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Abstract

The design of two single-input single-output (SISO) controllers for induction motors based on adaptive passivity is presented in this paper.
The two controllers work together with a field orientation block. Because of the adaptive nature of the proposed controllers, the knowledge of the
set motor–load parameters is not needed and robustness under variations of such parameters is guaranteed. Simple proportional controllers for
the torque, rotor flux and stator current control loops are used, due to the control simplification given by the use of feedback passive equivalence.
A new principle called the “Torque–Flux Control Principle” is also stated in this article, which considerably simplifies the controller design,
diminishing the control efforts and avoiding also rotor flux estimation.
c© 2007, ISA. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The design of suitable control algorithms for induction
motors has been widely investigated during the last decade and
at the beginning of this. Although the field orientation principle
has been imposed as an obligatory part of the control schemes
that guarantees high performance, the speed, torque and rotor
flux controllers continue evolving. Since the beginning of the
vector control of AC drives, seen as a viable replacement of
the traditional DC drives, several techniques of linear control
have been used, such as P, PI and PID regulators, and exact
feedback linearization [1,2]. Due to their characteristics these
techniques do not guarantee a suitable machine operation for
all operation ranges and they do not consider the variations
of the set motor–load parameters. In this sense, there are
some applications where it is required to operate at several
speeds between zero and the nominal, the motor can warm
up diminishing the stator and rotor resistances, or perhaps
the inertia of the load can vary (e.g. a reel being filled in
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the textile industry). Several nonlinear control techniques have
been proposed in order to overcome the above problems.

Sliding mode techniques [3–5] guarantee robustness under
variations of some parameters such as load torque and rotor
resistance. Nevertheless this control technique presents the
chattering effect and acoustic noise as main disadvantages.
Artificial intelligence techniques using fuzzy logic, neuronal
networks or their combinations, which can even include
optimization algorithms based on genetic algorithms, have
also been proposed by some authors [6,7]. The fuzzy logic
can guarantee robustness under parameter variations and load
disturbances, but it uses membership functions which require a
large practical experience for their choice. On the other hand,
the neuronal networks guarantee good results but they require
a training process that can be off-line, on-line or a combination
of these. Control techniques based on passivity have also been
suggested [5,8] but they are not robust under variations of the
set motor–load parameters.

All the previous techniques are based on rather complex
control schemes that might involve a great deal of work in:
the choice of the right parameters and functions (in the case
of fuzzy control), the off-line training or the on-line parameter
estimation at every instant of time (in the case of ANN), the
eserved.
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state variable estimation (rotor flux estimation) and the design
of the control strategy based on the estimations. For induction
motor control it becomes necessary to use robust adaptive
techniques, to avoid the parameter and rotor flux estimations
to end up with simple controllers considering the model
nonlinearities. Recently, in [9,10,14,15] two novel adaptive
feedback passive equivalence techniques were proposed for
SISO and MIMO systems. They consider the nonlinear model
characteristics and they are adaptive in nature, guaranteeing
robustness under all model parameter variations.

Based on the control techniques presented in [9,10] for
SISO systems, two control strategies for induction motors are
proposed in this paper, one with fixed adaptive gains and
the other with time-varying adaptive gains. These strategies
are suitably simplified by using the new principle called the
“Torque–Flux Control Principle” which is also proposed in the
paper. This principle simplifies the design of the torque and flux
controller that work together with a field orientation block. By
applying this principle to the design of the two controller given
by [9,10], two control schemes without requiring parameter and
variable estimations and using simple proportional gains for the
speed, rotor flux and stator currents control loops are obtained.
A MIMO version of the techniques proposed in this paper
was developed in [16], having a larger number of adjustable
parameters. The results proposed here are much simpler since
both controllers present only two adjustable parameters using
simple adaptive laws, guaranteeing results similar to those
presented in [16] from the robustness viewpoint, under a wide
range of motor–load parameter variations as well as under a
wide range of proportional gain variations.

The Controller with Fixed Adaptive Gains (CFAG) and the
Controller with Time-Varying Adaptive Gains (CTVAG) are
preliminary results of a research project aimed to develop a beta
product that will impact the induction motor control industry.
The first strategy (CFAG) is simpler but a better transient
behavior is expected when using the second one (CTVAG).
Further experimental studies will determine which technique
is better, depending perhaps on technical requirements, such
as precision, transient response, operation range or on load
characteristics. If the alpha product justifies marketing this
approach, then movement onto beta site development should
proceed.

