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With increased system complexity, condition-based maintenance (CBM) becomes a promising
solution for system safety by detecting faults and scheduling maintenance procedures before
faults become severe failures resulting in catastrophic events. For CBM of many mechanical
systems, fault diagnosis and failure prognosis based on vibration signal analysis are essential
techniques. Noise originating from various sources, however, often corrupts vibration signals
and degrades the performance of diagnostic and prognostic routines, and consequently, the
performance of CBM. In this paper, a new de-noising structure is proposed and applied to
vibration signals collected from a testbed of the main gearbox of a helicopter subjected to a
seeded fault. The proposed structure integrates a blind deconvolution algorithm, feature
extraction, failure prognosis and vibration modelling into a synergistic system, in which the
blind deconvolution algorithm attempts to arrive at the true vibration signal through an
iterative optimization process. Performance indexes associated with quality of the extracted
features and failure prognosis are addressed, before and after de-noising, for validation
purposes.
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Nomenclature

f s Planetary carrier rotation frequency
Nt Number of teeth in the annular gear
p Index of gear in consideration
Np Number of gears
m Index of harmonics of tooth meshing frequency
M Total number of tooth meshing harmonics in consideration
N Index of harmonics of carrier rotation frequency
N Total number of carrier rotation harmonics in consideration
D Angular phase shift caused by a crack on the plate
�n Magnitude of modulating signal at its harmonic nf s

�m Magnitude of vibration signal from a single gear at its harmonic mNtfs
up,m,n Magnitude of frequency components from gear p at sideband mNtþn
G Remainder of (mNtþ n)/Np

lm,n Magnitude of combined vibration signal (superposition of vibration signals from
different gears) at sideband mNtþ n

�� Angular phase evenly separated by Np gears
Wm,n Weighting factor of non-linear projection at sideband mNtþ n
�p Angular position of gear p

1. Introduction

The increasing demand for system safety and reliability requires that faults in complex
dynamic systems be detected and isolated as early as possible so that maintenance
practices can be scheduled before faults become severe. Traditional breakdown and
scheduled maintenance practices are, therefore, replaced by condition-based mainte-
nance (CBM) to meet this need (Vachtsevanos et al., 2006). CBM is an integration of
signal processing, feature extraction, fault detection and isolation, failure prognosis,
and decision-making. In order to implement CBM, the health of critical components
and subsystems must be monitored and reliable diagnostic/prognostic strategies
developed (Vachtsevanos et al., 2006). Then, the system health can be assessed and
maintenance practices can be scheduled based on the remaining useful life of
components/systems to avoid catastrophic events.

Performance of failure prognostic routines, however, is closely related to the
features (also known as condition indicators) derived from sensor data, which reveal
the evolution and propagation of a failure in the system (Lebold et al., 2000; Saxena
et al., 2005; Wu et al., 2004, 2005). For many mechanical systems, features are typically
extracted from vibration data (Keller and Grabill, 2003). During the operation of such
a system, if a fault occurs, it is expected that the vibration signals will exhibit a
characteristic signature, which reveals the severity and location of the fault. Noise in
the system, however, often corrupts the vibration signals and masks the indication of
faults, especially in their early stages, thus curtailing the ability to diagnose and
predict failures accurately. Therefore, it is important to develop a good and reliable
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de-noising scheme to improve the signal-to-noise ratio and make the characteristics of
the fault perceptible in the vibration data. This process will improve the quality of the
obtained features, potentially lower the fault detection threshold while increasing the
accuracy of the diagnostic and prognostic algorithms.

The main transmission of Blackhawk and Seahawk helicopters employs a
five-planet epicyclic gear system, which is a critical component directly related to
the availability and safety of the vehicle (Keller and Grabill, 2003; McFadden and
Smith, 1985). Recently, a crack in the planetary carrier plate was discovered during
regular maintenance, as shown in Figure 1. This resulted in major overhaul, re-design
and replacement of gear plates with a high cost associated with these activities.
Manual inspection of all transmissions is not only costly, but also time prohibitive
(Saxena et al., 2005). CBM could provide a cost-effective solution for reducing the work
burden and enhancing vehicle safety (Saxena et al., 2005). Many research efforts
towards designing and implementing CBM on helicopters, such as vibration signal
preprocessing (Szczepanik, 1989; Wu et al., 2004), vibration signal modelling (Patrick,
2006), features extraction (Wu et al., 2004, 2005), detection of cracks, and prediction of
crack length (Orchard, 2006), have been carried out. The objective of this paper is to
propose a new vibration pre-processing structure, which synergizes vibration
de-noising, vibration modelling, feature extraction and failure prognosis, to enhance
the performance of CBM. The planetary gear system with a seeded crack on the gear
carrier plate will be used to verify the proposed method.

For an epicyclic gear system, the widely used de-noising technique is time
synchronous averaging (TSA), which can be implemented in the time or frequency

Figure 1 The crack of planetary gear carrier plate of the UH-60A
helicopter
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domain (Keller and Grabill, 2003; Lebold et al., 2000; Szczepanik, 1989; Wu et al., 2004,
2005). This operation enhances the components at the frequencies that are multiples of
the shaft frequency, which are often related to the meshing of gear teeth (Wu et al.,
2004, 2005). At the same time, it tends to average out external random disturbances
and noise that are asynchronous with the rotation of the gear.

