

Matemática 2006

Tutorial Nivel Básico

Trigonometría en triángulo rectángulo

Trigonometría en triangulo rectángulo

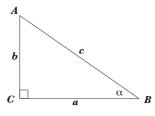
1. Un poco de historia: Las primeras aplicaciones de la trigonometría se hicieron en los campos de la navegación y la astronomía, en las que el principal problema era determinar una distancia inaccesible, como la distancia entre Júpiter y Marte, o una distancia que no podía ser medida de una forma directa.

Su origen se remonta a las primeras matemáticas conocidas, en Egipto y Babilonia, y se usaban para efectuar medidas agrícolas y además en la construcción de las pirámides. Los egipcios establecieron la medida de los ángulos en grados, minutos y segundos. Sin embargo, hasta los tiempos de la Grecia clásica no empezó a estudiarse como una rama de las matemáticas.

1.1 Definición: de un modo resumido podemos decir que la trigonometría es la parte de las matemáticas elementales puras, que trata de la resolución analítica de los triángulos, relacionando sus ángulos y lados.

El triángulo ABC es rectángulo en C y lo utilizaremos para definir las funciones trigonométricas seno, coseno y tangente.

- 1.2 Seno α es la razón entre el cateto opuesto y la hipotenusa.
- 1.3 Coseno α es la razón entre el cateto adyacente y la hipotenusa.
- 1.4 Tangente α es la razón entre el cateto opuesto y el adyacente, además equivale a la razón entre seno α y coseno α .



Ejemplo:

$$\frac{3}{2}$$
 $\frac{5}{4}$

Sen
$$\alpha = \frac{b}{c}$$

$$\cos \alpha = \frac{a}{c}$$

$$Tg \alpha = \frac{b}{a}$$

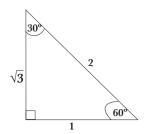
Sen
$$\alpha = \frac{3}{5}$$

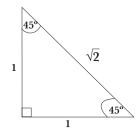
$$\cos \alpha = \frac{4}{5}$$

$$Tg \alpha = \frac{3}{4}$$

2. Triángulos trigonométricos:

Dos triángulos muy utilizados en trigonometría son el triángulo rectángulo de ángulos 30°, 60° y 90° (medio triángulo equilátero) y el triángulo rectángulo isósceles, estos triángulos son utilizados principalmente para encontrar los valores de las funciones trigonométricas de los ángulos 30° y 60° en el primer caso y del ángulo de 45° en el segundo caso.





De donde se desprende que:

Sen
$$30^{\circ} = \text{Cos } 60^{\circ} = \frac{1}{2}$$

Cos 30° = Sen 60° =
$$\frac{\sqrt{3}}{2}$$

tg 30° =
$$\frac{1}{\sqrt{3}}$$
 , racionalizando: $\frac{\sqrt{3}}{3}$

$$tg 60^{\circ} = \sqrt{3}$$

Sen
$$45^{\circ}$$
 = Cos 45° = $\frac{1}{\sqrt{2}}$

, racionalizando:
$$\frac{\sqrt{2}}{2}$$

3. Secante, Cosecante y Cotangente:

Otras funciones trigonométricas utilizadas son:

- 3.1 Secante α es la razón entre la hipotenusa y el cateto adyacente.
- 3.2 Cosecante α es la razón entre la hipotenusa y el cateto opuesto.
- 3.3 Cotangente α es la razón entre el cateto adyacente y el opuesto, además equivale a la razón entre coseno α y seno α .