2. Motor model and passive decomposition scheme

2.1. Motor model

An induction motor model obtained from the generalized
electrical machine equations will be used for the controller
design. Magnetic field linearly distributed through the air gap
is assumed and the resulting model is applicable to a p-poles
machine. Iron losses, saturation and hysteresis phenomena
are neglected. The reference axes are fixed in arbitrary x–y
coordinates that rotate at a generic speed ωg . A generic
coordinate system is adopted to allow appreciation of the
advantages of the controller if it is expressed on diverse axes.
The resulting equations are [11]
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where isx , isy are the stator currents, ψr x , ψr y are the rotor
fluxes, ωr is the rotor speed and usx , usy are the stator
voltages, considered as control inputs. Lm, Ls, Lr are the
mutual, stator and rotor inductances respectively, Rs, Rr are the
stator and rotor resistances, J is the rotor inertia, Tem is the
electromagnetic torque produced by the motor, Tc is the load
torque and Bp is the mechanical viscous damping coefficient.
We also define

σ = 1 −
L2

m

Ls Lr
, leakage or coupling factor.

R′
s = Rs +

L2
m

L2
r

Rr , stator transient resistance.

σ Ls, stator transient inductance.

The electromagnetic torque is given by

Tem =
3
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2
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(ψrg × i sg) =

3
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2
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∣∣ψrg
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3
2

p

2
Lm
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(ψr x isy − ψr yisx ). (2)

The representation of the vectors, together with the
nomenclature used in the study, is shown in Fig. 1.

2.2. Passive decomposition

A passive decomposition is used in [5,8], valid also for the
generalized machine. It considers the induction motor as the
interconnection of the electrical and the mechanical systems
by means of a negative feedback, as seen in Fig. 2. Starting
from the previous statement the induction motor control can be
carried out by controlling the electrical system, considering the
mechanical system as a passive disturbance of (Tem − Tc) on
the variable ωr .

Starting from the previous idea the following assumption is
stated.

Assumption 1. There exists an input vector voltage u∗
s =

[u∗
sx u∗

sy]
T which guarantees that the desired currents i∗s =
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Fig. 1. Angle between stator current and rotor flux vectors.

Fig. 2. Electrical system to be controlled with a passive disturbance.

[i∗sx i∗sy]
T and fluxes ψ∗

r = [ψ∗
r x ψ

∗
r y]

T can be established in
the induction motor.

Then we can define the variable errors as the difference
between the desired variable and the real one. For example,
eisx = i∗sx − isx , where i∗sx is the reference current component
and isx the current component obtained through measurements.
Then we can write the electrical system in terms of the variable
errors (deviation variables) as follows:
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+
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(3)

where y = i∗s − is = [(i∗sx − isx ) (i∗sy − isy)]
T

= [eisx eisy ]
T

=

[y1 y2]
T

∈ R2, z = ψ∗
r −ψr = [(ψ∗

r x −ψr x ) (ψ
∗
r y −ψr y)]

T
=

[eψr x eψr y ]
T

= [z1 z2]
T

∈ R2 and

u = u∗
s − us = [(u∗

sx − usx ) (u
∗
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T

= [eusx eusy ]
T

= [u1 u2]
T

∈ R2.
In order to apply the techniques proposed in [9,10] it is
necessary to express the electrical system as two SISO systems.
Then the MIMO system (3) will be divided into two SISO
subsystems defined as follows:

ẏ1 = A′

1(yi , z)+ B ′

1(yi , z)u1

ż = f ′

0(z)+ P ′

1(yi , z)y1

}
for i = 1, 2 (4)

ẏ2 = A′
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2(yi , z)u2

ż = f ′
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2(yi , z)y2

}
for i = 1, 2 (5)

with y1, y2 scalar outputs, u1, u2 scalar inputs, A′

1, A′

2, B ′

1, B ′

2,
scalar functions, f ′

0 ∈ R2, P ′
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2 ∈ R2 and z ∈ R2. For our
particular case we will have:
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Subsystem 2:

ẏ2 = ėisy
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(7)

with Tr = Lr/Rr .