Other de-noising algorithms include blind source separation (BSS; Antoni, 2005;
Ayers and Dainty, 1988; Gelle et al., 2000), stochastic resonance (Klamecki, 2005), and
adaptive schemes (Antoni and Randall, 2004; Hillerstrom, 1996). BSS aims to extract
individual, but physically different, excitation sources from the combined output
measurement (Antoni, 2005). Because of the complex environment and the large
number of noise sources in mechanical systems, the application of BSS is severely
hindered (Antoni, 2005). A practical solution is to focus on the main vibration source
that contributes mostly to the vibration, while it treats all other sources as a combined
noise. Then, the objective is reduced to separating the vibration source from noise,
which, in this sense, is the cumulative contribution of many different sources. This
leads to a blind deconvolution de-noising algorithm (Kundur and Hatzinakos, 1998;
Nandi et al., 1997; Peled and Braun, 2005).

Previous research work reported in Patrick (2006) has provided a good under-
standing of the true vibration signals, originating from the epicyclic gearbox under
both healthy and faulty operational conditions. However, little knowledge about the
noise profile is available. To remove noise and recover the actual vibration signal, a
blind deconvolution algorithm developed for a similarly formulated image-processing
problem (Kundur and Hatzinakos, 1998) will be modified and employed. The paper
addresses in detail the structure of the overall de-noising scheme, the analysis of
vibration mechanisms, the blind deconvolution algorithm, as well as its experimental
verification. The results show that the proposed de-noising scheme can substantially
improve the signal-to-noise ratio, feature performance and the precision of the failure
prognostic algorithm.

2. The de-noising scheme architecture

The proposed overall de-noising scheme is illustrated in Figure 2. An accelerometer
mounted on the gearbox frame collects vibration signals and the TSA signal s(t) is
calculated. The blind deconvolution de-noising algorithm is carried out in the
frequency domain, and hence s(t) is Fourier transformed to arrive at S(f). Then, the
de-noising algorithm is applied to S(f), which outputs the de-noised vibration data in
the frequency domain B(f). If the time domain signal is required, B(f) can be inverse
Fourier transformed to obtain b(t). From B(f) and b(t), features can be extracted and
fused to be used subsequently for fault diagnosis and failure prognosis. With the main
objective being remaining useful life prediction, the failure prognosis algorithm also
provides an estimate of crack length on the planet gear carrier plate as a function of
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time (Orchard, 2006). Both the estimated crack length and load profile of the helicopter

serve as inputs to the vibration model (Patrick, 2006), which generates the noise-free

modelled vibration signal m(t). This modelled vibration signal is Fourier transformed

into the frequency domain and its frequency spectra are normalized to obtain the

weighting factor vector W(f), which is used in a non-linear projection of the blind
deconvolution de-noising algorithm.

The architecture of the proposed de-noising algorithm is decomposed and shown in

Figure 3. In this scheme, a non-linear projection, which is based on vibration analysis

in the frequency domain, and a cost function minimization are critical components,
which are described in the sequel. Initially, an inverse filter �Zð f Þmust be defined. This

inverse filter is an initial estimate of the modulating signal in the frequency domain,

and converges to a filter through an optimization routine that recovers the vibration

signal from the noisy measured data S(f). The initial inverse filter �Zð f Þ is convoluted
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Figure 2 The overall structure of the de-noising scheme

Zhang et al. 7



with S(f) to obtain a rough estimate of the noise-free vibration signal �Bð f Þ. The signal
�Bð f Þ passes through the non-linear projection, which maps �Bð f Þ to a subspace that
contains only known characteristics of the vibration signal, to yield Bnl(f). The
difference between �Bð f Þ and Bnl(f) is denoted as E(f). By adjusting �Zð f Þ iteratively to
minimize E(f), and when E(f) reaches a minimal value, the signal �Bð f Þ!B(f) can be
regarded as the de-noised vibration signal. At the same time, �Zð f Þ converges to Z(f).
Through an inverse Fourier transform, the de-noised vibration signal in the time
domain can be obtained as well.

3. Vibration data analysis

The vibration signals are derived from the main transmission gearbox of Blackhawk
and Seahawk Helicopters. The gearbox is an epicyclic gear system with five planet
gears, the configuration of which is illustrated in Figure 4. The gearbox is mounted on
a test cell, with a seeded crack fault on the planetary gear carrier. The following
sections intend to describe the expected vibration data in the healthy and faulty gear
carrier plate, respectively.

3.1 Healthy gearbox

Let us assume that the gearbox is an ideal healthy system without cracks. The
accelerometer is mounted at a fixed point at position �¼ 0. Since the vibration signal is
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Figure 4 The configuration of an epicyclic gear system
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generated from the meshing of gear teeth and the planetary gears are rotating inside

the angular gear, the vibration signal is amplitude-modulated to the static

accelerometer. That is, the observed vibration amplitude will be large when the

planetary gear is close to the accelerometer and it will be small when the planetary

gear is far. Suppose that there is only one planetary gear, then the vibration observed

by the transducer should have the largest amplitude when the planetary gear is at
�¼ 0, 2p, 4p, . . . . Similarly, the vibration should have the smallest amplitude at �¼ p,

3p, 5p, . . . . Suppose that the planetary carrier has a rotation frequency f s. The vibration

amplitude-modulating signal for this single planet gear and its spectra, which show

components at harmonics of f s, are illustrated in Figures 5(a) and (b), respectively. In