Tutorial

O sea:

Secante
$$\alpha = \frac{hipotenusa}{cat. adyacente} = \frac{1}{coseno \alpha}$$

Cosecante
$$\alpha = \frac{hipotenusa}{cat. opuesto} = \frac{1}{seno \alpha}$$

Cotangente
$$\alpha = \frac{cat. \ adyacente}{cat. \ opuesto} = \frac{coseno \ \alpha}{seno \ \alpha} = \frac{1}{tg \ \alpha}$$

Ejercicios:

- 1. α corresponde a un ángulo interno agudo de un triángulo rectángulo, si sen α = $\frac{5}{12}$, cos α =
 - A) 12
 - B) $\frac{12}{13}$
 - C) $\frac{13}{12}$
 - D) $\frac{13}{5}$
 - E) 5
- 2. α corresponde a un ángulo interno agudo de un triángulo rectángulo, si cos $\alpha = \frac{9}{15}$, sen α + tg α =
 - A) $\frac{32}{15}$
 - B) $\frac{12}{9}$
 - C) 15
 - D) 12
 - E) $\frac{9}{12}$

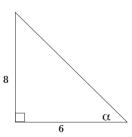
- 3. α y β corresponden a los ángulos internos agudos de un triángulo rectángulo, si $sen \alpha = \frac{6}{10}$, $sen \beta =$
 - A) $\frac{4}{5}$

 - C) $\frac{10}{8}$
 - D) 8
 - E) $\frac{6}{10}$
- 4. $sen 45^{\circ} cos 45^{\circ} + sen 30^{\circ} =$
 - A) $\frac{\sqrt{3}}{3}$
 - B) $\sqrt{3}$
 - C) $\frac{\sqrt{3}}{2}$
 - D) $\frac{1}{2}$
 - E) 1
- 5. $\cot 45^{\circ} + \csc 30^{\circ} =$
 - A) 1
 - B) 3

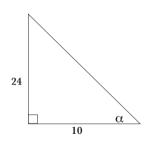
 - E) No se puede calcular

Tutorial

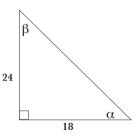
- 6. ¿Cuánto mide el sen α , del siguiente triángulo?
 - A) 5
 - B) 10
 - C) $\frac{6}{10}$
 - D) $\frac{4}{5}$
 - E) Otro valor



- 7. ¿Cuánto mide sen α + cos α ?, en el siguiente triángulo:
 - A) $\frac{12}{13}$
 - B) $\frac{5}{13}$
 - C) $\frac{17}{13}$
 - D) $\frac{26}{10}$
 - E) $\frac{25}{26}$



- 8. ¿Cuánto mide la expresión sen $\alpha \cdot \cos \beta \cdot \frac{25}{16}$?,en el siguiente triángulo:
 - A) $\frac{24}{30}$
 - B) $\frac{16}{25}$
 - C) 1
 - D) 30
 - E) $\frac{25}{16}$



9. Se tiene un triángulo rectángulo de catetos 15 y 20, el seno y coseno del ángulo agudo mayor corresponden a:

A) sen =
$$\frac{3}{5}$$
 cos = $\frac{4}{5}$

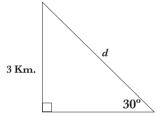
B) sen =
$$\frac{4}{5}$$
 cos = $\frac{3}{5}$

C) sen =
$$\frac{15}{4}$$
 cos = $\frac{5}{12}$

D) sen =
$$\frac{3}{4}$$
 cos = $\frac{4}{3}$

E) sen =
$$\frac{4}{5}$$
 cos = $\frac{3}{4}$

- 10. Señale cuál es la alternativa FALSA.
 - A) Si uno de los ángulos interiores de un triángulo rectángulo es 45° y uno de sus catetos mide 2 cm es posible conocer el valor de la tangente de 45°.
 - B) La cosecante α equivale a $\frac{1}{\sin \alpha}$.
 - C) La tangente de 45° equivale a la cotangente de 45°.
 - D) Si el seno de un triángulo rectángulo es $\frac{30}{50}$ el coseno es $\frac{40}{50}$.
 - E) Conocidos los tres ángulos interiores de un triángulo es posible resolver el triángulo.
- 11. Un avión despega del aeropuerto con un ángulo de elevación de 30° según se muestra en la figura. ¿A qué distancia (d) se encuentra el avión desde el punto de despegue hasta que alcanza una altura de 3 kilómetros?
 - A) 1500 metros
 - B) 3000 metros
 - C) 6000 metros
 - D) $1500 \sqrt{3}$ metros
 - E) $3000 \sqrt{3}$ metros



