

Matemática 2006

Tutorial Nivel Avanzado

Circunferencia y círculo II

Circunferencia y círculo

Marco Teórico

1. Elementos de la circunferencia y del circulo:

O centro de la circunferencia

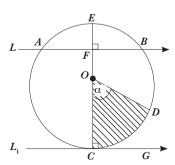
QC: radio

AB : cuerda

 \overline{EC} · diámetro

L: secante

 L_i : tangente ($\overline{OC} \perp \overline{CG}$)



EF: sagita $\Rightarrow F$ punto medio de \overline{AB} , $\overline{EO} \perp \overline{AB}$ y si \overline{AB} es un lado de un polígono regular inscrito a la circunferencia $\Rightarrow FO$ apotema.

(CD): arco de la circunferencia (siempre se leen en sentido contrario a los punteros del reloj). Como es una parte de la circunferencia, se puede determinar su perímetro o su medida en grados, ya que la circunferencia completa mide 360°

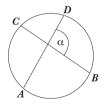
COD: sector circular

2. Áreas y perímetros: (considerando el dibujo anterior)

Sea r: radio, d: diámetro

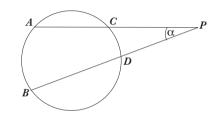
- 2.1 Perímetro de la circunferencia: $P = 2\pi r = \pi \cdot d$
- 2.2 Área del círculo: $A = \pi \cdot r^2$
- 2.3 Área sector circular: $A = \frac{\pi \cdot r^2 \cdot \alpha}{360^{\circ}}$, α ángulo del centro
- 3. Teoremas:
- 3.1 Ángulo interior:

$$\alpha = \frac{arcoCA + arcoBD}{2}$$



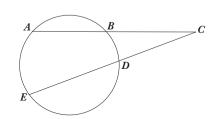
3.2 Ángulo exterior:

$$\alpha = \frac{arcoAB - arco DC}{2}$$



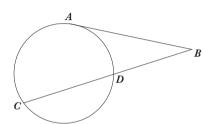
3.3 Secantes: sean \overline{AC} v \overline{EC} secantes

$$\overline{AC} \cdot \overline{BC} = \overline{EC} \cdot \overline{DC}$$



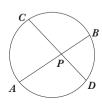
3.4 Secante y tangente: sean \overline{AB} tangente y \overline{CB} secante

$$\overline{AB}^2 = \overline{BC} \cdot \overline{BD}$$



3.5 Cuerdas:

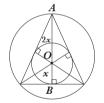
$$\overline{AP} \cdot \overline{PR} = \overline{CP} \cdot \overline{PD}$$



4 Generalidades:

En el triángulo equilátero se cumple que todas las rectas notables son iguales y coinciden. Entonces el ortocentro es centro de gravedad del triángulo, centro de la circunferencia circunscrita al triángulo cuyo radio es la distancia desde ese punto a cada vértice, centro de la circunferencia inscrita al triángulo cuyo radio es la distancia desde ese punto a cada lado.

radio circunferencia inscrita: x Por lo tanto: radio circunferencia circunscrita: 2x



$$\overline{OA} = 2x$$

$$\overline{OB} = \mathbf{x}$$

Tutorial

Ejercicios

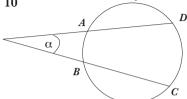
- 1. Sea ABCDE pentágono regular, ¿cuánto mide x?

 - 90° B)

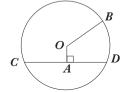
54°

- C) 108°
- D) 150° E) 216°

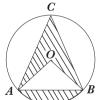
- 2. Sea arco $CD = \frac{1}{8}$ de la circunferencia, arco $AB = \frac{1}{10}$ de la circunferencia, ¿cuánto mide α ?
 - A) 4,5°
 - B) 9°
 - C) 40,5°
 - D) 81°
 - E) Ninguno de ellos



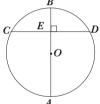
- 3. Determine \overline{CD} , sabiendo que \overline{OB} = 6 cm, \overline{OA} = 2 cm, O centro de la circunferencia.
 - A) $4\sqrt{2}$ cm
 - B) $8\sqrt{2}$ cm
 - C) $2\sqrt{10}$ cm
 - D) $4\sqrt{10}$ cm
 - E) Ninguno de ellos