Figure 5(b), n is the index of harmonics of f s and �n is the amplitude of the component

of the modulating signal at frequency n f s.
In the ideal case, the Np¼ 5 planetary gears are evenly spaced. Then, the planetary

gear p at time instant t has a phase:

�p ¼ 2� fstþ
p� 1

Np

� �
ð1Þ

The amplitude-modulating signal for planetary gear p can be written in the time

domain as:

apðtÞ ¼
XN

n¼�N

�n cos n�p

� �
ð2Þ

where N is the number of sidebands about the harmonics under consideration.
In this case, it is natural to assume that all mesh vibrations generated from different

planetary gears are of the same amplitude but of different phase shifts. The annulus

gear has Nt¼ 228 teeth. Since the speed at which teeth meshing is proportional to the

angular velocity of the planetary carrier, the meshing vibration appears at frequencies

Ntfs (McFadden and Smith, 1985; Patrick, 2006). In addition, supposing that, in the

frequency domain, the meshing vibration signal has amplitudes of �m at its harmonics
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Figure 5 Vibration amplitude modulation signal: (a) time domain
modulating signal; (b) frequency domain modulating signal

Zhang et al. 9



mNtfs, the spectra are illustrated in Figure 6. Then, the vibration signal generated from

planet gear p can be written in the form of:

bpðtÞ ¼
XM
m¼1

�m sin mNt�p

� �
ð3Þ

where M is the number of harmonics under consideration.
The observed vibration signal of planetary gear p, with respect to the static

accelerometer, is given as the product of the meshing vibration signal and the

amplitude-modulating signal. It is denoted as yp(t), with frequency spectra as shown

in Figure 7, and is given by:

ypðtÞ ¼ apðtÞbpðtÞ ¼
1

2

XM
m¼1

XN

n¼�N

�n�m sin ðmNt þ nÞ�p

� �
ð4Þ
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Note the sidebands around the meshing vibration harmonics, compared with
Figure 6. The ‘sidebands’ are defined as the frequency components that appear as a

harmonically spaced series (McFadden and Smith, 1985; Patrick, 2006). The position of

the sidebands can be located by mNtþ n or (m, n) with m being the index of meshing

vibration harmonics and n the index of the modulating signal harmonics.
When there are more than one, say Np, planetary gears, the vibration signal observed

by the accelerometer is the superposition of the Np vibration signals generated from

Np different planetary gears. This superposition vibration signal has the form:

yðtÞ ¼
1

2

XNp

p¼1

XM
m¼1

XN

n¼�N

�n�m sin ðmNt þ nÞ�p

� �

¼
1

2

XNp

p¼1

XM
m¼1

XN

n¼�N

�n�m sin 2�ð p� 1Þ
mNt þ n

Np

� �
ð5Þ

where Equation (1) and the fact that sin(2kpþ �)¼ sin(�) for any integer k are used.
Since the planetary gears are evenly spaced, the phase angle of the sidebands will

be evenly spaced along 2p (McFadden and Smith, 1985). From Equation (5), it is

obvious that if sideband mNtþ n is not a multiple of Np and (mNtþ n)/Np has a

remainder of g, the vibration components from different gears are evenly spaced by an

angle 2gp/Np. In this case, when the vibrations generated from different planetary
gears are combined, these sidebands add destructively and become zero as illustrated

in Figure 8(a), in which up,m,n with 1� p� 5 indicates the frequency components of

gear p. Those frequency components appear at sidebands where mNtþ n 6¼ kNp are

termed non-regular meshing components (NonRMC).
Conversely, if sideband mNtþ n is a multiple of Np, the remainder of (mNtþ n)/Np

will be zero. In this case, the vibration components from different gears do not have a
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j 3,m,n

j 4,m,n
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Figure 8 Examples of superposition of vibration signal for
a healthy gear plate with Np¼ 5: (a) mNtþ n 6¼ kNp (NonRMC);
(b) mNtþ n¼ kNp (RMC)
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phase difference. When the vibration signals from different planetary gears are
combined, these sidebands add constructively and are reinforced as illustrated in

Figure 8(b). These frequency components that appear at sidebands where

mNtþ n¼ kNp are referred to as regular meshing components (RMC) or apparent

sidebands.
This process of frequency components adding destructively/constructively finally

generates asymmetrical sidebands. Partial frequency spectra of the sidebands around

the first-order harmonic that illustrates this asymmetry are shown in Figure 9, where

Np¼ 5 and Nt¼ 228. Note that the peak of the spectrum does not appear at n¼ 0 (order

228) but at n¼�3 (order 225), n¼ 2 (order 230), etc. The largest spectral amplitude

(also known as dominant sideband) appears at the frequency closest to the gear
meshing frequency (Keller and Grabill, 2003).

