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1. Introduction 

Uncertainty management of prognostics 
holds the key for a successful penetration of 
health management strategies in industrial 
applications. While methods to estimate and 
handle uncertainty have received a reasonable 
amount of attention in the diagnostics domain, 
uncertainty management for prognostics is an 
area which awaits major advances. 

In the field of failure prognosis, several 
approaches intend to solve the issue of 
uncertainty management. Probabilistic, soft 
computing methods and tools derived from 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

evidential theory or Dempster-Shafer theory 
[1] have been explored for uncertainty 
representation in prediction. Probabilistic 
methods are mathematically rigorous 
assuming, of course, that a statistically 
sufficient database is available to estimate the 
required distributions. Possibility theory 
(fuzzy logic) offers an alternative when scarce 
data and even incomplete or contradictory data 
are available. Dempster’s rule of combination 
and such concepts from evidential theory as 
belief on plausibility based on mass function 
calculations can support uncertainty 
representation tasks. Probabilistic reliability 
analysis tools employing an inner-outer loop 
Bayesian update scheme have also been used 
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Figure 1. Particle Filtering-based prognostic algorithms and outer correction loops 

to “tune” model hyper-parameters given 
observations [2]. 

In this sense, particle filters (PF) have been 
established as the de facto state of the art in 
failure prognosis and uncertainty representation 
[3]. PF-based algorithms are capable of 
combining advantages of the rigors of Bayesian 
estimation to nonlinear prediction while also 
providing uncertainty estimates for a given 
solution. The outcome of these algorithms – an 
estimate of the probability density function 
(pdf) of the state – allows online computation 
of expectations, 95% confidence intervals, and 
other statistics of the time of failure (ToF).  All 
the more, PF-based algorithms provide the 
framework to implement corrective schemes 
aimed at an online performance improvement; 
see Figure 1. 

 

 

 

 

 

 

 

 

 

 

This paper proposes, tests, and assesses a 
systematic method for the uncertainty 
management problem in failure prognosis 
consisting in two possible options for outer 
feedback correction loops. These loops 
incorporate information about the short-term 
prediction error to improve the performance 
of the overall prognostic framework. The 
structure of the paper is as follows. Section 2 
summarizes the basic concepts associated to 
the usage of PF in the field of failure 
prognosis. Section 3 presents two approaches 
that can be used to implement outer 
correction loops, while Section 4 illustrates 
obtained results when using these loops in 
several realizations of PF-based prognostic 

algorithms that are fed with actual fault data. 
Section V presents an assessment of the 
results on the basis of three performance 
indicators that help to quantify the concepts 
of accuracy, precision, and steadiness of 
prognostic results. All proposed approaches 
are tested using actual data from a seeded 
fault test in a critical component of rotorcraft 
transmission system [4]. 

2. Particle Filtering in Failure 
Prognosis 

Nonlinear filtering is the process of using 
noisy observation data to estimate at least the 
first two moments of a state vector governed 
by a dynamic nonlinear, non-Gaussian state 

 

 

 

 

 

 

 

 

 

 

 

-space model [4]. Moreover, from a Bayesian 
standpoint, any nonlinear filtering procedure 
generates an estimate of the posterior 
probability density function 1:( | )k kp x y  for 

the state xk, based on the set of received 
measurements {y1:k}. In this sense, Particle 
Filtering [3]-[15] (PF) is an algorithm that 
solves this estimation problem by efficiently 
selecting a set of N particles (samples drawn 
from the state domain) {x(i)}i=1…N and weights 
{wk

(i)}i=1…N, such that the state pdf at time k 
may be approximated by  

( ) ( )

1

( ) ( )
N

N i i
k k kk k

i

x w x x 


   (1) 
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Weights in (1) are updated in an online 
fashion, using the information collected from 
the measurements set {y1:k}. 