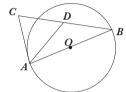
- 4. Sea \triangle ABC equilátero cuya altura mide $9\sqrt{3}$ cm. Determine el área achurada. O centro de la ⊗.
 - A) $(9\sqrt{3} + 9\pi)$ cm²
 - B) $(27\sqrt{3} + 9\pi)$ cm² C) $(27\sqrt{3} + 18\pi)$ cm²
 - D) $(27\sqrt{3} + 36\pi)$ cm²
 - E) $(54\sqrt{3} + 36\pi) \text{ cm}^2$



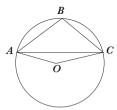
- 5. En la circunferencia de centro O. $\overline{BE} = 6$. $\overline{CD} = 24$. Si \overline{AB} diámetro, determine el radio de la circunferencia.
 - A) 9
 - B) 15
 - C) 18
 - D) 24
 - E) 30



- 6. Sea $\overline{CA} = 7$ cm (tangente a la \otimes en A). \overline{AB} diámetro de la \otimes de centro O y radio 7 cm. D punto medio de \overline{BC} . ¿Cuánto mide \overline{AD} ?
 - A) 7 cm
 - B) $\frac{7}{2}$ cm
 - C) $\frac{7}{2}\sqrt{2}$ cm
 - D) $\frac{7}{2}\sqrt{3}$ cm
 - E) $\frac{7}{2}\sqrt{5}$ cm



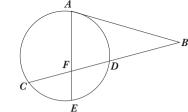
- 7. En la \otimes de centro O y radio 10 cm, los Δ s AOC y ABC isósceles congruentes. ¿Cuánto mide \overline{AC} ?
 - A) $5\sqrt{2}$ cm
 - B) $10\sqrt{2}$ cm
 - C) $10\sqrt{3}$ cm
 - D) $20\sqrt{2}$ cm
 - E) $20\sqrt{3}$ cm



Tutorial

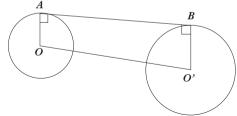
- 8. Desde un punto situado a 128 cm del centro de una circunferencia de radio 47 cm, se traza una tangente a la circunferencia. ¿Cuál es su magnitud?
 - A) $5\sqrt{7}$ cm
 - B) $9\sqrt{7}$ cm
 - C) $24\sqrt{7}$ cm
 - D) $40\sqrt{7}$ cm
 - E) $45\sqrt{7}$ cm
- 9. Sea $\overline{AB} = 8$ cm (tangente a la \otimes en A). $\overline{BC} = 32$ cm. $\overline{AF} = 25$ cm. $\overline{EF} = 5$ cm. Si $\overline{FD} > \overline{FC}$. ¿cuánto mide \overline{FD} ?

- B) 5 cm
- C) 10 cm
- D) 25 cm
- E) Ninguno de ellos



10. Sean la circunferencias de centro O y radio 6 cm, centro O y radio 12 cm, \overline{OO} = 24 cm. ¿Cuánto mide AB?

- B) $18\sqrt{15}$ cm
- C) $36\sqrt{15}$ cm
- D) 540
- E) Ninguno de ellos



- 11. Sea $\triangle ABC$ inscrito en una semicircunferencia, donde \overline{AB} diámetro, \overline{AC} es el triple de \overline{BC} . Si BC = x, determine la distancia desde donde cae h_c en la hipotenusa hasta B.
 - A) $\frac{x}{10}\sqrt{5}$
 - B) $\frac{x}{2}\sqrt{5}$
 - C) $\frac{x}{10}\sqrt{10}$
 - D) $\frac{x}{2}\sqrt{10}$
 - E) $x \sqrt{10}$

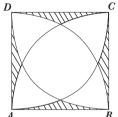
- 12. Dos cuerdas se cortan al interior de una circunferencia, cuyo radio es 11 cm. El producto de los 2 segmentos de una de ellas es 40 cm². ¿Cuál es la distancia entre el punto de intersección de las cuerdas y el centro de la circunferencia? (Una de las cuerdas es el diámetro)
 - A) 2 cm
 - B) 9 cm
 - C) 15 cm
 - D) 19 cm
 - E) 20 cm
- 13. En el cuadrado ABCD se han inscrito 4 cuartos de circunferencia, de los cuales el lado del cuadrado coincide con su radio. Si el lado del cuadrado es x, i cuánto mide el área achurada?