According to the above vibration analysis in the frequency domain and previ-

ous research results (Keller and Grabill, 2003; McFadden and Smith, 1985;

Patrick, 2006), for an ideal system, only terms at frequencies that are multiples of
the number of planetary gears (ie, RMC) survive, whereas the terms at other

frequencies (ie, NonRMC) vanish. Then, the Fourier transform of the vibration data

can be written as:

Yð f Þ ¼ fhea lm,n ðmNt þ nÞ f s
� �� �

ð6Þ

where lm,n is the magnitude of the spectral amplitude at (mNtþ n)f s and fhea is the

non-linear projection for an ideal healthy gearbox given by:

fhea ¼
1 if mNt þ n is a multiple of Np

0 otherwise

�
ð7Þ
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Figure 9 Vibration spectrum of combined signal with Nt¼ 228
and Np¼ 5
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3.2 Faulty gearbox

When there is a crack on the planetary gear carrier, as in Figure 1, the five gears will

not be evenly separated along 2p. Suppose that, at time instant t, one of the five
planetary gears has an angle shift � caused by the crack. Then, this planetary gear has

a phase of �pþ � at time instant t with �p being given in Equation (1). For this gear, the

modulating signal becomes:

a0p ¼
XN

n¼�N

�n cos nð�p þ �Þ
� �

ð8Þ

The vibration signal generated from this gear is:

b0p ¼
XM
m¼1

�m sin mNtð�p þ �Þ
� �

ð9Þ

Accordingly, the modulated vibration signal from this gear is written as:

y0pðtÞ ¼ a0pðtÞb
0
pðtÞ ¼

1

2

XM
m¼1

XN

n¼�N

�n�m sin ðmNt þ nÞð�p þ �Þ
� �

ð10Þ

If we denote by ��¼ 2p(p-1)/Np, then when the vibration signals from the five planetary

gears are superposed (note that the other four gears do not have a phase shift), the

observed vibration signal should have the form of (suppose the phase shift happens

on the last gear):

y0ðtÞ ¼
1

2

XNp�1

p¼1

XM
m¼1

XN

n¼�N

�n�m sin ðmNt þ nÞ�p

� �
þ

1

2

XM
m¼1

XN

n¼�N

�n�m sin ðmNt þ nÞð�p þ �Þ
� �

¼
1

2

XM
m¼1

XN

n¼�N

�n�m

XNp�1

p¼1

�n�m sin ðmNt þ nÞ ��
� �

þ sin ðmNtþ nÞð �� þ �Þ
� � !

ð11Þ

Because of this phase shift, when mNtþ n is not a multiple of Np, the vibration

components from different gears are not evenly spaced. This can be illustrated in

Figure 10(a). It is obvious that the vibration components are not cancelled in this case.

This results in higher NonRMC frequency components. On the other hand, when
mNtþ n is a multiple of Np, the vibration components from different gears are not

exactly in phase. The vibration component from the last gear has a phase difference,

which results in lower RMC frequency components, as shown in Figure 10(b).
To see this effect in real vibration signals, the frequency spectra around the first

harmonic for two different crack sizes at 1.35 inches and 4.4 inches are shown in

Figure 11. The components in the circles are the NonRMC. This is consistent with the

Zhang et al. 13



analysis in Figure 10(a). When (mNtþ n)� changes from 0 to p, the NonRMC changes
from a minimum to a maximum amplitude, whereas the RMC from a maximum to a
minimum. On the other hand, when (mNtþ n)� changes from p to 2p, the NonRMC
becomes from a maximum amplitude to a minimum, whereas the RMC from a
minimum to a maximum.

Then, it is clear that the non-linear projection, given in (7), under the assumption of
a healthy gearbox, is not suitable for a faulty one. A reasonable modification of the
non-linear projection is given as follows. From previous research in Patrick (2006), a
vibration model in the frequency domain is established with the load profile and the
crack size being two of the inputs. Note that the load profile is known and the crack
size can be estimated from the prognostic algorithm (Orchard, 2006). Then, the
modelled noise-free vibration signal m(t) generated from the vibration model is
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Figure 11 The influence of crack size on frequency spectra
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Fourier transformed in the frequency domain to arrive at M(f). The magnitude of M(f)
is normalized to obtain weighting factors W(f). For illustration purposes, a model
signal m(t) and the weighting factor W(f) derived from its frequency spectra are shown
in Figures 12(a) and 12(b). The weighting factors around the first harmonic are
zoomed in Figure 12(c).

When a frequency domain signal �Bð f Þ is fed into the non-linear projection, its
frequency components are multiplied by the weighting factor W(f) to arrive at the
output of the non-linear projection Bnl(f). Suppose that, for a sideband located at
(mNtþ n) f s, �Bð f Þ has a magnitude of lm,n, then, after the non-linear projection, the
magnitude of Bnl(f) at this sideband is given by Wm,n(f)lm,n, where Wm,n(f) is the
weighting factor at sideband mNtþ n. It is clear that the non-linear projection in this
case is:

fnl ¼Wm,nð f Þ 8 ðmNt þ nÞ 2 Dsup ð12Þ

Note that the non-linear projection under the healthy gearbox case in Equation (7) is a
special case of (12).

From the above analysis of the system vibration behaviour, the following
assumptions are made and used in the blind deconvolution de-noising scheme:

(1) The majority of vibration information is contained in limited number of sidebands
around the harmonics, which form the Dsup. Note that the frequency spectra fade
quickly on both sides of the harmonics; this assumption is reasonable considering
subsequent results.

(2) The non-linear projection that maps a signal into a subspace contains only known
characteristics of the vibration signal is given in (12).

(3) The amplitude of the modulating signal a(t) decreases monotonically on either side of
its maximum value until it reaches the minimum. Note that this assumption is
somewhat restrictive.
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Figure 12 The model vibration signal and weighting factor:
(a) the model vibration signal with crack; (b) the weighting factor,
normalized model vibration spectra; (c) the weighting factor at
the first harmonic
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4. Blind deconvolution de-noising scheme

From the vibration analysis of the gearbox, we know that the vibration signals
collected from the transducer are amplitude modulated (McFadden and Smith, 1985;
Patrick, 2006). Multiple sources of noise may further corrupt the signal. A simplified
model for such a complex signal may be defined as:

sðtÞ ¼ aðtÞbðtÞ þ nðtÞ ð13Þ

where s(t) is the noisy vibration signal, b(t) is the noise-free unmodulated vibration
signal, a(t) is the modulating signal and n(t) is the cumulative additive noise.

