

Matemática 2006

Tutorial Nivel Básico

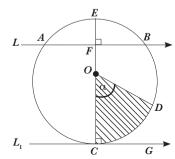
Circunferencia y círculo

Circunferencia y Círculo

Marco Teórico

1. Elementos de la circunferencia y del círculo:

O: centro de la circunferencia.


 \overline{OC} : radio

 \overline{AB} : cuerda

 \overline{EC} : diámetro

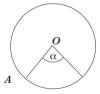
L : secante

 $L_{_{_{\! 1}}}$: tangente $(\overline{OC}\perp\overline{CG}$)

 \overline{EF} : sagita $\Rightarrow F$ punto medio \underline{de} \overline{AB} , \overline{EO} \bot \overline{AB} y si \overline{AB} es un lado de un polígono regular inscrito a la circunferencia \Rightarrow \overline{FO} apotema.

CD: arco de la circunferencia (siempre se leen en sentido contrario a los punteros del reloj). Como es una parte de la circunferencia, se puede determinar su perímetro o su medida en grados, ya que la circunferencia completa mide 360°

COD: sector circular

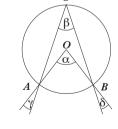

2. Áreas y perímetros: (considerando el dibujo anterior)

Sea r: radio, d: diámetro

- 2.1 Perímetro de la circunferencia: $P = 2\pi r = \pi \cdot d$
- 2.2 Área del círculo: $A = \pi \cdot r^2$
- 2.3 Área sector circular: $A = \frac{\pi \cdot r^2 \cdot \alpha}{360^{\circ}}$, α ángulo del centro

- 3. Teoremas fundamentales:
- 3.1 Ángulo del centro: mide lo mismo que el arco que subtiende.

Ejemplo: Si arco $AB = 35^{\circ} \Rightarrow \alpha = 35^{\circ}$

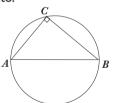

"O": centro de la \otimes

3.2 Ángulo inscrito: mide la mitad del arco que subtiende.

Ejemplo: Si arco $AB = 80^{\circ} \Rightarrow \alpha = 40^{\circ}$

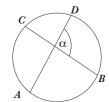
3.3 Ángulo inscrito y ángulo del centro correspondiente: si un ángulo inscrito y un ángulo del centro subtienden el mismo arco, el ángulo del centro mide el doble del ángulo inscrito.

"O": centro de la circunferencia

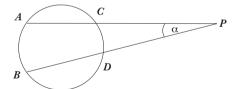

3.4 Igualdad de ángulos inscritos; si 2 o más ángulos inscritos comparten un mismo arco, éstos miden lo mismo.

 $\alpha = \beta = \gamma$

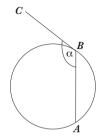
Tutorial


 $3.5\,\mathrm{\acute{A}ngulo}$ inscrito en una semicircunferencia: todo ángulo inscrito a una circunferencia es recto.

 \overline{AB} : diámetro


3.6 Ángulo interior:

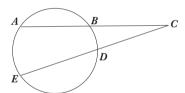
$$\alpha = \frac{arcoCA + arcoBD}{2}$$



3.7 Ángulo exterior:

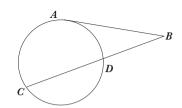
$$\alpha = arcoAB - arcoDC$$

3.8 Ángulo semi-inscrito: está formado por una cuerda y una tangente.

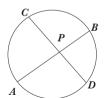


 \overline{BC} : tangente \overline{AB} : cuerda

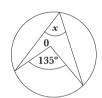
$$\alpha = \frac{arco \ \overline{BA}}{2}$$


3.9 Secantes: sean \overline{AC} y \overline{EC} secantes

$$\overline{AC} \cdot \overline{BC} = \overline{EC} \cdot \overline{DC}$$


3.10 Secante y tangente: sean \overline{AB} tangente y \overline{CB} secante

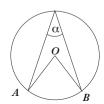
$$\overline{AB}^2 = \overline{BC} \cdot \overline{BD}$$


3.11 Cuerdas:

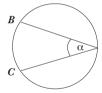
$$\overline{AP} \cdot \overline{PB} = \overline{CP} \cdot \overline{PD}$$

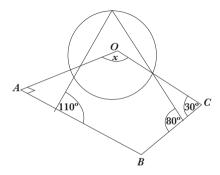
Ejercicios

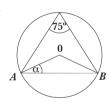
1. Sea O centro de la circunferencia, determine x :



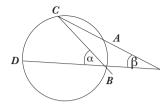
Tutorial


2. Determinar el perímetro del arco AB, si $\alpha = 50^{\circ}$, $\overline{OA} = 4$ cm, O: centro de la circunferencia.