B)
$$x^2(12\pi - 8)$$

C)
$$x^2 (6\pi - 12\sqrt{3})$$

D)
$$x^2(4 - \sqrt{3} - \frac{2\pi}{3})$$

E) Falta información

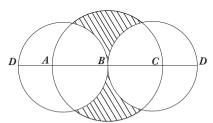


14. En la figura, $\overline{DA} = \overline{AB} = \overline{BC} = \overline{CE} = 6$, además \overline{DE} es colineal con el diámetro de las $3 \otimes s$. ¿Cuánto mide el área achurada?

B)
$$36\sqrt{3} - 12\pi$$

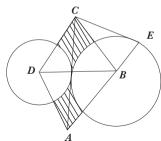
C)
$$44\pi - 36\sqrt{3}$$

- D) Otro valor
- E) Falta información



Tutorial

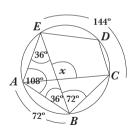
- 15. En la figura, ABCD rombo, B y D centros de las circunferencias tangentes entre sí. Si $\overline{CE} = 1$, $\overline{AC} = 2$, \overline{CE} tangente a la circunferencia en E, A, B, E colineales. ¿Cuánto mide el área achurada?
 - A) $\frac{2}{3}\sqrt{3} \frac{2}{9}\pi$
 - B) $\frac{\sqrt{3}}{3} \frac{\pi}{9}$
 - C) $\frac{\sqrt{3}}{3} \frac{2\pi}{9}$
 - D) $\frac{2\sqrt{3}}{3} \frac{8\pi}{9}$
 - E) Falta información



Respuestas

Preg.	Alternativa
1	C
2	A
3	В
4	D
5	В
6	E
7	C
8	E
9	D
10	A
11	C
12	В
13	D
14	В
15	A

1. La alternativa correcta es la letra C)



$$ABCDE$$
 pentágono \Rightarrow Si = 540°

$$/ RAE = 108^{\circ}$$

$$\triangle$$
 BAE isósceles en A \Rightarrow \angle *AEB* = 36°

$$\therefore$$
 arco $AB = 72^{\circ}$

Por otro lado
$$\angle CBE = 72^{\circ}$$

$$\Rightarrow$$
 arco $CE = 144^{\circ}$

$$x: \angle$$
 interior

$$x = \frac{arcoCE + arcoAB}{2}$$

$$x = \frac{144 + 72}{2}$$

$$x = 108$$

$$(Si = 180^{\circ}(n-2))$$

(ABCDE pentágono regular)

$$(\overline{AE} = \overline{AB})$$

(Mide la mitad del arco que subtiende)

$$(\angle EBA = 36^{\circ} y \angle CBA = 108^{\circ})$$

(Mide el doble del ∠ inscrito que

subtiende ese arco)

(Por teorema del ∠ interior)

(Reemplazando)

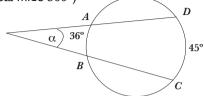
(Resolviendo)

$$\therefore x = 108^{\circ}$$

2. La alternativa correcta es la letra A)

arco
$$CD = \frac{1}{8}$$
 de la $\otimes = \frac{1}{8} \cdot 360^{\circ}$ (La \otimes completa mide 360°)

$$\therefore$$
 arco $CD = 45^{\circ}$



$$\operatorname{arco} AB = \frac{1}{10} \operatorname{de} \operatorname{la} \otimes = \frac{1}{10} \cdot 360^{\circ}$$

$$\therefore$$
 arco $AB = 36^{\circ}$

$$\alpha: \angle \text{ exterior }$$

(La
$$\otimes$$
 completa mide 360°)

(Por teorema del ∠ exterior)

$$\alpha = \frac{arcoCD - arcoAB}{2}$$

$$\alpha = \frac{45 - 36}{2}$$

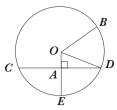
$$\alpha = \frac{9}{2}$$

(Reemplazando)

