

Matemática 2006

Tutorial Nivel Básico

Ángulos y Polígonos

Angulos y polígonos

Marco Teórico

1. Sistemas de medición angular: Utilizamos como base de medida el ángulo completo(el valor angular de una circunferencia) que en los distintos sistemas de medida toma el valor de:

Sistema Sexagesimal	Sistema Circular	Sistema Centesimal
360 grados	2π radianes	400 gradianes

Para transformar de una unidad a otra, se debe utilizar proporcionalidad directa.

2. Clasificación de ángulos en el sistema sexagesimal:

Agudo:

 $0^{\circ} < \alpha < 90^{\circ}$

Recto:

 $\alpha = 90^{\circ}$

Obtuso:

 $90^{\circ} < \alpha < 180^{\circ}$

Extendido:

 α = 180°

Completo:

 α = 360°

3. Relaciones angulares:

i. Ángulos complementarios: son aquellos que al sumarlos da $90^{\rm o}$

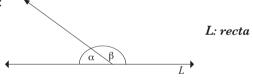
$$\alpha + \beta = 90^{\circ} \Rightarrow$$

 α es el complemento de β

 β es el complemento de α

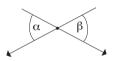
Además el complemento de α es $~90^{\rm o}$ - α

ii) Ángulos suplementarios: son aquellos que al sumarlos da 180°

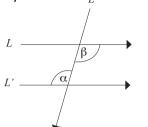

$$\alpha + \beta = 180^{\circ} \Rightarrow$$

 α es el suplemento de β

 β es el suplemento de α


Además el suplemento de lpha es $~180^{\circ}$ - lpha

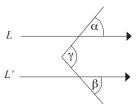
iii) Ángulos adyacentes:


 α y β son adyacentes ya que están al mismo lado de una recta \Rightarrow α + β = 180°

iv) Ángulos opuestos por el vértice: son aquellos formados por la intersección de 2 rectas.

 α y β son opuestos por el vértice $\Rightarrow \alpha = \beta$

4. Ángulos entre paralelas: son varios los tipos de ángulos que se forman, pero sólo veremos los ángulos alternos internos, ya que con ellos y con los opuestos por el vértice serán suficientes para la resolución de los ejercicios.



L, L' y L": rectas

 $L / \! / L'$

 α y β alternos internos $\Rightarrow \alpha = \beta$

- Sea *L // L'*:

$$\gamma = \alpha + \beta$$

5. *Polígono*: es toda figura plana limitada por lados rectos. De acuerdo con el número de lados, se clasifican en:

Triángulo:

3 lados

Heptágono:

7 lados

Cuadrilátero: Pentágono: 4 lados 5 lados Octágono: Nonágono: 8 lados 9 lados

Hexágono:

6 lados

Decágono:

10 lados

Tutorial

Clasificación de polígonos:

- i) Polígono regular: es aquel que tiene todos sus lados y ángulos interiores iguales. Ejemplo: el cuadrado y el triángulo equilátero son polígonos regulares.
- ii) Polígono irregular: es aquel que no cumple una o ambas condiciones del polígono regular. Ejemplo: el rectángulo y el rombo son polígonos irregulares.

Generalidades en un polígono de n lados:

a) Número de diagonales que se pueden trazar desde un vértice: (d)

$$d = n - 3$$

b) Número total de diagonales: (D)

$$D = \frac{n(n-3)}{2}$$

c) Suma de los ángulos interiores de un polígono: (Si)

$$Si = 180^{\circ} (n - 2)$$

d) Suma de los ángulos exteriores de un polígono: (Se)

$$Se = 360^{\circ}$$

Ejercicios

- 1. Transforme a grados sexagesimales:
 - a) 3π radianes
- b) 80 gradianes
- c) $\frac{4\pi}{3}$ radianes

- 2. Transforme a radianes:
 - a) 180°
- b) 30°
- c) 60°
- 3. Determine el complemento de los siguientes ángulos:
 - a) 35°
- b) 52°
- c) 70°
- d) 0°
- e) 90°
- f) α