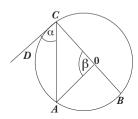

- B) $\frac{10\pi}{9}$ cm
- C) $\frac{20\pi}{9}$ cm
- D) $\frac{40\pi}{9}$ cm
- E) Ninguno de ellos


- 3. En la figura, el arco BC es el 30% del perímetro de la circunferencia. Determine α :
 - A) 97°
 - 54° B)
 - C) 108°
 - **D)** 216°
 - E) Ninguno de ellos

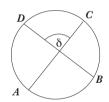
- 4. Sea la circunferencia de centro O, ABCO cuadrilátero, determine x:
 - A) 70°
 - 80°
 - C) 140°
 - **D)** 160°
 - E) Ninguno de ellos



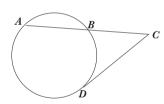
5.



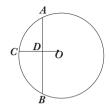
O : centro de cirunferencia α=


6. Determinar β si Arco $BA = 70^{\circ}$ y $\alpha = 95^{\circ}$.

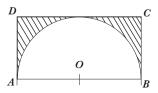
7. Sea arco $AB = 96^{\circ}$, \overline{BC} diámetro, \overline{DC} tangente. Entonces, ¿cuánto miden α y β ?

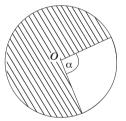


8. Determinar arco *CD*, si arco $AB = 80^{\circ}$ y $\delta = 50^{\circ}$

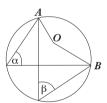


Tutorial

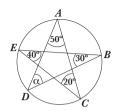

9. Sea secante \overline{AC} = 18 cm , tangente \overline{DC} = 12 cm, determinar \overline{BC}


10. Sea O centro de la circunferencia, de radio 13 cm; \overline{OD} = 5 cm; $\overline{AB} \perp \overline{OC}$. Determinar AB.

- 11. Sea arco BA semicircunferencia de centro O, tangente al rectángulo ABCD, \overline{AB} = 8 cm. Determine el área achurada:
 - A) $(32 4\pi)$ cm²
 - B) $(32 8\pi)$ cm²
 - C) (32 16π) cm²
 - **D)** $(64 16\pi)$ cm²
 - E) No se puede determinar

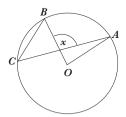


- 12. Sea la circunferencia de centro O y radio 6 cm, α = 60° . Determine el área achurada:
 - A) 6π cm²
 - **B)** $10\pi \text{ cm}^2$
 - C) $26\pi \text{ cm}^2$
 - **D)** $30\pi \text{ cm}^2$
 - E) $36\pi \text{ cm}^2$



13. Sea α + β = 110°, O centro de la circunferencia. Determine arco AB.

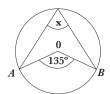
- 55° A)
- 110° B)
- C) 250°
- 305° D)
- Otro valor E)



14) Determine α .

15. En la circunferencia de centro O, $\angle CBO = 70^{\circ}$, $\angle AOB = 80^{\circ}$. Determine x:

- **A)** 40°
- 70° B)
- C) 80°
- **D)** 110°
- **E)** 150°



Respuestas

Preg.	Alternativa								
1	67.5°								
2	С								
3	В								
4	С								
5	15°								
6	60°								
7	$\alpha = 42^{\circ}, \ \beta = 84^{\circ}$								
8	20°								
9	8 cm								
10	24 cm								
11	В								
12	D								
13	С								
14	40°								
15	D								

Solucionario:

1)

Como O es centro de la circunferencia, entonces, 135° es un ángulo del centro. Además el ángulo x subtiende el mismo arco y es inscrito.