(Resolviendo)

$$\alpha = 4.5^{\circ}$$

3. La alternativa correcta es la letra B)



OA = 2, radio de la circunferencia 6 cm

$$\frac{\overline{OD}}{\overline{OD}} = 6$$

$$\frac{\overline{OD}}{\overline{OD}} = \frac{\overline{OA}}{\overline{OA}}^2 + \overline{AD}^2$$

$$6^2 = 2^2 + \overline{AD}^2$$

$$36 = 4 + \overline{AD}^2$$

$$32 = \overline{AD}^2 / \cdot \sqrt{16 \cdot 2} = \overline{AD}$$

$$\sqrt{16 \cdot 2} = \overline{AD}$$

$$\sqrt{16 \cdot 2} = \overline{AD}$$

$$\sqrt{16 \cdot 2} = \overline{AD}$$
Como $\overline{OA} \perp \overline{CD} \Rightarrow \overline{CA} = \overline{AD} (\overline{AE} \text{ sagita})$

(Radio)

(Pitágoras en Δ *OAD*, reemplazando)

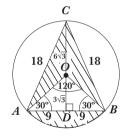
(Resolviendo potencias)

(Despejando AD)

(Descomponiendo la raíz)

(Separando raíces)

 $\therefore \overline{CD} = 8\sqrt{2}$ cm



Si la altura del $\triangle ABC$ equilátero es $9\sqrt{3} \Rightarrow \overline{AC} = \overline{BC} = \overline{AB} = 18$

Como $\overline{CD} = 9\sqrt{3}$ y es altura, también es transversal de gravedad $\Rightarrow O$ centro de gravedad y D punto medio de AB

$$\therefore \overline{OC} = 6\sqrt{3}$$
 (radio de la \otimes), $\overline{OD} = 3\sqrt{3}$, $\overline{AD} = 9$, $\overline{DB} = 9$

Además. \overline{AO} bisectriz $\Rightarrow \angle BAO = 30^{\circ}$ y como $\triangle AOB$ isósceles en $O \Rightarrow \angle AOB = 120^{\circ}$ (que corresponde a $\frac{1}{3}$ del área del círculo)

Área achurada = (Área $\triangle ABC -$ Área $\triangle AOB$) +(Área sector circular AOB -Área $\triangle AOB$) Reemplazando:

Área achurada =
$$\left(\frac{18^2}{4}\sqrt{3} - \frac{18\cdot3\sqrt{3}}{2}\right) + \left(\frac{1}{3}\cdot\pi\cdot(6\sqrt{3})^2 - \frac{18\cdot3\sqrt{3}}{2}\right)$$
 (Desarrollando)
= $81\sqrt{3} - 27\sqrt{3} + 36\pi - 27\sqrt{3}$ (Reduciendo términos semejantes)

(Resolviendo)

(Despeiando x)

Área achurada = $27\sqrt{3} + 36\pi$

$$\therefore$$
 Área achurada = $(27\sqrt{3} + 36\pi)$ cm²

5. La alternativa correcta es la letra B)

$$\overline{BE} = 6$$
, $\overline{CD} = 24 \Rightarrow \overline{CE} = 12$, $\overline{ED} = 12$ (\overline{BE} sagita)
Si $\overline{EO} = x \Rightarrow \overline{OA} = x + 6$ (radio)

Entonces aplicando teorema de las cuerdas:

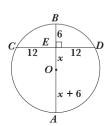
$$(2x + 6) \cdot 6 = 12 \cdot 12$$

$$12x + 36 = 144$$

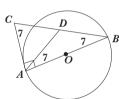
$$12x = 108$$

$$x = \frac{108}{12}$$

$$x = 9 \implies \overline{OA} = 9 + 6 = 15$$



6. La alternativa correcta es la letra E)



Radio de la \otimes es 7 cm $\Rightarrow \overline{AB} = 14$

 $(\overline{AB}$ diámetro)

 \overline{CA} tangente en $A \Rightarrow \Delta CBA$ rectángulo en A $\overline{BC}^2 = \overline{AC}^2 + \overline{AB}^2$