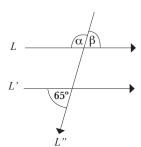
- 4. Determine el suplemento de los siguientes ángulos:
 - a) 120°
- b) 93°
- c) 75°
- d) 180°
- e) 0°
- f) β
- 5. Determine el suplemento del suplemento del complemento del suplemento de 120°
- 6. El complemento de un ángulo recto, más el suplemento de un ángulo extendido, más el complemento de 30° es:
 - A) 0°
 - B) 60°
 - 90° C)
 - D) 180°
 - E) 270°
- 7. Si un reloi marca las 11 horas 5 minutos. ¿Qué ángulo forman sus punteros?
 - A) 30°
 - B) 45°
 - C) 55°
 - D) 57,5°
 - E) 60°
- 8. L,L',L'': rectas, L/L', determine α y β

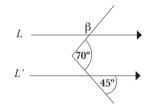
B)
$$\alpha = 65^{\circ}$$

$$\beta = 115^{\circ}$$

C)
$$\alpha = 115^{\circ}$$

$$\beta = 65^{\circ}$$

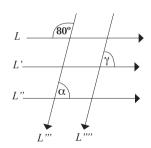

D)
$$\alpha = 125^{\circ}$$


$$\beta = 55^{\circ}$$

- E) Ninguno de ellos
- 9. Si L/L', siendo L y L' rectas. ¿Cuánto mide el ángulo β ?

- B) 45° C) 65°
- D) 115°
- E) 155°

10. L/L'/L'' y L'''/L''''. Determine α y γ


A)
$$\alpha = 10^{\circ}$$
 $\gamma = 10^{\circ}$

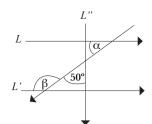
B)
$$\alpha = 80^{\circ}$$
 $\gamma = 80^{\circ}$

C)
$$\alpha = 80^{\circ}$$
 $\gamma = 100^{\circ}$

D)
$$\alpha = 100^{\circ}$$
 $\gamma = 80^{\circ}$

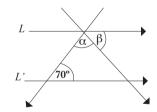
E)
$$\alpha = 100^{\circ}$$
 $\gamma = 100^{\circ}$

II. L/L' y $L \perp L''$. ¿Cúanto miden α y β ?


A)
$$\alpha = 40^{\circ}$$
 $\beta = 50^{\circ}$

B)
$$\alpha = 40^{\circ}$$
 $\beta = 140^{\circ}$

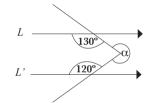
C)
$$\alpha = 50^{\circ}$$
 $\beta = 130^{\circ}$


D)
$$\alpha = 130^{\circ}$$
 $\beta = 50^{\circ}$

E)
$$\alpha = 140^{\circ}$$
 $\beta = 40^{\circ}$

12. L//L' y $\alpha : \beta = 2 : 3$. ¿Cuánto mide α ?

- A) 28°
- B) 42°
- C) 44°
- D) 66°
- E) 70°


13. Determine de un heptágono: Si, Se, d, D.

14. Determine el valor de α en el pentágono regular

15. Si L/L'. ¿Cuánto mide α ?

- A) 110°
- B) 115°
- C) 250°
- D) 260°
- E) Otro valor

Respuestas

D	AT	
Preg.	Alternativa	
1	a) 540° b) 72° c) 240°	
2	a) π radianes b) $\frac{\pi}{6}$ radianes c) $\frac{\pi}{3}$ radianes	
3	a) 55° b) 38° c) 20°	
	d) 90° e) 0° f) 90° - α	
4	a) 60° b) 87° c) 105°	
	d) 0° e) 180° f) 180° - β	
5	30°	
6	В	
7	D	
8	C	
9	E	
10	E	
11	В	
12	C	
13	$Si = 900^{\circ}, Se = 360^{\circ}, d = 4, D = 14$	
14	α = 108°	
15	C	

Solucionario

I. a) 3π radianes a sexagesimales

Aplicando proporcionalidad directa:

Sexagesimales

Radianes

(Multiplicamos cruzado)

$$360$$
 x
 3π

$$2\pi \cdot x = 360 \cdot 3 \pi$$

(Despejando x)

$$x = \frac{360 \cdot 3\pi}{2\pi}$$
$$x = 540^{\circ}$$

b)

(Simplificando)

Aplicando proporcionalidad directa:

Sexagesimales Gradianes

(Multiplicamos cruzado)

$$400 \cdot x = 360 \cdot 80$$

(Despejando x)

$$x = \frac{360 \cdot 80}{400}$$
$$x = 72^{\circ}$$

(Simplificando)

c)
$$\frac{4\pi}{3}$$
 radianes a sexagesimales

Aplicando proporcionalidad directa:

Sexagesimales Radianes

(Multiplicamos cruzado)

$$\begin{array}{c|c}
360 & 2\pi \\
x & 4\pi \\
\hline
3
\end{array}$$

$$2 \pi \cdot x = 360 \cdot \frac{4\pi}{3}$$

(Despejando x)

$$x = 360 \cdot \frac{4\pi}{3} \cdot \frac{1}{2\pi}$$
$$x = 240^{\circ}$$

(Simplificando)

2. a) 180° a radianes

Aplicando proporcionalidad directa:

Sexagesimales

(Multiplicamos cruzado)

$$360 \cdot x = 180 \cdot 2\pi$$

(Despejando
$$x$$
)

$$x = \frac{180 \cdot 2\pi}{360}$$

$$x = \pi$$
 radianes

b) 30° a radianes

Aplicando proporcionalidad directa:

Sexagesimales Radianes

(Multiplicamos cruzado)

$$360$$
 2π
 x

$$360 \cdot x = 30 \cdot 2\pi$$

(Despejando
$$x$$
)

$$x = \frac{30 \cdot 2\pi}{360}$$
$$x = \frac{\pi}{6} \text{ radianes}$$

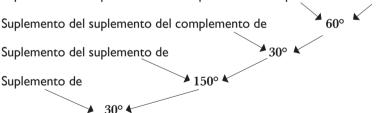
Aplicando proporcionalidad directa:

Sexagesimales Radianes

(Multiplicamos cruzado)

$$360 \cdot x = 60 \cdot 2\pi$$

(Despejando
$$x$$
)


$$x = \frac{-60 \cdot 2\pi}{360}$$

$$x = \frac{\pi}{3}$$
 radianes

- 3. a) Complemento de $35^{\circ} = 90^{\circ} 35^{\circ} = 55^{\circ}$ \therefore Complemento de 35° = 55°
 - b) Complemento de $52^{\circ} = 90^{\circ} 52^{\circ} = 38^{\circ}$ \therefore Complemento de 52° = 38°
 - c) Complemento de $70^{\circ} = 90^{\circ}$ $70^{\circ} = 20^{\circ}$ \therefore Complemento de 70° = 20°
 - d) Complemento de $0^{\circ} = 90^{\circ}$ $0^{\circ} = 90^{\circ}$ \therefore Complemento de $0^{\circ} = 90^{\circ}$
 - e) Complemento de $90^{\circ} = 90^{\circ} 90^{\circ} = 0^{\circ}$
 - \therefore Complemento de $90^{\circ} = 0^{\circ}$
 - f) Complemento de $\alpha = 90^{\circ}$ α
- 4. a) Suplemento de $120^{\circ} = 180^{\circ} 120^{\circ} = 60^{\circ}$ \therefore Suplemento de $120^{\circ} = 60^{\circ}$
 - b) Suplemento de $93^{\circ} = 180^{\circ} 93^{\circ} = 87^{\circ}$ \therefore Suplemento de 93° = 87°
 - c) Suplemento de $75^{\circ} = 180^{\circ} 75^{\circ} = 105^{\circ}$ \therefore Suplemento de 75° = 105°
 - d) Suplemento de $180^{\circ} = 180^{\circ} 180^{\circ} = 0^{\circ}$ \therefore Suplemento de 180° = 0°
 - e) Suplemento de $0^{\circ} = 180^{\circ}$ $0^{\circ} = 180^{\circ}$ \therefore Suplemento de $0^{\circ} = 180^{\circ}$
 - f) Suplemento de $\beta = 180^{\circ}$ β

5. Este ejercicio se resuelve de derecha a izquierda.

Suplemento del suplemento del complemento del suplemento de 120°

6. La alternativa correcta es la letra B)

Recordemos que el ángulo recto mide 90° y el ángulo extendido mide 180°.