Note that the modulating signal a(t) is itself affected by noise in the system. Let âðtÞ
denote the ideal or noise-free modulating signal and na(t) the noise introduced in this
signal. Consequently, a(t) can be represented as:

aðtÞ ¼ âðtÞ þ naðtÞ ð14Þ

Thus, Equation (13) can be rewritten as follows:

sðtÞ ¼ âðtÞ þ naðtÞð ÞbðtÞ þ nðtÞ

¼ âðtÞbðtÞ þ n̂ðtÞ
ð15Þ

where n̂ðtÞ ¼ na(t)b(t)þ n(t) contains the total additive noise in the system. On the other
hand, the factor âðtÞ describes the multiplicative noise in the system. The goal for a
de-noising scheme, such as the one described here, is to recover the unknown
vibration signal b(t) from the observed signal s(t), given partial information about the
noise sources and characteristics of the vibration signal.

A typical approach would be to find the inverse of âðtÞ,

ẑðtÞ ¼ 1=âðtÞ ð16Þ

such that

bðtÞ ¼ ðsðtÞ � n̂ðtÞÞ � ẑðtÞ

¼ sðtÞẑðtÞ � n̂ðtÞẑðtÞ
ð17Þ

Note, however, that little can be assumed about n̂ðtÞ and âðtÞ is not available; ẑðtÞ is not
applicable. To solve this problem, rather than using ẑðtÞ, we propose an iterative
de-noising scheme that starts with �zðtÞ, a very rough initial estimate of the inverse of
the modulating signal, which demodulates the observed signal s(t) to give a rough
noise-free vibration signal:

�bðtÞ ¼ sðtÞ � �zðtÞ ð18Þ

If partial knowledge about how the plate system is influenced by the modulating
signal âðtÞ and a reasonable understanding of the true vibration signal is available,
then the ideal characteristics of the vibration signal can be obtained by projecting this
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estimated signal �bðtÞ into a subspace with only the known ideal characteristics of the
vibration signal to yield a refined signal bnl(t). Since this non-linear projection, as the
subscript signifies, removes all uncharacteristic components that exist in the rough
estimate �bðtÞ, it is necessary to stress the importance of a good understanding of the
underlying process. An iterative scheme then refines these results by minimizing the
error between the two signals �bðtÞ and bnl(t), ie,

min eðtÞ
�� �� ¼ min �bðtÞ � bnlðtÞ

��� ��� ð19Þ

Previous research results detail the spectral characteristics of vibration signals for
rotating equipment (Keller and Grabill, 2003; McFadden and Smith, 1985; Patrick,
2006). It is appropriate, therefore, to investigate the measured noisy vibration in the
frequency domain. The convolution theorem states that the product of two signals in
the time domain is equivalent to their convolution in the frequency domain. Thus,
model (15) can be written in the frequency domain as:

Sð f Þ ¼ Âð f Þ � Bð f Þ þ N̂ð f Þ ð20Þ

with � being the convolution operator and S(f), Âð f Þ, B(f) and N̂ð f Þ are the Fourier
transforms of s(t), âðtÞ, b(t) and n̂ðtÞ, respectively. Then, the goal in the frequency
domain is to recover B(f).

Writing Equation (18) in the frequency domain, we have

�Bð f Þ ¼ Sð f Þ � �Zð f Þ ð21Þ

with �Bð f Þ and �Zð f Þ being the Fourier transforms of �bðtÞ and �zðtÞ, respectively. Passing
�Bð f Þ through the non-linear projection, it yields Bnl(f). Then, in the frequency domain,
we will minimize the difference between Bnl(f) and �Bð f Þ:

min Eð f Þ
�� �� ¼ min �Bð f Þ � Bnlð f Þ

�� �� ð22Þ

The iterative process refines �Zð f Þ to minimize Equation (22). When it reaches the
minimal value, �Zð f Þ converges to Z(f). Then, with this Z(f) replacing �Zð f Þ in Equation
(21), a good estimate for B(f) is obtained as:

Bð f Þ ¼ Sð f Þ � Zð f Þ ð23Þ

Lastly, the estimate is transformed back into the time domain to recover the noise-free
vibration signal b(t).

bðtÞ ¼ F�1fBð f Þg ¼

Z 1
�1

ei2�ftBð f Þdf ð24Þ

To solve this problem, the following additional assumptions are made:

(1) Z(f) exists and is absolutely summable, ie,
P

Zð f Þ <1.
(2) Since the modulating signal âðtÞ is always positive, its inverse should be positive too.
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Hence, the Fourier transform of its inverse Z(f) contains a dc component.
With the above two assumptions being taken into consideration, the cost function is

defined as:

J ¼
X

f2Dsup

�Bð f Þ � Bnlð f Þ
� 	2

þ
X

Zð f Þ � 1Þ

 �2

ð25Þ

where Dsup is the frequency range that contains the main vibration information.
Because of the periodic fade of signal spectra between harmonics, a window centred
at harmonic frequencies is used to define critical frequencies. All these windows form
the support Dsup. In Equation (25), assumptions (4) and (5) are used to arrive at the
second term to avoid an all-zero inverse filter Z(f), which leads to the trivial solution
for error minimization. Moreover, an iterative optimization routine is required to
implement this scheme. The iterative conjugate gradient method is called upon to
address the optimization problem. This method has faster convergence rate in general
compared with the steepest descent method (Prost and Goutte, 1984).