(Aplicando Pitágoras)

(Reemplazando)

 $\overline{BC}_{2}^{2} = 7^{2} + 14^{2}$

(Resolviendo potencias)

 $\overline{BC}_{2}^{2} = 49 + 196$ $\overline{BC}^2 = 245 / \cdot \sqrt{}$

 $\overline{BC} = \sqrt{245}$

(Descomponiendo la raíz)

 $\overline{RC} = \sqrt{49 \cdot 5}$

(Separando raíces)

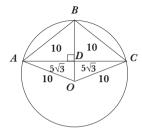
 $\overline{RC} = 7\sqrt{5}$

Además, como \triangle *BCA* rectángulo y $D = \frac{7}{2}\sqrt{5}$ punto medio de la hipotenusa \Rightarrow se cumple que:

$$\overline{CD} = \overline{DB} = \overline{AD}$$

$$\therefore \overline{AD} = \frac{7}{2}\sqrt{5} \text{ cm}$$

7. La alternativa correcta es la letra C)



O centro de la \otimes y radio 10 cm $\Rightarrow \overline{OA} = \overline{OC} = \overline{BC} = \overline{AB} = 10$ (Radios)

 \Rightarrow AOCB rombo, entonces sus diagonales son perpendiculares y se dimidian

$$\Rightarrow \overline{AD} = \overline{DC}$$

Por otro lado,
$$\triangle AOB$$
 equilátero, ya que $\overline{BO} = 10$

$$\Rightarrow \overline{AD} = 5\sqrt{3}$$

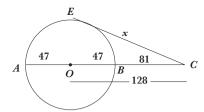
(Altura del Δ)

(Radio)

Como
$$\overline{AD} = \overline{DC} \Rightarrow \overline{AC} = 10\sqrt{3}$$

$$\therefore \overline{AC} = 10\sqrt{3}$$

8. La alternativa correcta es la letra E)



Sea $\overline{EC} = x$ tangente y \overline{AC} secante.

Como \overline{OC} = 128 cm y el radio de la \otimes es 47 cm \Rightarrow \overline{BC} = 81 cm, O centro de la \otimes

Entonces, aplicando teorema de la tangente y secante:

$$x^2 = \overline{AC} \cdot \overline{BC}$$

(Reemplazando)

$$x^2 = 175 \cdot 81 / \cdot \sqrt{}$$

$$x = \sqrt{175 \cdot 81}$$

(Separando raíces)

$$x = 9\sqrt{175}$$

(Descomponiendo la raíz)

$$x = 9\sqrt{25 \cdot 7}$$

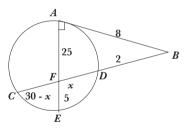
(Separando raíces)

$$x = 9 \cdot 5\sqrt{7}$$

$$x = 45\sqrt{7}$$

 \therefore La tangente mide $45\sqrt{7}$ cm

9. La alternativa correcta es la letra D)



$$\overline{AB} = 8$$
. $\overline{BC} = 32$. $\overline{AF} = 25$. $\overline{EF} = 5$

a) Como \overline{AB} tangente $\Rightarrow \angle EAB = 90^{\circ}$

 $\overline{AB}^2 = \overline{BC} \cdot \overline{DB}$

 $8^2 = 32 \cdot \overline{DB}$

$$\frac{64}{32} = \overline{DB}$$

 $\overline{DB} = 2$

b) Como
$$\overline{BC} = 32 \Rightarrow \overline{CD} = 30$$

Sea $\overline{FD} = x \implies \overline{CF} = 30 - x$

 $\overline{AF} \cdot \overline{FE} = \overline{CF} \cdot \overline{FD}$

 $25 \cdot 5 = (30 - x) \cdot x$

 $125 = 30x - x^2$

 $x^2 - 30x + 125 = 0$

(x-25)(x-5)=0

 $\Rightarrow x_1 = 25, \qquad x_2 = 5$

 $\Rightarrow \overline{FD} = 25 \text{ \'o } \overline{FD} = 5$

Pero $\overline{FD} > \overline{FC} \Rightarrow \overline{FD}$ no puede tomar el valor 5