Failure prognostic, on the other hand, implies 
predicting the Remaining Useful Life (RUL) 
of the piece of equipment [3]-[5] via the 
generation of long-term predictions 
describing the evolution of a fault dimension 
over time. The problem of failure prognostics 
goes beyond the scope of filtering-only 
applications, since it involves future time 
horizons where no measurements are 
available for weight update purposes in a PF-
based approximation of the predicted state 
pdf. It has been shown however [3], that a 
combination of PF-based algorithms, limited 
bandwidth kernels, and resampling schemes 
allows to represent the uncertainty associated 
with long-term predictions. Therefore, this 
combination enables the application of these 
algorithms in the field of failure prognosis, 
generating discrete approximations for the 
predicted state pdf ˆ ( )k sp x   at future time s 

based on the recursion:  

  
1: 1
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where ( )K   is a rescaled version of the 

Epanechnikov kernel [3]-[4] and E{} 
represents the expectation of a random variable. 

Given the state pdf approximation (2), the 
problem of failure prognostic summarizes in 
computing the pdf of the RUL for the piece 
of equipment under analysis, since from that 
pdf estimate it is possible to obtain any 
necessary statistics describing the evolution 
of the fault dimension in time, either in the 
form of expectations or 95% confidence 
intervals. The procedure needed to obtain the 
RUL pdf from the predicted path of the state 
pdf is detailed and discussed in [3], [5] and it 
is now briefly described. Basically, the RUL 
pdf can be computed from the probability of 
failure at future time instants. This probability 
is computed through a procedure that 
combines long-term predictions for the state 
associated to the fault dimension and empirical 
knowledge about critical conditions for the 
system. This knowledge is usually included in 
the form of thresholds for main fault 
indicators, also referred to as the hazard zones.  

The aforementioned procedure assumes the 
existence of a dynamic system that describes 
the evolution of the fault dimension in time. 
For failure prognostic purposes, this dynamic 
system is represented through the nonlinear 
state equation: 

1

1

( , )

( , )

k k k k k k
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 (3) 

where xk is the state associated to the fault 
dimension, k is a time-variant parameter 
related to the growth rate of the state xk; F(•) 
is a nonlinear function representing a model 
based on first principles, a neural network, or 
even a fuzzy system; k is a time-variant 
parameter; L(•) is a nonlinear and 
discontinuous function defining the evolution 
of k (usually referred to as the transition 
function of k); ˆs s

k k ke y y  is the s-step-

ahead prediction error (note that ˆ ˆs s
k ky x  is 

computed at k-s);  k k



 and { }k k    are 

independent noise sequences;  k k



 is iid 

measurement noise sequence and yk is the 
noisy observation at time k. 

Model parameter estimate k has a direct 
effect in the accuracy and precision [3] of 
long-term predictions that could be generated 
using model (3) [3]. There should be a 
compromise between the accuracy of the 
current state estimate (usually checked via 
the usage of the likelihood of measurements) 
and the capability of the state model to 
describe the evolution of the fault condition 
in the long term. Moreover, biased estimation 
schemes lead to excessively aggressive (or 
conservative) approaches that may affect the 
operation performance of the system. 

In this sense, an optimality criterion for 
prognosis should consider both the accuracy 
and the precision of the RUL estimates 
obtained from the state long-term predictions. 
To achieve an optimal prognosis procedure, 
in the aforementioned sense, [3] and [4] have 
suggested the usage of outer feedback correction 
loops that modify the estimate of the model 
parameter k, basically considering L(•) as a 
function of short-term prediction error. This 
paper presents two specific implementations for 
the outer correction loop and analyzes the effect 
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of both changes in noise hyper-parameters [2]-
[3] and transition function design, within a PF-
based prognosis framework. 

