrow \angle ACB = 80°
Como \overline{BD} bisectriz
 \angle DBC = z
 \angle EBD = z



(Simplificando)

E

Como AD bisectriz /BAF = /FAC = 70En $\triangle ABC$ se tiene que: $w + w + 80^{\circ} + 80^{\circ} = 180^{\circ}$ (Suma de los ∠s interiores) $270 + 160^{\circ} = 180^{\circ}$ (Despejando w)

+
$$160^\circ = 180^\circ$$
 (Despejando w)
 $2w = 180 - 160$
 $2w = 20$
 $w = \frac{20}{2}$
 $w = 10^\circ$

 $x \perp \angle$ exterior del $\triangle AFB$

 $z = \frac{100}{2}$

 $z = 50^{\circ}$

$$\Rightarrow x = w + 80^{\circ}$$
 (Reemplazando w)

$$x = 10^{\circ} + 80^{\circ}$$

$$x = 90^{\circ}$$

Además $x = \angle BFD$ (Opuestos por el vértice) $v = \angle FDB$ (Opuestos por el vértice)

En \triangle *BFD* se tiene que:

$$x+y+z=180^{\circ}$$
 (Suma de los \angle s interiores)
 $90^{\circ}+y+50^{\circ}=180^{\circ}$ (Reemplazando x,z)
 $y+140^{\circ}=180^{\circ}$ (Despejando y)
 $y=180-140$
 $y=40^{\circ}$

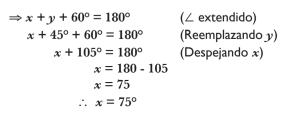
Nos piden
$$x + y$$
 (Reemplazando x_2y)
 $90^{\circ} + 40^{\circ} = 130^{\circ}$
 $\therefore x + y = 130^{\circ}$

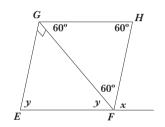
4. La alternativa correcta es la letra C)

Como
$$\overline{EG} = \overline{GF} \Rightarrow \angle FEG = \angle GFE = y$$

 $\therefore y = 45^{\circ}$

$$\begin{array}{ccc} \therefore \ \mathcal{y} = 45^{\circ} \\ \text{Como} \ \overline{GF} = \overline{GH} = \overline{FH} \ \Rightarrow \Delta \ GHF \ \text{equilátero} \Rightarrow \\ \angle \ HFG = 60^{\circ} \ , \ \angle \ FGH = 60^{\circ} \ , \ \angle \ GHF = 60^{\circ} \end{array}$$





5. La alternativa correcta es la letra B)

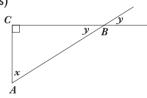
$$\angle y = \angle CBA$$

$$x + y + 90^{\circ} = 180^{\circ}$$

$$x + y = 180 - 90$$

$$x + y = 90^{\circ}$$





$$Six = 46^{\circ}$$

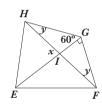
 $v = 52^{\circ}$

$$x + y = 90^{\circ}$$
 (Reemplazamos x)
 $46^{\circ} + y = 90^{\circ}$ (Despejando y)
 $y = 90 - 46$
 $y = 44$
 $\therefore 44^{\circ} < y < 52^{\circ}$

Como
$$\triangle$$
 GHE equilátero \Rightarrow

6. La alternativa correcta es la letra C)

$$\overline{HE} = \overline{GH} = \overline{EG} \Rightarrow \angle HGE = 60^{\circ}$$



Como $\triangle EGF$ isósceles rectángulo \Rightarrow

$$\overline{EG} = \overline{GF}$$

(La única posibilidad es que la base sea \overline{EF})

$$\Rightarrow \frac{\overline{HG}}{\overline{HG}} = \frac{\overline{GF}}{\overline{GF}}$$

 $\Rightarrow \Delta HGF$ is ósceles de base HF

$$\Rightarrow \angle FHG = v, \angle GFH = v$$

Además / $HGF = 60^{\circ} + 90^{\circ} = 150^{\circ}$

 \Rightarrow En \triangle *HGF* se tiene que:

$$y + 150^{\circ} + y = 180^{\circ}$$

 $2y + 150^{\circ} = 180^{\circ}$
 $2y = 180^{\circ} - 150^{\circ}$

(Suma de los ∠s interiores) (Despeiando ν)