Complemento de un ángulo recto = 90° - 90° = 0°

Suplemento de un ángulo extendido = 180° - 180° = 0°

Complemento de $30^{\circ} = 90^{\circ} - 30^{\circ} = 60^{\circ}$

$$0^{\circ} + 0^{\circ} + 60^{\circ} = 60^{\circ}$$

7. La alternativa correcta es la letra D)

La circunferencia tiene 12 divisiones iguales, además la circunferencia mide $360^\circ \Rightarrow 360 \div 12 = 30^\circ$

Si el horario estuviese frente al 11 y a la 1, se formaría un ángulo de 60° , pero como han transcurrido 5 minutos, el horario ya no está frente al 11, ya que a medida que avanza el minutero, el horario también avanza.

Por lo tanto, debemos calcular cuántos grados se ha desplazado el horario cuando han transcurrido 5 minutos.

Para eso utilizaremos proporcionalidad directa. (Sabemos que cuando ha transcurrido 1hora, el horario se ha desplazado 30°)

Minutos

Grados

(Multiplicamos cruzado)

$$60 \cdot x = 30 \cdot 5$$

(Despejando x)

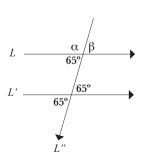
$$x = \frac{5 \cdot 30}{60}$$

(Simplificando)

$$x = 2.5^{\circ}$$

Entonces, si el horario estuviese frente al 11, se formaría un ángulo de 60° , pero tenemos que restarle los $2,5^{\circ}$ que se ha desplazado.

$$\Rightarrow 60^{\circ} - 2,5^{\circ} = 57,5^{\circ}$$

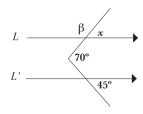

 \therefore El ángulo que forman los punteros del reloj cuando son las 11 horas 5 minutos es 57.5°

8. La alternativa correcta es la letra C)

Si trasladamos 65° a su opuesto por el vértice y luego a su alterno interno, nos damos cuenta que:

$$\beta$$
 = 65° (opuestos por el vértice)
 α es el suplemento de 65°

$$\Rightarrow$$
 Suplemento de 65°= 180°- 65°=115°



9. La alternativa correcta es la letra E)

Como L/L' $\Rightarrow x + 45^{\circ} = 70^{\circ}$

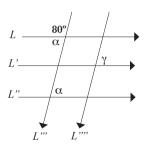
Pero β es el suplemento de x

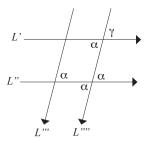
$$\Rightarrow \beta=180^{\circ} - 25^{\circ}$$

10. La alternativa correcta es la letra E)

Como L/L'entonces trasladamos α a su alterno interno, entonces α es el suplemento de 80°

$$\Rightarrow$$
 α =180° - 80° = 100°


$$\alpha = 100^{\circ}$$

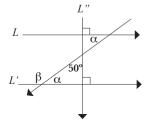

Como L'''/L'''', entonces trasladamos α a su alterno interno y a su opuesto por el vértice, y además como L''/L'' trasladamos α a su alterno interno y resulta que α y γ son opuestos por el vértice

$$\Rightarrow \alpha = \gamma$$
$$\Rightarrow \gamma = 100^{\circ}$$

$$\Rightarrow \gamma = 100^{\circ}$$

$$\therefore \alpha = \gamma = 100^{\circ}$$

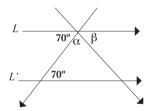
II. La alternativa correcta es la letra B)