3. Outer Feedback Correction 
Loops in PF-based Prognosis 
Framework 

Outer feedback correction loops (OFCL) play 
an important role in the assessment of on-line 
prognostic algorithms, ensuring both 
accuracy and precision of the resulting RUL 
estimates. These correction loops typically 
measure the prediction capability of the fault 
progression model [3]-[5], via the analysis of 
the short-term prediction error, and improve 
the algorithm performance either modifying 
the structure of the model or updating hyper-
parameters that define process/measurement 
noise of model update equations [2]-[3]. A 
number of different approaches/strategies can 
be considered in the implementation of 
suitable OFCLs: heuristic rules, fuzzy expert 
systems, neural network control, and optimal 
control, among others. Particularly, this paper 
focuses its analysis on two OFCL that 
directly modify hyper-parameters associated 
with the process noise definition in the fault 
propagation model (3). The first proposed 
OFCL modifies the variance associated to the 
noise kernel in the equation describing the 
evolution of the system parameter k; i.e., the 
variance of { }k k   in (3), while the second 

updates the transition function L(•) for the 
aforementioned parameter. 

3.1 First approach: Outer correction 
loop manipulating variance of noise 
kernel k’ 

Let  be a fixed and unknown model 
parameter that is being estimated using the 
concept of “artificial evolution” [12]; i.e., let 
the transition function for  at time k be: 

,( )s
k k kL e   (4) 

where “s” is the time horizon considered for the 
computation of the short-term prediction error.  

The first approach for an OFCL considers the 
short-term prediction error as a measure of 
the long-term accuracy of model (3), given 

the current PF-based state estimates xk and k. 
The feedback loop then updates the variance 

of the noise kernel k  , associated to equation 

that describes the evolution in time of the 
unknown model parameter , as follows: 
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where eth is an operator defined threshold, 
and [p; q] are such that 0 < p < 1 and 1 < q.  

The proposed correction for the variance of 
the noise kernel allows the particle-filtering-
based algorithm to increase the probability of 
drawing samples from a broader subset of the 
domain for the second component of the state 
vector [xk k]

T, thus facilitating a model 
parameter update that considers the 
measurement likelihood. On the other hand, 
whenever the sort-term prediction error is 
bounded the algorithm reduces the size of the 
domain where samples are drawn to obtain a 
PF-based estimate of the k, which is in 
accordance with the assumption  = k (fixed 
model parameter) [12]. 

3.2 Second approach: Outer correction 
loop manipulating both the 
transition function of k and 
variance of noise k’ 

Although the OFCL proposed in Section 3.1 
facilitates the adjustment of unknown model 
parameter estimates, a task of paramount 
importance when observability issues are 
present, it does not provide the means to 
increase/decrease the correction energy 
according to the significance of the measured 
error. Therefore, and with the purpose of 
achieving more accurate RUL estimates, this 
paper introduces a second OFCL using a 
transition function L(•) to describe the 
evolution in time of the estimate of the 
unknown model parameter. 

In this sense, let the transition function L(•) 
be defined as follows: 

( , ) :

s th
k ks

k k s s th
k k k
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And let the second approach for OFCL be 
defined by the following the update law for 
the variance of the process noise '

k : 

1 2
0

(
(

)
) :

s th
k k

k s th
k

p var e e
var

e e







 




 
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 (7) 

where η is the feedback gain for the 
correction of the unknown model parameter 
 and 2

0  is a constant value. 

Similarly to the approach presented in 
Section 3.1, this OFCL defines a limit eth for 
the s-step-ahead prediction error. If the 
magnitude of the short-term prediction error 
is under this value, then only the variance of 
the process noise '

k  is modified. On the 

other hand, if the absolute error is above this 
threshold, both the noise variance and the 
transition function L(•) are modified. It is 
assumed that short-term prediction error 
consistently small is an indicator that the 
estimate of the unknown model parameter  
has reached a steady state value. In that case, 
the variance of the noise driving the 
“artificial evolution” of  can be gradually 
decreased within the implementation of the 
PF-based filtering algorithm. 