2v = 30 $y = \frac{30}{2}$

 $v = 15^{\circ}$

(Simplificando)

Como x es \angle exterior del \triangle *IHG*

$$\Rightarrow x = 60^{\circ} + y$$

$$x = 60^{\circ} + 15^{\circ}$$

$$x = 75^{\circ}$$

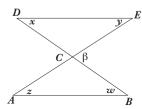
$$\therefore x = 75^{\circ}$$

(Reemplazando ν)

 β : \angle exterior del \triangle *DEC* y del \triangle *ABC*

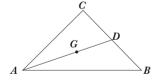
$$\Rightarrow \beta = x + y$$
$$\beta = z + w$$

$$\Rightarrow x + y + z + w \quad (Reemplazando x, y, z, w)$$



$$\therefore x + y + z + w = 2\beta$$

Como G es centro de gravedad y AD transversal (D punto medio)



$$\Rightarrow \overline{AG} : \overline{GD} = 2:1$$

Sabemos que
$$\overline{AD} = 9$$

$$\Rightarrow \overline{AG} + \overline{GD} = 9$$
 y

$$\overline{AG}:\overline{GD}=2:1$$

(Escribimos la otra notación)

$$\frac{\overline{AG}}{2} = \frac{\overline{GD}}{1} = k$$

(Separando en razones)

$$\frac{\overline{AG}}{2} = k \implies \overline{AG} = 2k$$

(Despejando \overline{AG})

$$\frac{\overline{GD}}{1} = k \implies \overline{GD} = k$$

(Despeiando \overline{GD})

Como
$$\overline{AG} + \overline{GD} = 9$$

(Reemplazamos)

$$2k + k = 9$$
$$3k = 9$$

(Despeiando k)

 $k = \frac{9}{3}$

(Simplificando)

$$k = 3$$

$$\overline{AG} = 2k$$
 y $k = 3$

(Reemplazamos k)

$$\overline{AG} = 2 \cdot 3$$

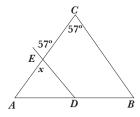
$$\overline{AG} = 6$$

$$\therefore \overline{AG} = 6 \text{ cm}$$

Como E y D son puntos medios $\Rightarrow ED$ mediana $\Rightarrow ED$ // BC

Trasladando 57º a su alterno interno $\Rightarrow x = 57^{\circ}$ (opuestos por el vértice)

$$\therefore x = 57^{\circ}$$

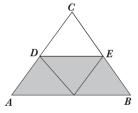


10. La alternativa correcta es la letra D)

Como D, E puntos medios $\Rightarrow \overline{DE}$ mediana

Al trazar las 3 medianas sabemos que se forman 4 Δ s iguales

$$\Rightarrow$$
 Área \triangle AFD = Área \triangle FBE = Área \triangle DFE = Área \triangle CDE = $\frac{1}{4}$ Área \triangle ABC



Área $\triangle ABC = 16 \text{ cm}^2$

La parte achurada consta de $3 \Delta s$.

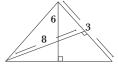
$$\Rightarrow$$
 Area achurada = $\frac{3}{4}$ Area \triangle ABC = $\frac{3}{4} \cdot 16$

(Reemplazamos)

(Simplificando)

Area achurada =12 cm²

11.a)



 $\text{Área} = \frac{base \cdot altura}{2}$

Área = $\frac{12 \cdot 5}{2}$

Área = 30

∴ Área = 30

(Reemplazamos)

(Simplificando)

Utilizamos la altura que mide 8 ya que cae en la base que es 3.

No nos sirve la altura que mide 6 ya que no sabemos cuánto mide su base.

$$Area = \frac{base \cdot altura}{2}$$

Área =
$$\frac{3 \cdot 8}{12}$$
 (simplificando)

(reemplazamos)

d)

Nota: los lados de un Δ rectángulo se llaman catetos e hipotenusa, donde la hipotenusa es el lado opuesto al ángulo recto.