5. Experimental studies

The initial length of the seeded crack on the carrier is 1.344 inches and it grows with
the evolving operation of the gearbox. The gearbox operates over a large number of
ground–air–ground (GAG) cycles at different torque levels. This way, vibration data
are acquired at different torque levels and different crack lengths.

5.1 Actual crack growth

The ground truth crack length data at discrete GAG cycles are available and tabulated
in Table 1. With these data, the crack length for GAG cycles from 1 to 1000 can be
obtained via interpolation, which results in the crack length growth curve shown in
Figure 13.

5.2 Load profile

In each GAG cycle over the first 320 GAG cycles, the torque increases from 20% to 40%,
then to 100%, and finally to 120% and then decreases to 20% for the next cycle. From the

Table 1 The ground truth data of crack length (inches)

GAG 1 36 100 230 400 550 650 714 750 988
Crack 1.34 2.00 2.50 3.02 3.54 4.07 4.52 6.21 6.78 7.63
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321st GAG cycle on, the torque in each cycle increases from 20% to 40%, then to 93%,
and then decreases to 20% for the next cycle. The torque profiles in these two cases are
shown in Figure 14. Because no consistent high torque level data throughout the entire
spectrum of GAG cycles is available and there is no substantial difference between the
93% and 100% torque levels, the vibration data at 100% torque in the first 320 GAG
cycles and that at 93% torque in the later GAG cycles are considered as consisting one
experiment. In this case, torque levels at 20%, 40% and 100% are investigated.

GAG Cycles 7–320
(with shims)

GAG Cycles 321–1000
(with shims, reduced torque)

120

100

40

5–10 sec dwell 5–10 sec dwell

Step 9, repeat 3–8
Step 9, repeat 3–7

20

(a)
(b)

 End of day
2 min record

Figure 14 The load profile of the gearbox: (a) GAG cycles 7–320;
(b) GAG cycles 321–1000
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Figure 13 The growth of crack length versus GAG cycles
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5.3 Online real-time de-noising

It is important to implement the de-noising scheme online. Therefore, the reduction
of the computational burden is critical. The real-time implementation of the
de-noising scheme involves the structure of the inverse filter Z(f), simplification of
the convolution operation, the initial Z(f) and simplification of the optimization
routine.

5.3.1 The structure of the inverse filter: For the gearbox with five gears as in Figure 4,
the vibration signal observed by the transducer should have its largest amplitude at
phase �i¼ 0, 2p/Np, 4p/Np, . . . . The smallest amplitude appears at phase �i¼ p/Np,
3p/Np, 5p/Np, . . . . This indicates that the frequency of the modulating signal a(t) is
much lower than that of the vibration signal b(t). The same is true for the inverse of
a(t), 1/a(t), whose frequency spectra fade quickly at high frequencies. Therefore, at the
implementation phase, the inverse filter �Zð f Þ can be truncated to a short signal
containing only limited coefficients to save computation time and resources. This also
helps to improve the efficiency of the algorithm.

5.3.2 Good initial inverse filter: A good initial guess for �Zð f Þ will also improve the
convergence rate of the blind deconvolution approach. In the process of de-noising,
some Z(f) values are collected and saved from previous results. When the system
operates under similar operating conditions, the previously saved Z(f) can be
retrieved and serves as the initial estimate of �Zð f Þ under the current operating
condition. It is anticipated that this step will speed up convergence.

5.3.3 Simplification of the optimization routine: Optimization of the de-noising
algorithm is a recursive process. The number of iterations is closely related to the
required computation time. To reach a minimal value of the cost function, a large
number of iterations are needed. However, at the later stages of optimization, the
improvement in the cost function value is rather minimal. This suggests that we can
terminate the optimization routine before it reaches the minimal value and this will
not degrade performance significantly.

For example, the convergence curve of the cost function versus iteration number
from a specific example is illustrated in Figure 15. It can be seen that the cost function
becomes stable from about the 200th iteration on. Hence, for online applications, the
optimization routine can be terminated after a small number of iterations resulting in
considerable computational savings.

5.3.4 Simplification of the frequency domain signal convolution: Earlier research
results (Patrick, 2006) suggest that the main vibration characteristic signature resides in
frequency range below 1500 f s Hz, which covers up to six harmonics. In addition, rapid
fade of the signal spectra between the harmonics enable us to define Dsup as a series of
windows on each side of the harmonics. Therefore, Dsup is a collection of six windows
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with each window being centred at the harmonic frequency and having a certain order
of sidebands on both sides. Then, the convolution operation only considers frequency
spectra on Dsup. To achieve this goal, the convolution operation is divided into three
steps and this process can reduce the computational burden significantly.

Step 1: Picking up frequency spectra on Dsup and separating them into six segments
as shown in Figure 16. The original signal spectra are shown in Figure 16(a). The
separated spectra at different harmonics are shown in Figures 16(b)–(g).

Step 2: Convolving each segment with the inverse filter and truncating the
convolution results to the length of each segment as illustrated in Figure 17.
Figures 17(a) and (b) show the inverse filer and segment of the measured vibration
signal (the sidebands at the first harmonic as shown in Figure 16(b), respectively.
Figures 17(c) and (d) show the convolution results, before and after the truncation,
respectively.