Tutorial

- 12. Al mirar la cumbre del cerro San Cristóbal desde un punto en plaza Baquedano se observa que el ángulo de elevación es de 30°. Al acercarse horizontalmente $\frac{580\sqrt{3}}{3}$ metros, el ángulo es ahora 60°. ¿Cuál es la altura del cerro San Cristóbal?
 - A) 290 metros
 - B) 580 metros
 - C) 1160 metros
 - D) $1160 \sqrt{3}$ metros
 - E) $580 \sqrt{3}$ metros
- 13. ¿Cuál(es) de las siguientes igualdades es(son) igual(es) a: sen60° · cosec60°?
 - 1) $\frac{\sqrt{3}}{\sqrt{3}}$
- II) $\frac{\sqrt{3}}{2}$
- III) tg 45

- A) Sólo I
- B) Sólo II
- C) Sólo III
- D) Sólo II y III
- E) Sólo I y III
- 14. Desde un punto A en el piso se forma un ángulo de elevación de 30° con la parte más alta de un edificio, desde otro punto B también en el piso y más cercano al edificio, se forma un ángulo de elevación de 60° con la parte más alta del edificio, como indica la figura. Si la distancia entre el punto A y B es de 30 metros, es posible afirmar que
 - A) el triángulo ABD es escaleno.
 - B) la altura del edificio es $30 \sqrt{3}$ metros.
 - C) la distancia entre A y C es 15 metros.
 - D) la distancia entre A y C es 45 metros.
 - E) la distancia entre B y D es 15 metros.

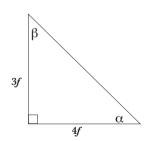
15. En la figura, ¿cuál(es) de las siguientes relaciones es(son) verdadera(s) ?

I.
$$tg \alpha = \frac{3}{5}$$

II.
$$\sin \alpha + \sin \beta = \frac{7}{5}$$

III. tg
$$\beta$$
 - tg $\alpha = \frac{-7}{12}$

- A) Sólo I
- B) Sólo II
- C) Sólo I y II
- D) Sólo I y III E) I, II y III



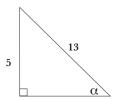
Respuestas

Preg.	Alternativa
1	В
2	A
3	A
4	D
5	В
6	D
7	C
8	С
9	В
10	E
11	C
12	A
13	E
14	D
15	В

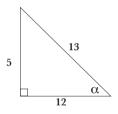
Solucionario:

1. Alternativa correcta letra B)

Utilizando la definición del seno, uno de los muchos triángulos rectángulos que satisfacen la igualdad sen $\alpha = \frac{5}{13}$ es:



Utilizando Pitágoras, tenemos que:

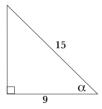


Finalmente utilizando la definición de coseno, resulta

$$\cos\alpha = \frac{12}{13}$$

2. Alternativa correcta letra A)

Utilizando la definición del coseno, uno de los muchos triángulos rectángulos que satisfacen la igualdad $\cos \alpha = \frac{9}{15}$ es:



Utilizando Pitágoras, tenemos que el valor del otro cateto es 12

Luego, utilizando la definición de seno y tangente, resulta

(Simplificando por 3)

$$=\frac{4}{5}$$

$$tg \alpha = \frac{12}{9}$$

(Simplificando por 3)

$$=\frac{4}{3}$$

Luego sen α + tg α =

$$\frac{4}{5} + \frac{4}{3} =$$

(Sumando fracciones)

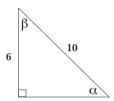
$$\frac{12 + 20}{15} =$$

(Sumando el numerador)

3. Alternativa correcta letra A)

 α y β corresponden a los ángulos internos agudos de un triangulo rectángulo, si sen $\alpha = \frac{6}{10}$, sen $\beta =$

Utilizando la definición del seno, uno de los muchos triángulos rectángulos que satisfacen la igualdad sen $\alpha = \frac{6}{10}$ es:



Utilizando Pitágoras, tenemos que el valor del otro cateto es 8

finalmente utilizando la definición de seno tenemos que:

(Simplificando por 2)

$$=\frac{4}{5}$$

4. Alternativa correcta letra D)

En este caso utilizamos los valores dados en el marco teórico de esta tutoría, en donde sen 45° = $\cos 45^\circ = \frac{\sqrt{2}}{2}$ sen $30^{\circ} = \frac{1}{2}$, luego sumando

$$\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} + \frac{1}{2} = \frac{1}{2}$$

5. Alternativa correcta letra B)

Utilizando la definición en donde cotangente $\alpha = \frac{1}{t_{SG}}$ y dado que tg 45° = 1, tenemos que:

Cotangente
$$45^{\circ} = \frac{1}{\text{tg}45^{\circ}} = \frac{1}{1} = 1$$

Utilizando la definición en donde cosecante $\alpha = \frac{1}{senC}$ y dado que sen $30^{\circ} = \frac{1}{2}$, tenemos que:

Cosecante
$$30^{\circ} = \frac{1}{sen 30^{\circ}} = \frac{1}{\frac{1}{2}} = 2$$

Luego, cotg
$$45^{\circ}$$
 + cosec 30° = $1 + 2 = 3$

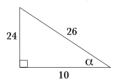
6. Alternativa correcta letra D)

Primero aplicamos teorema de Pitágoras, con lo cual descubrimos que el valor de la hipotenusa corresponde a 10.

Luego aplicando la definición de seno, resulta sen $\alpha = \frac{8}{10}$ (Simplificando por 2) $sen \alpha = \frac{4}{5}$

7. Alternativa correcta letra C)

Utilizando Pitágoras, tenemos que:



utilizando la definición de seno y coseno, tenemos que:

$$\cos \alpha = \frac{10}{26}$$

(Simplificando por 2)

(Simplificando por 2)

$$=\frac{5}{13}$$

finalmente sen α + cos α =

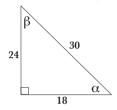
$$\frac{12}{13} + \frac{5}{13} =$$

(Sumando fracciones)

$$\frac{12+5}{13} = \frac{17}{13}$$

8. Alternativa correcta letra C)

Utilizando Pitágoras, tenemos que:



utilizando la definición de seno y coseno ,tenemos que:

$$\sin \alpha = \frac{24}{30}$$

(Simplificando por 6)

$$\cos \beta = \frac{24}{30}$$

$$=\frac{4}{5}$$

 $\frac{4}{5} \cdot \frac{4}{5} \cdot \frac{25}{16} =$

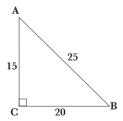
entonces, sen
$$\alpha \cdot \cos \beta \cdot = \frac{25}{16}$$

(Simplificando)

9. Alternativa correcta letra B)

Primero aplicamos teorema de Pitágoras, con lo cual descubrimos que el valor de la hipotenusa corresponde a 25.

Gráficamente tenemos:



Además aplicando la máxima "a mayor lado se opone mayor ángulo", debemos calcular seno y coseno del ángulo CAB, luego aplicando la definición de seno y coseno, resulta

Seno
$$CAB = \frac{20}{25}$$

(Simplificando por 5)

Seno
$$CAB = \frac{4}{5}$$

Coseno
$$CAB = \frac{15}{25}$$

(Simplificando por 5)

Coseno
$$CAB = \frac{3}{5}$$

10. Alternativa correcta letra E)

Con sólo conocer los ángulos interiores de un triangulo **no** es suficiente para conocer sus lados, ya que existen infinitos triángulos semejantes a uno dado con idénticos ángulos.

11. Alternativa correcta letra C)

Utilizando la definición de seno

Sen 30° =
$$\frac{3}{d}$$

(Despejando d)

$$d = \frac{3}{sen30^{\circ}}$$

(Aplicando que sen $30^{\circ} = \frac{1}{2}$)

$$d = \frac{3}{\frac{1}{2}}$$

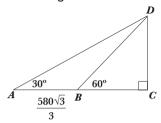
(Dividiendo)

$$d = 6 \text{ km}$$
 o $d = 6.000 \text{ m}$

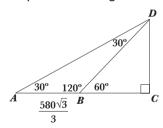
12. Alternativa correcta letra A)

Al mirar la cumbre del cerro San Cristóbal desde un punto en plaza Baquedano se observa que el ángulo de elevación es de 30° . Al acercarse horizontalmente $\frac{580\sqrt{3}}{3}$ metros, el ángulo es ahora 60°. ¿Cuál es la altura del cerro San Cristóbal?