Como es Δ rectángulo, el área se puede calcular como

Este Δ es equilátero, ya que tiene sus 3 lados iguales.

$$\frac{\mathit{cateto1}\,\cdot\mathit{cateto2}}{2}\,\,(\mathsf{Reemplazamos})$$

$$\Rightarrow \text{Area} = \frac{7 \cdot 10}{2} \qquad \text{(Simplificando)}$$

$$\Rightarrow$$
 Area = $\frac{(lado)^2}{4} \cdot \sqrt{3}$ (Reemplazamos)

Área =
$$\frac{8^2}{4} \cdot \sqrt{3}$$
 (Orden operaciones)
= $\frac{64}{4} \cdot \sqrt{3}$ (Simplificando)

$$= 16\sqrt{3}$$

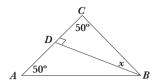
$$\therefore$$
 Área = $16\sqrt{3}$

12. La alternativa correcta es la letra B)

Como A ABC isósceles de base

$$\overline{AC} \Rightarrow \angle BAC = 50^{\circ}$$

Además DB transversal de gravedad que cae en la base $\Rightarrow DB$ bisectriz y altura (las rectas notables que caen en la base coinciden)



En \triangle *CDB* se tiene que:

$$x + 90^{\circ} + 50^{\circ} = 180^{\circ}$$

 $x + 140^{\circ} = 180^{\circ}$
 $x = 180 - 140$
 $x = 40$

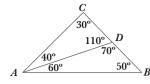
 $x = 40^{\circ}$

(Suma de los ∠s interiores)

(Despeiando x)

13. Para determinar el lado mayor de un triángulo, debemos encontrar el
$$\angle$$
 mayor. Entonces debemos determinar el valor de todos los \angle s interiores.

En $\triangle ADB$ se tiene que:



$$60^{\circ} + 50^{\circ} + \angle ADB = 180^{\circ}$$

 $\angle ADB + 110^{\circ} = 180^{\circ}$
 $\angle ADB = 70^{\circ}$

(Suma de los ∠s interiores)

(Despejando $\angle ADB$)

Además $70^{\circ} \angle$ exterior del $\triangle ADC$

$$\Rightarrow$$
 70° = $\angle DAC + 30°$

(Despejando $\angle DAC$)

$$70 - 30 = \angle DAC$$

$$40^{\circ} = \angle DAC$$

Por otro lado:
$$70^{\circ} + \angle CDA = 180^{\circ}$$
 (\angle extendido)
 $\angle CDA = 180 - 70$ (Despejando $\angle CDA$)
 $\angle CDA = 110^{\circ}$

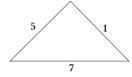
- \Rightarrow el ángulo mayor es 110°, el lado opuesto a 110° es \overline{AC}
 - \therefore El lado mayor es \overline{AC}

14. La alternativa correcta es la letra C)

Para determinar el valor que puede tomar "a", debemos utilizar que la suma de 2 lados debe ser siempre mayor que el tercer lado.

Empezamos por el entero más pequeño, que en este caso es 1 (no puede ser negativo ni 0)

Si
$$a = 1$$

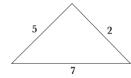


$$5 + 1 = 6$$

Pero 6 no es mayor que 7

$$\therefore a \neq 1$$

Si
$$a=2$$

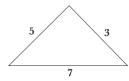


$$5 + 2 = 7$$

Pero 7 no es mayor que 7

$$\therefore a \neq 2$$

Si
$$a = 3$$



$$5 + 3 = 8$$

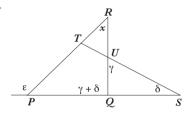
$$, 8 > 7$$
 $, 12 > 3$

$$5 + 7 = 12$$

 $3 + 7 = 10$

 \therefore El menor entero que puede tomar "a" es 3.

15.



$$\angle$$
 RQP exterior del \triangle *QSU* \Rightarrow \angle *RQP* = γ + δ

 $\epsilon \angle$ exterior del Δ PQR

$$\Rightarrow \varepsilon = x + \gamma + \delta$$

(Despejando
$$x$$
)

$$\varepsilon - \gamma - \delta = x$$

$$\therefore \quad \mathbf{x} = \mathbf{\varepsilon} - \mathbf{y} - \mathbf{\delta}$$