3. Controller design through passive equivalence

3.1. Model adjustments

In order to apply the theorems of [9,10], both subsystems
must be parameterized in the following normal form [13] with
linear explicit parametric dependence:
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ẏi = ΛT
ai Ai (yi , z)+ Λbi Bi (yi , z)µi

ż = Λ0 f0(z)+ Λpi Pi (yi , z)yi

}
i = 1, 2 (8)

with z ∈ R2, yi ∈ R, ui ∈ R, Ai (yi , z) ∈ R4, Bi (yi , z) ∈

R, f0 ∈ R2, Pi (yi , z) ∈ R2. The parameters Λai ∈ R4,Λbi ∈

R, Λ0 ∈ R2×2, Λpi ∈ R2×2. The term function ż = f0(z),
in both subsystems, is the so called zero dynamics [17,18].
Now it is necessary to check whether both subsystems are
locally weakly minimum phase by finding a positive definite

differentiable function W0(z) satisfying
[
∂W0(z)
∂z

]T
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leading us to conclude that both subsystems are locally weakly
minimum phase. Now we proceed to express them in the normal
form defined by (8).

For the Subsystem 1 we have
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For the Subsystem 2 we can write
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For both subsystems (10) and (11) we have

Λ0 f0(z) =

−
Rr

Lr
eψr x − (ωg − ωr )eψr y

(ωg − ωr )eψr x −
Rr

Lr
eψr y

 .

3.2. Proposed controller with fixed adaptive gains (CFAG)

From [9] the subsystems (10) and (11) must be locally
weakly minimum phase and matrices Bi (yi , z) for i =

1, 2 should be invertible. The first condition was already
demonstrated in (9). From Eqs. (10) and (11) it can be readily
checked that matrices Bi (yi , z) = 1 for i = 1, 2, so they are in
fact invertible.

Then, according to [9] there exists an adaptive controller of
the form

ui (yi , z, θhi ) =
1

Bi (yi , z)

×

[
θT

1i (t)Ai (yi , z)− θ2i (t)P1i (yi , z)
∂W0(z)

∂z1

− θ3i (t)P2i (yi , z)
∂W0(z)

∂z2
+ θ4i (t)µi

]
for i = 1, 2 (12)

with z ∈ R2, yi ∈ R, ui ∈ R, µi ∈ R, Ai (yi , z) ∈ R,
Bi (yi , z) ∈ R, f0 ∈ R2, P1i (yi , z) ∈ R2, P2i (yi , z) ∈ R2

and θhi (t) for i = 1, 2 and h = 1, . . . , 4 adjustable parameters
with θ1i (t) ∈ R4, and θ2i (t), θ3i (t), θ4i (t) ∈ R updated with
the adaptive laws

θ̇1i (t) = −sign(Λbi )Ai (yi , z)yi
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that applied separately to each subsystem (8) make them locally
feedback equivalent to a C2-passive subsystem from the new
inputµi to the output yi [9]. The parameters Λai ∈ R, Λbi ∈ R,
Λ0 ∈ R, Λpi ∈ R2×2 for i = 1, 2 represent constant but
unknown parameters from a bounded compact set Ω . µ1, µ2
signals will be chosen as in (27).

3.3. Proposed controller with time-varying adaptive gains
(CTVAG)

Another adaptive controller with time-varying gains [10]
can also be proposed for this case. This controller denoted as
CTVAG has the following form:
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with z ∈ R2, yi ∈ R, ui ∈ R, µi ∈ R,
Ai (yi , z) ∈ R, Bi (yi , z) ∈ R, f0 ∈ R2, P1i (yi , z) ∈

R2, P2i (yi , z) ∈ R2, for i = 1, 2 and θhi (t) for i =

1, 2 and h = 1, . . . , 4, are adjustable parameters with θ1i (t) ∈

R4 and θ2i (t), θ3i (t), θ4i (t) ∈ R, updated with the adaptive
laws
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i = 1, 2 (15)

where γ1i (t) ∈ R4×4 and γ2i (t), γ3i (t), γ4i (t) ∈ R are time-
varying adaptive gains defined by

γ̇1i (t) = −

[
γ1i Ai (yi , z)AT

i (yi , z)γ1i

]
γ̇2i (t) =

[
γ2i (t)P1i (yi , z)

(
∂W0(z)

∂z1

)]2

γ̇3i (t) =

[
γ3i (t)P2i (yi , z)

(
∂W0(z)

∂z2

)]2

γ̇4i (t) = [γ4i (t)µi ]2


i = 1, 2 (16)

with γi (t) =
[
Trace{γ1i (t)} γ2i (t) γ3i (t) γ4i (t)

]
∈ R4.