On the other hand, in the event of large short-
term predicted errors (i) the variance of the 
process noise associated to the model 
parameter noise variance is fixed to a 
constant value that facilitates the estimation 
task of the PF-based algorithm and (ii) a 
correction term dependent of the error is 
introduced in the transition function. In this 
approach, the inclusion of a PF-based 
algorithm is critical since the update stage of 
the filtering process [5]-[15] ensures that the 
one-step-ahead state estimate will consider 
the likelihood of measurements, regardless of 
the effect of the OFCL on the a priori 
estimate of the filter (to diminish the 
difference between 

| 1k kx   to ˆs
kx , for  < 0). As 

the variance of k   is set to 2
0 , the particle in 

the filtering algorithm can be drawn from a 
wider region of the state space, facilitating the 
correction of the model parameter estimate. 

Given that in the event of significant errors in 

the short-term prediction the variance of k   

is set to 2
0  in this OFCL (value typically 

larger than the variance at the time of the 
update), both the state and RUL estimates 
that are generated immediately after the 
correction will exhibit an negative effect in 
the precision of the corresponding pdf’s. 
Nevertheless, this method offers the 
possibility of strong and sudden adjustments 
in the value of the unknown model parameter 
that is being estimated on-line. Due to these 
capabilities, responses present a shorter 
transient time, and the s-step-ahead predicted 
error remains outside the interval [-eth ; eth] 
for shorter periods of time, compared to the 
approach presented in Section 3.1. 

Both of the aforementioned approaches for 
OFCL in prognostic algorithms have been 
implemented and tested with actual fault data 
to evaluate their respective performance in 
terms of the resulting estimate for the time-
of-failure (ToF). Results are described and 
analysed in the next section.  

4.  Implementation of Outer 
Feedback Correction Loops: 
Analysis of Results 

Consider the case of implementing the 
approaches described in Section 3 to help 
determining the ToF for a propagating fatigue 
crack on a critical component in a rotorcraft 
transmission system. The objective in this 
seeded fault test is to analyze how a cyclic 
load profile affects the growth of an axial 
crack. Although a physics-based model for a 
system of these characteristics may be 
complex, it is possible to represent the 
growth of the crack (fault dimension) using 
the much simpler population-growth-based 
model [3]: 

2
1

1

( )m
k k k k

k k k

x x C a b k k 

  




      

 

 



 (8) 

where xk is a state representing the fault 
dimension at the kth cycle of operation, k is an 
unknown model parameter, C and m are 
constants associated with the fatigue properties 
of the material. The constants a and b depend 
on the maximum load and duration of the load 
cycle. The initial value for the model 
parameter 0 is arbitrarily set to 0.5 and a PF-
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Figure 2. First OFCL approach: Evolution in    
time of crack length and ToF pdf estimates       

using [p q]T = [1.2 0.95]T. Time axis is measured   
in cycles of operation. 

Figure 3. First OFCL approach: Average values for 
95% confidence intervals for the ToF and estimates 
of the model parameter k. Black line indicates the 
averaged expectation of the variable under analysis, 
while light-dark lines are the upper and lower bound 

of the 95% confidence interval, respectively. The 
dotted horizontal line in Figure 3.a) corresponds to 

the ground truth failure time of the system 

based algorithm is applied to generate a pdf 
estimate of the state [xk k]

T considering a 
vibration-based feature (Sideband Ratio, SBR 
[4]-[5]) as online measurements. 

The analysis described in the following 
paragraphs is based on statistical comparison 
of 40 realizations for each of the proposed 
OFCLs. The number of prediction steps 
considered to compute the short-term 
prediction error (at the kth cycle) s

ke , is set to   

 

 

 

 

 

 

 

 

 

 

 

 

s = 5. The authors would like to state that 
previous experimentation was conducted to 
define an appropriate value for this 
parameter. Future work will be focused in 
determining the optimal value of the short-
term horizon. 