(Aplicando teorema de la tangente y secante)

(Reemplazando)

(Resolviendo potencias y despejando $\overline{\textit{DB}}$)

(Aplicando teorema de las cuerdas)

(Reemplazando)

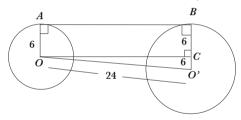
(Resolviendo)

(Igualando a 0)

(Factorizando)

$$\therefore \overline{FD} = 25 \text{ cm}$$

10. La alternativa correcta es la letra A)



$$\overline{OO'}$$
 = 24. \overline{OA} = 6. $\overline{O'B}$ = 12

Trazando $\overline{OC} \perp \overline{O'B}$, se forma el $\triangle OCO'$ rectángulo

$$\frac{\overline{BC}}{\overline{OO'}^2} = 6 \Rightarrow \overline{O'C} = 6$$

$$\frac{\overline{O'C}}{\overline{OO'}^2} = \frac{1}{\overline{O'C}} + \frac{1}{\overline{OC}}$$

$$24^2 = 6^2 + \overline{OC}^2$$

$$576 = 36 + \overline{OC}^2$$

$$576 - 36 = \overline{OC}^2$$

$$540 = \overline{OC}^2 /\cdot \sqrt{}$$

$$\overline{OC} = \sqrt{540}$$

$$\overline{OC} = \sqrt{36 \cdot 15}$$

$$\overline{OC} = 6\sqrt{15}$$

$$\therefore \overline{AB} = 6\sqrt{15} \text{ cm}$$

(Aplicando Pitágoras en Δ OCO')

(Reemplazando)

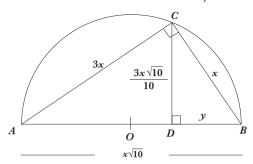
(Despejando \overline{OC}^2)

(Resolviendo)

(Descomponiendo la raíz)

(Separando raíces)

11. La alternativa correcta es la letra C)



 Δ ABC inscrito en una semicircunferencia, donde AB diámetro \Rightarrow Δ ABC rectángulo en C, $CD = h_c$, entonces, la distancia desde donde cae h_c hasta B es DB (que es lo que nos piden).

Sea $\overline{DB} = v$. $\overline{BC} = x \Rightarrow \overline{AC} = 3x$ (va que es el triple de \overline{BC})

a) Aplicando Euclides, el correspondiente a la altura:

$$\overline{CD} = \overline{AC \cdot BC}$$

(Reemplazando)

$$\overline{CD} = \frac{3x \cdot x}{x\sqrt{10}}$$

(Simplificando)

$$\overline{CD} = \frac{3x}{\sqrt{10}}$$

(Racionalizando)

$$\overline{CD} = \frac{3x\sqrt{10}}{10}$$

b) Aplicando Pitágoras en el \triangle *CDB* rectángulo en *D*:

$$\overline{BC}^2 = \overline{CD}^2 + \overline{DB}^2$$

(Reemplazando)

$$x^2 = \left(\frac{3x\sqrt{10}}{10}\right)^2 + y^2$$

(Desarrollando el paréntesis)

$$x^2 = \frac{9x^2 \cdot 10}{100} + y^2$$

(Simplificando)

$$x^2 = \frac{9x^2}{10} + y^2$$

(Despejando v^2)

$$x^2 - \frac{9x^2}{10} = y^2$$

(Restando fracciones)

$$\frac{10x^2 - 9x^2}{10} = y^2$$

(Reduciendo términos semejantes)

$$\frac{x^2}{10} = y^2 \qquad / \cdot \sqrt{}$$

$$\frac{x}{\sqrt{10}} = y$$

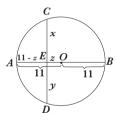
(Racionalizando)

$$\frac{x\sqrt{10}}{10} = y$$

Como $y = \overline{DB} \Rightarrow \overline{DB} = \frac{x\sqrt{10}}{10}$

 \therefore La distancia desde donde cae h_c en la hipotenusa hasta B es $\frac{x\sqrt{10}}{10}$

12. La alternativa correcta es la letra B)



Sea O centro de la \otimes , cuyo radio es 11 cm, \overline{AB} diámetro, $\overline{EC} = x$, $\overline{ED} = v$, $\overline{OA} = 11$. \overline{OB} = 11, E punto de intersección de las cuerdas, \overline{OE} distancia entre el punto de intersección de las cuerdas y el centro de la circunferencia, $\overline{OE} = z$, $\overline{AE} = 11$ - z, $\overline{CE} \cdot \overline{ED} = 40$, $\overline{EB} = 11$ 11 + z.