Por lo tanto, $x = 67.5^{\circ}$

2) La alternativa correcta es la letra C)

$$\alpha = 50^{\circ} \Rightarrow / AOB = 100^{\circ}$$

En este caso el ángulo del centro mide 100° , que es el que se considera en la fórmula del perímetro, r = 4.

$$\begin{array}{ll} {\sf P\,arco\,=}& \frac{2\cdot\pi\cdot r\cdot\alpha}{360^\circ} & ({\sf Reemplazando}) \\ & = & \frac{2\cdot\pi\cdot 4\cdot 100}{360^\circ} & ({\sf Simplificando}) \\ & = & \frac{20\pi}{9} \\ & \qquad \qquad \therefore \; {\sf P\,arco\,AB} = \frac{20\pi}{9} \; {\sf cm} \end{array}$$

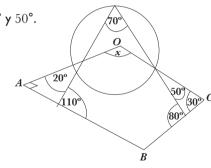
3) La alternativa correcta es la letra B)

Si el arco AC es el 30% del perímetro de la circunferencia, entonces:

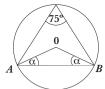
Arco AC = 30% de
$$2\pi$$
 r o Arco AC = 30% de 360°

Nos piden determinar α . Como es ángulo, utilizamos 30% de 360°

$$\Rightarrow \text{Arco BC} = 30\% \text{ de } 360$$
 (Transformando el porcentaje a fracción y la palabra "de" por multiplicación) (Simplificando)

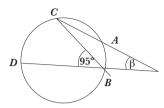

$$= 108$$

 \Rightarrow Arco BC = 108° , pero nos piden α , que es un ángulo inscrito y subtiende el arco BC. Por teorema mide la mitad.


$$\alpha = 54^{\circ}$$

 $x = 140^{\circ}$

4) La alternativa correcta es la letra C) Aplicando \angle exterior de Δ s, determinamos 20° y 50°. Por teorema, determinamos 70°, como x y 70° subtienden el mismo arco, entonces $x = 140^{\circ}$


5)

Como O es centro de la circunferencia, entonces Δ AOB isósceles en O. Además, \angle ACB y \angle AOB subtienden el mismo arco \Rightarrow \angle AOB = 150°.

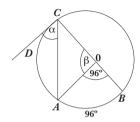
Entonces,
$$\alpha = \frac{180^{\circ} - 150^{\circ}}{2}$$
 (Restando)
$$\alpha = \frac{30^{\circ}}{2}$$
 (Simplificando)
$$\alpha = 15^{\circ}$$

6)

Si $\alpha = 95^{\circ}$, entonces, arco CD = 190° , además arco BA = 70° . Aplicando teorema del ángulo exterior :

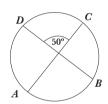
$$\beta = \frac{arco\ CD - arco\ BA}{2}$$

(Reemplazando)


$$\beta = \frac{190^\circ - 70^\circ}{2}$$

(Restando)

$$\beta = \frac{120^{\circ}}{2}$$


$$\beta = 60^{\circ}$$

7)

Si arco AB = 96° , entonces, \angle AOB = 96° ya que es ángulo del centro $\Rightarrow \beta = 84^{\circ}$. Además, β y α subtienden el arco CA = 84°. Por lo tanto, α mide la mitad del arco CA, ya que es ángulo semi-inscrito $\Rightarrow \alpha = 42^{\circ}$.

8)

Aplicando teorema del ángulo interior:

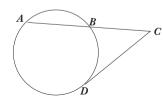
$$\delta = \frac{arco AB + arco CL}{2}$$

(Reemplazando)

$$50^{\circ} = \frac{80^{\circ} + arco CD}{2}$$

(Multiplicando por 2)

$$100^{\circ} = 80^{\circ} + \text{arco CD}$$


(Despejando arco CD)

$$100^{\circ}$$
 - 80° = arco CD

(Restando)

$$20^{\circ} = \text{arco CD}$$

9)

$$\overline{AC} = 18 \text{ cm}, = 12 \text{ cm}, \overline{BC} = x, \text{ aplicando teorema de la tangente y secante}$$

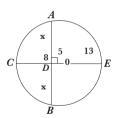
$$(\overline{DC})^2 = \overline{AC} \cdot \overline{BC}$$

(Reemplazando)

$$(12)^2 = 18 \cdot \overline{BC}$$

(Desarrollando la potencia)

$$144 = 18 \cdot \overline{BC}$$


(Despejando \overline{BC})

$$\frac{144}{18} = \overline{BC}$$

(Simplificando)

$$\overline{BC} = 8 \text{ cm}$$

10) $\overline{OC} = 13$ cm, $\overline{OD} = 5$ cm. Entonces, $\overline{CD} = 8$ cm, $\overline{OE} = 13$ cm. Por lo tanto, $\overline{DE} = 18$ cm.