This controller can be applied to each separate subsystem (8)
and according to [10] this will convert each of them into C2-
passive equivalent systems. The parameters Λai ∈ R, Λbi ∈

R, Λ0i ∈ R, Λpi ∈ R2×2 represent constant but unknown
parameters from a bounded compact set Ω . µ1, µ2 signals will
be chosen as in (27).

By applying the CFAG given by Eqs. (12) and (13) and
CTVAG given by Eqs. (14)–(16), we will obtain two control
schemes that do not need the knowledge of any motor–load
parameters. However it is necessary to know the error of the
rotor flux components (z1 and z2), i.e. rotor flux estimation
is needed. We will show in Section 4 that this will be not
necessary.

4. Principle of Torque–Flux Control

4.1. Basis and statement

From now on we will work in a control scheme consisting of
two kinds of blocks: the adaptive passive controllers, to control
the stator current components and rotor flow (Fig. 3(a) and (b)),
and the field orientation block (Fig. 3(c)). As can be seen in
Fig. 3(a), the block will have an external closed-loop speed
control feeding the internal closed-loop isy current control.

In Fig. 3(b) it can be seen there is a block with an
external open-loop ψr x control feeding the internal closed-
loop isx current control. The second block is ejρg , represented
in Fig. 3(c), which transforms from a stationary to a rotating
coordinate system. This is a very important control block
employed to guarantee an adequate field orientation such that
the maximum output torque is obtained.

Once this point is made clear and since the controller
works together with the field orientation block the following
assumption can be made.

Assumption 2. It is assumed that the coordinate transforma-
tion block is equal to ejρg , guaranteeing an adequate field orien-
tation. Then we can write

ρ̇g = ωg = ωr +
Lm

Tr

isy

ψr x
. (17)

The previous assumption implies several consequences that
are mentioned next.
Consequences:

1. From the fourth part of Eq. (1) we can write

ψ̇r y = Rr
Lm

Lr
isy − (ωg − ωr )ψr x −

Rr

Lr
ψr y,

with ωg = ωr +
Lm

Tr

isy

ψr x

ψ̇r y = Rr
Lm

Lr
isy −

[(
ωr +

Lm

Tr

isy

ψr x

)
− ωr

]
ψr x −

Rr

Lr
ψr y

ψ̇r y +
Rr

Lr
ψr y = 0 ⇒ lim

t→∞
ψr y = 0.

(18)

In practice the quadrature flux component will be practically
zero at t = 5Tr , becauseψr y is given by a first-order differential
equation.
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Fig. 3. Control blocks involved in the control scheme.
2. From Eq. (1) and considering the previous consequence
given by (18) the following model for the electrical system is
obtained:

i̇sx = −

(
Rs

σ Ls
+

L2
m Rr

σ Ls L2
r

)
isx + ωgisy +

Lm

σ Ls L2
r

Rrψr x

+
Lm

σ Ls Lr
ωrψr y +

1
σ Ls

usx

i̇sy = −ωgisx −

(
Rs

σ Ls
+

L2
m Rr

σ Ls L2
r

)
isy −

Lm

σ Ls Lr
ωrψr x

+
Lm Rr

σ Ls L2
r
ψr y +

1
σ Ls

usy

ψ̇r x = Rr
Lm

Lr
isx −

Rr

Lr
ψr x .

(19)

3. From third part of equation (19) it can be concluded that
ψr x is a function of de isx . In order to emulate an independent
field DC motor, the objective will be to maintain the rotor flux
constant.

4. From Eq. (2) we have Tem =
3
2

p
2

Lm
Lr
(ψr x isy −ψr yisx ) and

due to Consequence 1 given by Eq. (18), the electromagnetic
torque can be expressed as Tem =

3
2

p
2

Lm
Lr
ψr x isy where it can be

seen that Tem is a function of isy .
5. The control of the rotor flux ψ̄r = ψr x is carried out

through the stator current direct component; it is desirable
to keep it fixed. The control of torque Tem is carried out
through the stator current quadrature component. All the above
is obtained by using the coordinate transformation block and
the corresponding field orientation.

Based on above assumption and the five consequences
derived from it, the following control principle is established.
The Principle of Torque–Flux Control
When designing controllers for an alternating current motor
based on a model of the Generalized Electrical Machine,
working in a control scheme with the coordinate transformation
block ejρg (the Field Oriented Scheme) to transform from a
stationary to a rotating coordinate system, the control of the
torque and flux can be done by controlling the stator currents.
So, it is useless to make efforts to control the rotor flux or rotor
current components. The controller still guarantees a suitable
torque and flux control and it is possible to discard all the terms
related to the rotor current or rotor flux components.