Step 3: Putting the truncated convolution results back to the frequency spectra on
Dsup to obtain the convolution result.

5.4 Experiments and performance metrics

The signals are normalized and limited within [�1, 1] so that all of them in the
proposed scheme can be treated similarly. Since the inverse filter �Zð f Þ is a
low-frequency signal and we do not assume any prior knowledge, it is truncated to
contain only 15 spectral lines and assumed to be a simple discrete impulse located at
frequency f s, as shown in Figure 18(a). The optimal inverse filter Z(f) resulting from
the blind deconvolution scheme is shown in Figure 18(b) for comparison purposes.
The large frequency components at 5, 10 and 15 are consistent with the modulating
signal a(t) for a five-planet-gear plate, whose inverse should show frequency
components at 5, 10 and 15, as predicted from the theoretical analysis.
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The non-linear projection is given in Equation (12) and is updated in the closed-
loop de-noising scheme, shown in Figure 2, with the varying load profile and crack
size. As an example, �Bð f Þ, Bnl(f) and their difference E(f) are shown in Figure 19. E(f) is
the first term in the cost function (25) that must be minimized through the
optimization routine. Finally, in the time domain, the measured noisy vibration
signal s(t), the noise-free vibration signal recovered from blind deconvolution b(t) and
the noise signal n(t) are shown in Figure 20.

5.4.1 Signal-to-noise ratio: The signal-to-noise ratio (SNR), before and after
de-noising, is investigated and the results at 40% and 100% torque levels are
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Figure 16 The separation of frequency spectra (with a resolution
of f s): (a) the TSA signal spectra; (b) the first harmonic spectra;
(c) the second harmonic spectra; (d) the third harmonic spectra;
(e) the fourth harmonic spectra; (f) the fifth harmonic spectra;
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shown in Figures 21(a) and (b), respectively. The improvement in the SNR value is

significant.

5.4.2 Feature performance evaluation: Although the blind deconvolution routine
shows a significant improvement in the SNR, it is desirable that it improves also the

quality of the features or condition indicators. The accuracy and precision of

mappings between the evolution of features and the actual crack growth have an

important impact on the performance of diagnostic and prognostic algorithms and the

CBM system overall. To evaluate the quality of the features, several performance

indexes or metrics are introduced.
The first performance index is an overall accuracy measure defined as the linear

correlation coefficient between the raw feature values and the crack length growth

along the GAG cycle axis (CCR; Patrick, 2006). Suppose x is the feature vector and
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Figure 18 The spectra of the inverse filter: (a) the initial inverse
filter; (b) the optimal inverse filter
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y the crack growth curve with �x and �y their means, respectively. The correlation

coefficient between them is:

CCRðx, yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ss2

xy

ssxxssyy

s
ð26Þ

where ssxy ¼
P
ðxi � �xiÞð yi � �yiÞ, ssxx ¼

P
ðxi � �xiÞ

2 and ssyy ¼
P
ð yi � �yiÞ

2, respec-

tively. The extracted feature will be used to map and predict the crack growth. Hence,

a high correlation coefficient is expected to generate an accurate estimate of the actual
crack length and is preferred. Thus, for a good feature, the value of the correlation

coefficient should be near 1.
Because of changes in operating conditions and other disturbances, the feature

values along the GAG axis are often very noisy and need to be smoothed through a
low-pass filtering operation. In this case, the correlation coefficient is calculated based

on the smoothed feature curve ~x (CCS; Patrick, 2006). The calculation of CCS is the
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same as (26) with x being replaced by ~x. In the following experiments, the smooth
low-pass filter is a Butterworth filter with cut-off frequency of 0.01 of the sampling
frequency.

The third performance index is a precision measure corresponding to a normalized
measure of the signal dispersion. It is referred to as percent mean deviation (PMD;
Patrick, 2006) and defined by:

PMDðx, ~xÞ ¼

Plx
i¼1

xi�~xi
~xi

lx
� 100 ð27Þ

where lx is the number of entities in the feature vector x.
In the fault detection and prognostic algorithms (Orchard, 2006), the extracted

feature values are used as a measurement input. Therefore, this performance index is
closely related to the detection threshold and precision of the prognosis results
(remaining useful life). From a precise feature, the fault detection and prognostic
algorithms can detect the incipient failure and/or predict the fault growth with a high
confidence. PMD for a precise feature should have a very small value close to 0.

The previous indexes evaluate the performance on the entire failure progression
process. It is also important to evaluate how the failure progresses in a small period.
To achieve this goal, a moving window along the time axis is applied to the feature
vector so that the correlation coefficient and PMD in the moving windows can be
evaluated to provide a ‘local’ performance assessment. The two adjacent windows are
overlapped so that the performance indexes in this case are curves along the time axis.

The relative size of the NonRMC sidebands to the RMC sidebands in Dsup or part of
Dsup may indicate the presence of a fault on the planetary carrier. As the crack grows,
the operating conditions deviates from the ideal. In this case, the constructive
superposition of vibration signals from different planetary gears is attenuated while
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the destructive superposition is reinforced. This phenomenon results in smaller RMC
and larger NonRMC sidebands. This indicates that the ratio between RMC and
NonRMC sidebands can be used as a characteristic feature. Based on this notion,
features are successfully extracted in the frequency domain. One of these features, the
sideband ratio (SBR; Wu et al., 2004), will be used to demonstrate the effectiveness of
the de-noising routine.