 $\overline{AB} \perp \overline{OC}$ y como \overline{AB} cuerda y \overline{OC} radio, entonces \overline{CD} sagita, por lo tanto.

$$\overline{AD} = \overline{DB} = \mathbf{x}$$

Aplicando teorema de las cuerdas:

$$\overline{AD} \cdot \overline{DB} = \overline{CD} \cdot \overline{DE}$$

(Reemplazando)

$$\mathbf{x} \cdot \mathbf{x} = 8.18$$

(Multiplicando)

$$x^2 = 144$$

(Extrayendo raíz cuadrada)

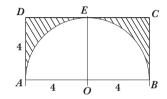
$$x = 12$$

$$\therefore \overline{AB} = 2x = 24 \text{ cm}$$

11) La alternativa correcta es la letra B)

Si arco BA semicircunferencia, entonces AB diámetro y como AB = 8 cm \Rightarrow radio = 4 cm \Rightarrow OE = 4 cm y AD = 4 cm

$$\Rightarrow$$
 Área $ABCD = 8 \cdot 4 = 32$


Área
$$\otimes = \pi \cdot r^2$$

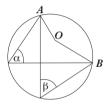
(Reemplazando r)

=
$$\pi \cdot 4^2$$

Área
$$\otimes$$
 = 16π

Área achurada = Área $ABCD - \frac{\acute{A}rea \otimes}{2}$ $= 32 - \frac{16}{2} \pi$ $= 32 - 8\pi$

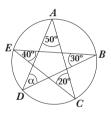
 \therefore Área achurada = 32 – 8π cm²


12) La alternativa correcta es la letra D)

Como $\alpha = 60^{\circ}$ y la circunferencia completa mide $360^{\circ} \Rightarrow \alpha = \frac{360}{60} = \frac{1}{6}$ de la \otimes

- \Rightarrow Sector circular = $\frac{1}{6}$ del área del círculo, cuyo radio es 6
- \Rightarrow Área achurada = $\frac{5}{6}$ del área del círculo (Reemplazando) $=\frac{5}{6}\cdot\pi\cdot6^2$ (Respetando el orden de la operaciones)
- \therefore Área achurada = 30π cm²

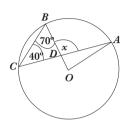
 $= 30\pi$


13) La alternativa correcta es la letra C)

 α y β ángulos inscritos que subtienden el mismo arco BA, entonces, α = β , y α + β = 110° $\Rightarrow \alpha = 55^{\circ}$, por lo tanto, arco BA 110°.

Entonces, arco AB = $360^{\circ} - 110^{\circ} = 250^{\circ}$.

Por lo tanto, arco AB = 250°


Según la figura, arco $DC = 100^{\circ}$, ya que $\angle DAC = 50^{\circ}$. arco $CB = 80^{\circ}$, ya que $\angle BEC = 40^{\circ}$. arco $AE = 40^{\circ}$, ya que $\angle ACE = 20^{\circ}$. arco $ED = 60^{\circ}$, ya que $\angle DBE = 30^{\circ}$, entonces.

arco
$$DC$$
 + arco CB + arco BA + arco AE + arco ED = 360° (Reemplazando)
$$100^{\circ} + 80^{\circ} + arco BA + 40^{\circ} + 60^{\circ} = 360^{\circ}$$
 (Sumando)
$$280^{\circ} + arco BA = 360^{\circ}$$
 (Despejando arco BA)
$$arco BA = 360^{\circ} - 280^{\circ}$$
 (Restando)
$$arco BA = 80^{\circ}$$

 α ángulo inscrito que subtiende el arco BA $\Rightarrow \alpha$ = 40°

15) La alternativa correcta es la letra D)

Como \angle AOB = 80° , entonces arco AB = 80° y subtiende el mismo arco que el \angle ACB, entonces, el \angle inscrito ACB = 40° y como \angle CBO = 70° \Rightarrow x = 110° (\angle exterior del Δ CDB).

Mis notas

nota								

Grupo Educacional Cepech