En forma gráfica, resulta



Completando los ángulos internos tenemos que:



Con lo cual
$$\overline{AB} = \overline{BD}$$

Luego sen
$$60^{\circ} = \frac{altura}{\frac{580\sqrt{3}}{3}}$$

(Despejando altura)

sen
$$60^{\circ} \cdot \frac{580\sqrt{3}}{3}$$
 = altura

(Reemplazando sen $60^{\circ} = \frac{\sqrt{3}}{2}$)

$$\frac{\sqrt{3}}{2} \cdot \frac{580\sqrt{3}}{3} = \text{altura}$$

(Multiplicando las raíces)

$$\frac{580\cdot 3}{2\cdot 3}$$
 altura

(Multiplicando y dividiendo)

altura = 290

- 13. Alternativa correcta letra E)
 - 1) $\frac{\sqrt{3}}{\sqrt{2}}$
- II) $\frac{\sqrt{3}}{2}$
- III) tg 45°

Si, sen
$$60^\circ = \frac{\sqrt{3}}{2}$$
 \wedge

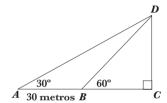
$$\csc 60^{\circ} = \frac{1}{sen 60^{\circ}} = \frac{2}{\sqrt{3}}$$

Entonces
$$sen\ 60^{\circ} \cdot cosec\ 60^{\circ} = \frac{\sqrt{3}}{2} \cdot \frac{2}{\sqrt{3}} = 1$$
 (Simplificando) luego como $\frac{\sqrt{3}}{\sqrt{3}} = 1$ I es verdadera

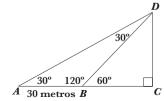
tg
$$45^{\circ} = 1$$
 III es verdadera

14. Alternativa correcta letra D)

Desde un punto A en el piso se forma un ángulo de elevación de 30° con la parte más alta de un edificio, desde otro punto B también en el piso y más cercano al edificio, se forma un ángulo de elevación de 60° con la parte más alta del edificio, como indica la figura. Si la distancia entre el punto A y B es de 30 metros es posible afirmar que:



Completando los ángulos internos tenemos que:



Con lo cual
$$\overline{AB} = \overline{BD}$$

Luego cos
$$60^{\circ} = \frac{\overline{BC}}{\overline{BD}}$$

$$\cos 60^{\circ} = \frac{\overline{BC}}{30}$$
 (Despejando)

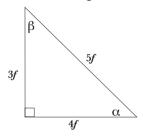
$$\overline{BC} = \cos 60^{\circ} \cdot 30$$
 aplicando $\cos 60^{\circ} = \frac{1}{2}$

$$\overline{BC} = \frac{1}{2} \cdot 30 = 15$$

Luego
$$\overline{AC} = \overline{AB} + \overline{BC}$$
 (Reemplazando) $\overline{AC} = 30 + 15 = 45 \text{ metros}$

15. Alternativa correcta letra B)

Utilizando Pitágoras, tenemos que:



Luego utilizando definición de tangente:

tg
$$\alpha = \frac{3f}{4f}$$
 simplificando por f , resulta tg $\alpha = \frac{3}{4}$ con lo cual I es falsa.

Utilizando definición de seno:

sen
$$\alpha$$
 + sen $\beta = \frac{3}{5}$ + $\frac{4}{5}$ = $\frac{7}{5}$, con lo cual II es verdadera.

Utilizando definición de tangente:

tg
$$\beta$$
 - tg $\alpha = \frac{4}{3} - \frac{3}{4} =$ (Restando las fracciones)

$$\frac{16-9}{12} = \frac{7}{12}$$
, con lo cual III es falsa

Mis notas

Grupo Educacional Cepech