4.1 Analysis of results for the first 
OFCL proposed approach 

The first OFCL approach, presented in 
Section 3.1, has been originally tested for two 
different choices for the algorithm parameter 
vector [p q]T: [1.05 0.9]T and [1.2 0.95]T. 
Although the first choice results in a shorter 
transient times whenever is needed to apply 
sudden updates in the value of the model 
parameter k, it does not provide the best 
results in terms of prognostic results. Indeed, 

the algorithm provides more accurate results 
in terms of accuracy in the RUL estimate 
when [p q]T = [1.2 0.95]T. This is based on 
the fact that larger values for p and q imply 
higher values in the variance of the process 
noise k  for more extended periods of time, 

thus providing better results from the PF-
based estimation algorithms [5]. Results for 
one particular realization of the PF-based 
prognostic algorithm, using the proposed 
OFCL, are shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 shows the average values for both 
the Time of Failure (ToF) and the estimate of 
k using the [p q]T = [1.2 0.95]T; computed 
over 40 realizations of the PF algorithm, and 
using the same measurement data for each 
realization. Results show that the resulting 
ToF estimate is biased during most part of the 
simulation, which is a key issue when 
evaluating the performance of the prognostic 
algorithm. It is important to mention, though, 
that the ToF estimate is always conservative, 
in such a manner that the actual failure time 
(defined by the instant when the crack 
reaches 4.5 inches) is always posterior to the 
upper bound of the 95% confidence interval 
(computed from the PF-based pdf estimate 
[3]-[5]). 
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4.2 Analysis of results for the second 
OFCL proposed approach 

The second OFCL approach, presented in 
Section 3.2, has been tested using the same 
data set and using identical initial conditions 
for the unknown model parameter k. The 
algorithm implementation used  = 0.01 and 
p = 0.95. Figure 4 shows results for one of 
the 40 realizations tested using the 
aforementioned approach. It can be noticed  

 

 

 

 

 

 

 

 

 

 

 

 

that this procedure provides a more precise 
estimate of the ToF, compared to the results 
obtained when implementing the first OFCL. 

Figure 5 shows average values for both the 
expectation of the ToF and bounds of the 
95% confidence interval, computed with 
results obtained in all 40 realizations of the 
PF-based prognostic algorithm when using 
the second proposed OFCL. It is important to 
note that all estimates exhibit a considerably 
smaller bias when compared to results from 
the first proposed approach. Also, the 
transient time associated to the estimation of 
the model parameter k has decreased with 
respect to the one presented in Figure 3. 

In this sense, the correction loop helps the 
prognostic routine in correcting the estimate of 

the unknown model parameter, thus obtaining 
more accurate results. In fact, changes in the  
operating condition of the seeded fault test 5 
are reflected in updates in the model 
parameter estimate that are not detected by 
the PF-based prognostic algorithm when 
using the first OFCL. From a prognostic 
algorithm standpoint, these results are far 
more desirable. This approach, in summary, 
shows a more accurate and reliable tracking 
of the model parameter value, but at a price 

 

 

 

 

 

 

 

 

 

 

 

 

of having a noisier behavior in the resulting 
ToF expectation. 

5.  Performance Indices for 
Prognostic Algorithms 

Three performance indices have been 
developed to provide the means for an 
adequate quantitative comparison among the 
proposed outer feedback loops and their 
effects on prognostic algorithms. This section 
of the paper presents a mathematical 
definition and the results that are obtained 
when using these indices to evaluate the 
performance of the proposed outer correction 
loops in prognosis. 

 

Figure 4. Second OFCL approach: Evolution in 
time of crack length and ToF pdf estimates using 

transition-function management. Time axis is 
measured in cycles of operation. 

Figure 5. Second OFCL approach: Average values 
for 95% confidence intervals for the ToF and 

estimates of the model parameter k. Black line 
indicates the averaged expectation of the variable 

under analysis, while light-dark lines are the upper 
and lower bound of the 95% confidence interval, 
respectively. The dotted horizontal line in Figure 

5.a) corresponds to the ground truth failure time of 
the system 
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5.1 RUL Precision index 

This index considers the relative width of the 
95% RUL confidence interval (CIt), 
computed at time t, when compared to the 
expected RUL. 