Como $L'' \perp L$, se forma un ángulo recto, además $L'' L' \Rightarrow L' \perp L''$

Trasladamos α a su alterno interno y por suma de los ángulos interiores de un triángulo α =40°

Además β es el suplemento de α

$$\Rightarrow \beta = 180^{\circ} - 40^{\circ}$$
$$\beta = 140^{\circ}$$


$$\alpha = 40^{\circ} \text{ y } \beta = 140^{\circ}$$

12. La alternativa correcta es la letra C)

Como $L/\!/L'$, entonces trasladamos 70° a su alterno interno \Rightarrow 70° + α + β = 180° (ángulo extendido)

$$\therefore \alpha + \beta = 110^{\circ}$$

Por otro lado, sabemos que α : $\beta = 2:3$

$$\Rightarrow \alpha + \beta = 110^{\circ}$$

$$\alpha: \beta = 2:3$$

(Escribiendo la otra notación)

$$\frac{\alpha}{2} = \frac{\beta}{3} = k$$

(Separando en razones)

$$\frac{\alpha}{2} = k \implies \alpha = 2k$$

(Despejando α)

$$\frac{\beta}{3} = k \implies \beta = 3k$$

$$\beta = 3 k$$

(Despeiando β)

Como

$$\alpha + \beta = 110^{\circ}$$
 (Reemplazamos)

$$2k + 3k = 110^{\circ}$$

$$5k = 110^{\circ}$$

(Despejando k)

$$k = \frac{110}{5}$$

(Simplificando)

$$k = 22$$

Sabemos que $\alpha = 2k$ y k = 22

$$\Rightarrow \alpha = 2 \cdot 22$$

13. Heptágono : 7 lados
$$\Rightarrow n = 7$$

$$Si = 180^{\circ} (n - 2)$$

(Reemplazando n)

$$Si=180^{\circ}\left(7-2\right)$$

(Resolviendo paréntesis)

$$Si = 180^{\circ} \cdot 5$$

(Multiplicando)

$$Si = 900^{\circ}$$

$$Se = 360^{\circ}$$

$$d = n - 3$$

(Reemplazando n)

$$d = 7 - 3$$

$$d = 4$$

$$D = \frac{n(n-3)}{2}$$

(Reemplazando n)

$$D = \frac{7(7-3)}{2}$$

(Resolviendo paréntesis)

$$D = \frac{7 \cdot 4}{2}$$

(Simplificando)

$$D = 14$$

14. Como la figura es un pentágono regular

⇒ todos sus lados y sus ángulos son iguales.

Calculamos Si

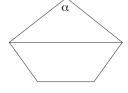
$$n = 5$$

$$Si = 180^{\circ}(n-2)$$

(Reemplazando n)

$$Si = 180^{\circ}(5-2)$$

(Resolviendo paréntesis)


$$Si = 180^{\circ} \cdot 3$$

(Multiplicando)

$$Si = 540^{\circ}$$

Entonces, cada ángulo mide
$$\frac{540}{5}$$
 = 108°

$$\alpha = 108^{\circ}$$

15. La alternativa correcta es la letra C)

Como
$$L//L' \Rightarrow z = x + y$$

Sabemos que x es suplemento de 130°

$$\Rightarrow x = 180^{\circ} - 130^{\circ} = 50^{\circ}$$

$$\therefore x = 50^{\circ}$$

Sabemos que ν es suplemento de 120°

$$\Rightarrow y = 180^{\circ} - 120^{\circ} = 60^{\circ}$$

$$\therefore y = 60^{\circ}$$

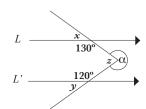
Como
$$z = x + y$$

(Reemplazando)

$$z = 50^{\circ} + 60^{\circ}$$

$$z = 110^{\circ}$$

Además,
$$z + \alpha = 360^{\circ}$$


(Angulo completo)

$$110^{\circ} + \alpha = 360^{\circ}$$

(Reemplazando z)

$$\alpha$$
 = 360° - 110°

$$\alpha = 250^{\circ}$$

Grupo Educacional Cepech