Aplicando teorema de las cuerdas:

$$\overline{CE} \cdot \overline{ED} = \overline{AE} \cdot \overline{EB}$$

$$40 = (11 - z)(11 + z)$$

$$40 = 121 - z^2$$

$$z^2 = 121 - 40$$

$$z^2 = 81 / \cdot \sqrt{z}$$

$$z = \sqrt{81}$$

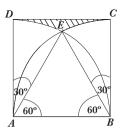
$$z = 9$$

$$\therefore \overline{OE} = 9 \text{ cm}$$

(Reemplazando) (Aplicando suma por diferencia) (Despeiando z^2)

13. La alternativa correcta es la letra D)

Considerando una parte de la figura:



Al trazar \overline{AE} y \overline{EB} , se tiene que $\triangle AEB$ equilátero de lado x, ya que $\overline{AE} = \overline{EB} = \overline{AB} = x \text{ (radios)} \Rightarrow \angle BAE = 60^{\circ} \text{ y } \angle EAD = 30^{\circ} \text{ (complemento de } 60^{\circ} \text{)}$ EAD sector circular, donde el ángulo del centro es 30° (que corresponde a $\frac{1}{12}$ del área del círculo) y radio x.

Sector circular *CBE* = Sector circular *EAD*

Determinando el área achurada (que llamaremos Área achurada 1) y multiplicándola por 4, obtendremos el área achurada pedida en el ejercicio.

Área achurada 1 = Área del cuadrado ABCD – (Área $\triangle AEB$ - 2: Área sector circular EAD)

Reemplazando:

Área achurada
$$1 = x^2 - \left(\frac{x^2}{4}\sqrt{3} + 2 \cdot \frac{1}{12}\pi \cdot x^2\right)$$
 (Simplificando y eliminando paréntesis)

Área achurada =
$$x^2 - \frac{\dot{x}^2}{4} \sqrt{3} - \frac{1}{6} \pi x^2$$

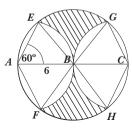
=
$$4\left(x^2 - \frac{x^2}{4}\sqrt{3} - \frac{1}{6}\pi x^2\right)$$
 (Distribuyendo y simplificando)
= $4x^2 - x^2\sqrt{3} - \frac{2}{3}\pi x^2$ (Factorizando)

Área achurada =
$$x^2(4 - \sqrt{3} - \frac{2\pi}{3})$$

$$\therefore \quad \text{Área achurada} = x^2(4 - \sqrt{3} - \frac{2\pi}{3})$$

14. La alternativa correcta es la letra B)

Considerando una parte de la figura:



Al trazar \overline{AE} y \overline{EB} , se tiene que:

$$\overline{AE} = \overline{EB} = \overline{AB}$$
 (radios) $\Rightarrow \triangle AEB$ equilátero de lado 6

Al trazar \overline{AF} y \overline{BF} , se tiene que:

$$\overline{AF} = \overline{FB} = \overline{AB}$$
 (radios) $\Rightarrow \triangle AFB$ equilátero de lado 6

Al trazar \overline{BG} y \overline{GC} , se tiene que:

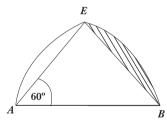
$$\overline{BG} = \overline{GC} = \overline{BC}$$
 (radios) $\Rightarrow \Delta BGC$ equilátero de lado 6

Al trazar \overline{BH} y \overline{HC} , se tiene que:

$$\overline{BH} = \overline{HC} = \overline{BC}$$
 (radios) $\Rightarrow \Delta BHC$ equilátero de lado 6

BAE sector circular, donde el ángulo del centro es 60° (que corresponde a $\frac{1}{6}$ del área del círculo) y radio 6.

a) Considerando una parte de la figura y achurando, se tiene que:



La parte achurada se repite 8 veces en la figura original.