Let X denote the number of the sidebands in consideration on both sides of the
dominant components of the harmonics, the sideband ratio is then defined as the ratio
between the energy of the NonRMC and all sidebands:

SBRðXÞ ¼

Pm
h¼1

PX
g¼�X NonRMCPm

h¼1

PX
g¼�X ðNonRMCþ RMCÞ

ð28Þ

The results of SBR(12) at 40% torque level are shown in Figure 22(a). The running
version of the performance indexes is shown in Figure 22(b). The results at 100%
torque are shown in Figures 22(c) and 22(d), respectively.

The correlation coefficient and PMD for this feature at different torque levels are
summarized in Table 2. Substantial feature improvements are achieved via the
application of the de-noising routine. In the tables, D-N stands for de-noised.

5.4.3 Failure prognosis: A fault detection/failure prognosis framework based on
particle filtering algorithms has been successfully developed, and applied to the
prediction of the remaining useful life (RUL) of the critical components (Orchard,
2006). The approach provides with a particle-filter-based estimate of the state
probability density function (pdf), generates p-step ahead long-term predictions and
uses available empirical information about hazard thresholds to estimate the RUL pdf.
The implementation of this algorithm requires a failure progression model, feature
measurements to reveal the failure progression, a non-linear mapping between failure
severity and feature value, and external inputs such as the operational load profile to
the system. More details about this prognosis framework can be found in Orchard
(2006). In this section, results are shown to compare the algorithm performance when
using the features derived in the previous section, before and after de-noising. This
will illustrate the efficiency of the proposed de-noising routine, on the prediction of
the planetary carrier RUL in the helicopter testbed.

Once the RUL pdf is calculated, the performance of failure prognostic algorithm can
be evaluated. For this purpose, statistics such as 95% confidence intervals (CI) and
RUL expectations may be used. In our experiment with a seeded crack on the
planetary carrier, failure is defined when the crack reaches 6.21 inches in length, ie, the
crack reaches the edge of the carrier plate. The ground truth data in Table 1 show that
the crack size reaches this value at the 714th GAG cycle.

Since the gearbox operates on the basis of GAG cycles, the RUL expectations and
95% CI are also given with the unit of ‘GAG cycle’. Long-term predictions are
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generated at the end of the 365th GAG cycle, using the current estimate for the state
pdf as initial condition. The state pdf estimate, in turn, is based on feature

measurements considering two cases: before and after the de-noising routine.

Results for each case are depicted in Figures 23(a) and (b), respectively. It must be

Table 2 The performance indexes of feature Sideband Ratio

20% 40% 100%

Torque TSA D-N TSA D-N TSA D-N

CCR 0.943 0.975 0.979 0.985 0.953 0.983
CCS 0.950 0.982 0.986 0.992 0.971 0.991
PMD 2.06% 2.01% 2.57% 2.73% 5.57% 3.57%
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noted that the 95% CI in both scenarios are quite similar precision-wise. However, the
RUL expectation is closer to the ground truth value when a de-noised feature is used,

showing that the de-noise routine improves the accuracy of the algorithm.
As time goes on, differences between the two cases become evident. Table 3

summarizes the results obtained when performing the prognostic algorithm at the
400th, 450th and 500th GAG cycles, respectively. In terms of precision of the prediction,

it is clear that prognosis results with the de-noised feature offer a considerable

reduction in the length of the 95% CI. For instance, when the long-term prediction is
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Figure 23 Prognosis results started from the 365th GAG cycle:
(a) prognosis based on TSA feature; (b) prognosis based on
de-noised feature

Table 3 The performance indexes of failure prognosis

Initial GAG cycle for long-term prediction

Feature Performance 365 400 450 500

TSA 95% CI [637–773] [663–832] [680–828] [682–812]
Length of CI 136 169 148 130
Expected value 705 747 754 747

De-noised 95% CI [638–777] [647–775] [618–720] [695–784]
Length of CI 139 128 102 89
Expected value 710 711 670 746
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performed at the 450th GAG cycle, this reduction is in the order of about 140 min
(46 GAG cycles). At the same time, the expected values for the RUL obtained from the
de-noised feature are also more accurate that those from the TSA feature. It is important
to note that, in real applications, a predicted failure time lower than the actual one is
preferred since it does not involve the risk of continuing the operation beyond safety.
A lower failure time prediction only makes a conservative decision to schedule
maintenance earlier, but a higher value of the failure time in the prediction might
postpone the timely maintenance, resulting in damage or loss of vehicle.

6. Conclusions

The successful implementation of CBM technologies is achieved through the
application of a failure prognostic algorithm, which in turn requires a high-quality
feature to propagate the failure in time with respect to the operating conditions of the
system. Good features are often extracted from vibration signals collected from a noisy
environment and noise might mask the signatures of the faults/failures. Therefore,
signal de-noising and preprocessing is important in the implementation of CBM.
This paper introduce the development of a new vibration signal blind deconvolution
de-noising scheme in synergy with feature extraction, failure prognosis and vibration
modelling to improve the signal-to-noise ratio, the quality of features, as well as the
accuracy and precision of failure prognostic algorithms. The proposed scheme is
applied to the failure prognosis of a critical component of a helicopter testbed and the
results demonstrate the efficiency of the proposed scheme.
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