 

 

sup( ) inf( )

1

1

( )

0 ( ) 1, [1, ), ,

t t

t

CI CI

E ToF t

t

I t e

I t t E ToF t

 
   

    

 (9) 

where Et{ToF} is the expectation of the time-
of-failure, conditional to measurements up to 
time t. It allows quantifying the concept “the 
more data the algorithm processes, the more 
precise should the prognostic results be”. 
Precise prognostic results are associated to 
values of I1(t)  1. 

5.2 RUL accuracy-precision index 

 This index represents the amount of bias in 
ToF estimates, relative to the width of the 
corresponding 95% confidence interval CIt, 
and penalizes the fact that Et{ToF} > Ground 
Truth {ToF} (actual failure happens before 
the ToF expectation, conditional to 
measurements up to time t). 

   

 

sup( ) inf( )
2

2

( )

0 ( ), [1, ),

t

t t

Ground Truth ToF E ToF

CI CI

t

I t e

I t t E ToF t

 
   

   

 (10) 

Accurate and useful prognostic results are 
associated to values of the index such that 0  1 
- I2(t)  , where  is a small positive constant. 

5.3 RUL on-line steadiness index 

This index represents a measure of the 
algorithm capability to provide consistent 
prognostic results in time. It considers the 
evolution in time of the conditional ToF 
expectation, Et{ToF}, and quantifies the 
concept “the more data the algorithm 
processes, the more steady should the 
prognostic results be”. 

   3

3

( )

( ) 0,

tI t E ToF

I t t

Var

  
 (11) 

Steady results are associated to small values 
of this index. 

As it has been mentioned in Section 4, 
statistical comparison between the two 
proposed prognostic methods has been 
performed on the base of 40 realizations of the 
stochastic process, for each one of the proposed 
OFCL in PF-based prognostic algorithms, and 
using the aforementioned indices. 

Figure 6 shows the obtained results, where 
averaged precision, accuracy and steadiness 
indices are compared for both approaches. 
Particularly, the RUL precision index shows 
that that both schemes are similarly precise 
(width of the resulting 95% CI), even 
considering the fact that the system 
undergoes a change in the operating 
conditions around the 400th cycle (situation 
that is reflected in the resulting estimate of 
the unknown model parameter; see Figure 5). 

 

 

Figure 6. Performance indices for prognostic 
algorithms. First and second OFCL approaches 

for PF-based prognostic algorithms are shown in 
dotted and continuous lines, respectively 

Regarding the other two indices, it can be 
noted that the second approach for OFCL is 
more accurate, although less steady, than the 
first one. This follows from the fact that, as it 
has been mentioned in Section 3.2, the 
second OFCL ensures high likelihood of 
estimates with respect to the current 
measurements, minimizing the one-step-
ahead prediction error at the price of 
decreasing the steadiness of the ToF estimate. 
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6. Conclusions 

This paper presents, analyzes, and evaluates 
two different approaches for outer feedback 
correction loops (OFCL) in PF-based 
prognostic algorithms. These approaches 
incorporate information, about the short-term 
prediction error, back into PF-based 
estimation routines to improve its 
performance in terms of both the resulting 
state and ToF pdf estimates. Statistical 
analysis of the proposed OFCL for prognostic 
algorithms is performed on the basis of three 
performance indicators: precision, accuracy, 
and steadiness indices. Results show that an 
OFCL modifying both the variance of the 
process noise and transition functions 
associated to unknown model parameters 
improves the precision and accuracy of the 
obtained ToF 95% confidence intervals. Both 
approaches are tested using actual data from a 
seeded fault test in a critical component of 
rotorcraft transmission system. 
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