Determinando el área achurada (que llamaremos Área achurada 1):

Área achurada 1 = Área sector circular BAE -Área $\triangle AEB$ (Reemplazando)

=
$$\frac{1}{6}\pi \cdot 6^2 - \frac{6^2}{4}\sqrt{3}$$
 (Resolviendo potencias y simplificando)

Área achurada 1 = 6π - $9\sqrt{3}$

b) Área achurada = Área del círculo – ($4 \cdot$ Área $\triangle AEB + 8 \cdot$ Área achurada 1)

$$=36\pi - (4 \cdot 9\sqrt{3} + 8 (6\pi - 9\sqrt{3}))$$
 (Resolviendo)

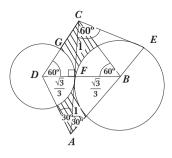
=
$$36\pi$$
 - ($36\sqrt{3} + 48\pi - 72\sqrt{3}$) (Eliminando paréntesis)

=
$$36\pi$$
 - $36\sqrt{3}$ - 48π + $72\sqrt{3}$ (Reduciendo términos semejantes)

$$= 36\sqrt{3} - 12\pi$$

$$\therefore$$
 Área achurada = $36\sqrt{3}$ - 12π

15. La alternativa correcta es la letra A)



En la figura:
$$\overline{DC} = \overline{AD} = \overline{AB} = \overline{BC}$$

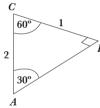
$$\overline{AC} \perp \overline{DB}$$

(Diagonales del rombo)

$$\Delta$$
 CEA rectángulo en E

(\overline{CE} tangente a la \otimes)

Si la hipotenusa es el doble del cateto $\Rightarrow \Delta$ *CEA* es la mitad de un Δ equilátero \Rightarrow \overline{AE} altura



$$\therefore \angle EAC = 30^{\circ} \text{ y} \angle ACE = 60^{\circ}$$

$$\overline{CF} = \overline{FA} = 1$$

(Las diagonales se dimidian)

 \triangle DCB equilátero, ya que \triangle DAB isósceles en $A \Rightarrow \overline{AF}$ bisectriz $\Rightarrow \angle BAD = 60^{\circ}$

 $\therefore \Delta DCB$ también es equilátero cuya altura es 1 y F punto medio

$$\Rightarrow h = \frac{lado}{2}\sqrt{3}$$

(Reemplazando)

$$1 = \frac{lado}{2} \sqrt{3}$$

(Despeiando lado)

$$\frac{2}{\sqrt{2}}$$
= lado

(Racionalizando)

$$\frac{2\sqrt{3}}{3} = \text{lado} \implies \overline{DF} = \frac{1}{2} \cdot \frac{2}{3}\sqrt{3}$$

(Simplificando)

$$\overline{DF} = \frac{\sqrt{3}}{3}$$

FDG sector circular, donde ángulo del centro 60° (que corresponde a $\frac{1}{6}$ del área del círculo)

y radio $\frac{\sqrt{3}}{3}$

 \Rightarrow Área achurada = 2 (Área $\triangle DCB - 2 \cdot \frac{1}{6} \cdot$ Área sector circular FDG)

(Reemplazando y simplificando)

$$=2\left[\left(\frac{2}{3}\sqrt{3}\right)^2\cdot\frac{1}{4}\sqrt{3}-\frac{1}{3}\pi\cdot\left(\frac{\sqrt{3}}{3}\right)^2\right]$$

(Resolviendo potencias)

$$=2\left(\frac{4\cdot 3}{9}\cdot \frac{1}{4}\sqrt{3}-\frac{1}{3}\pi\cdot \frac{3}{9}\right)$$

(Simplificando)

$$=2\left(\frac{\sqrt{3}}{3}-\frac{\pi}{9}\right)$$

(Distribuyendo)

Área achurada = $\frac{2}{3}\sqrt{3} - \frac{2}{9}\pi$

$$\therefore \text{ Área achurada} = \frac{2}{3}\sqrt{3} - \frac{2}{9}\pi$$