By applying this principle not only is the controller design
considerably simplified but also the rotor current or rotor flux
estimations are avoided. It is important to emphasize that
sometimes, even if the field orientation effect is used, the
consequences mentioned above are not fulfilled due to a bad
orientation, e.g. due to a bad estimation of parameter Lm/Tr .
Nevertheless, experimental results show that the validity of the
Principle still holds in those cases. The controller will take care
of an effective control of the components of the stator current
whether the field orientation guarantees or not that the rotor flux
component errors tend to zero.

4.2. Application to the controller CFAG

Considering the “Principle of Torque–Flux Control”, we will
use the theorem stated in [9]. For the CFAG we will choose
adaptive laws such that the storage functions V1i for i = 1, 2
satisfy the following condition:

V̇1i =

(
∂Wo(z)

∂z

)
Λo fo(z)+

{
n−1∑
j=1

[
Φθ( j+1)i Pj i (yi , z)

×

(
∂Wo(z)

∂z j

)
yiΛ∗

bi + Φθ( j+1)i Φ̇θ( j+1)i
∣∣Λ∗

bi

∣∣] }
+

{
Φθ1i AT

i (yi , z)yiΛ∗

bi
+ Φθ1i Φ̇θ1i

∣∣Λ∗

bi

∣∣}
+

{
Φθ(n+1)iµi yiΛ∗

bi
+ Φθ

(n+1)i
Φ̇θ

(n+1)i

∣∣Λ∗

bi

∣∣} ≤ 0


for i = 1, 2. (20)
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If the rotor flux components are eliminated there results(
∂Wo(z)
∂z

)
= z = 0, and the corresponding factors will vanish

without needing adaptive laws. Then θ( j+1)i = θ̇( j+1)i =

0, j = 1, 2, can be imposed. So it is verified from (20) that
the controller will still make the system (1) equivalent to a C2-
passive system.

From Eqs. (10) and (11) it can be seen that

A1(y1, z) =
[
y1 ωg y2 z1 ωr z2

]T(
∂W0(z)

∂z

)
= z =

[
z1 z2

]T

B(y1, z) = 1

(21)

and

A2(y2, z) =
[
y2 ωg y1 z2 ωr z1

]T(
∂W0(z)

∂z

)
= z

B(y2, z) = 1.

(22)

Now if we do not consider (discard) z = [z1 z2]
T variables,

by making z = 0 in Eqs. (12) and (13) the following simplified
controllers are obtained for Subsystems 1 and 2:
Subsystem 1:

u1(y1, z, θh) = θT
1

[
y1
ωg y2

]
+ θ4µ1

θ̇1 = −y1

[
y1
ωg y2

]
θ̇4 = −y1µ1

 h = 1, 4. (23)

Subsystem 2:

u2(y2, z, θh) = θT
1

[
y2
ωg y1

]
+ θ4µ2

θ̇1 = −y2

[
y2
ωg y1

]
θ̇4 = −y2µ2

 h = 1, 4. (24)

On the other hand, a still more simplified controller is
obtained by setting the controller directly feeding the motor in
the stator coordinate system. This means that ωg = 0, so the
following SISO controller applicable to each subsystem (8) is
finally obtained:

ui (yi , z, θhi ) = θ1i yi + θ4iµi

θ̇1i = −y2
i

θ̇4i = −yiµi

 i = 1, 2
h = 1, 4.

(25)

4.3. Application to the controller CTVAG

In the same way as in Section 4.2 it can be verified that
adaptive laws designed for CTVAG are such that the storage
functions V2i for i = 1, 2 satisfy the following condition:
V̇2i =


n−1∑
j=1

 1√
1 +

1
γ T

i γi

Φθ( j+1)i Pj i (yi , z)

(
∂Wo(z)

∂z j

)
yiΛ∗

bi

+ γ( j+1)iΦθ( j+1)i Φ̇θ( j+1)i

∣∣Λ∗

bi

∣∣



+


1√

1 +
1

γ T
i γi

Φθ1i AT
i (yi , z)yiΛ∗

bi

+ γi1Φθ1i Φ̇θ1i

∣∣Λ∗

bi

∣∣


+


1√

1 +
1

γ T
i γi

Φθ(n+1)iµi yiΛ∗

bi

+ γ(n+1)iΦθ
(n+1)i

Φ̇θ
(n+1)i

∣∣Λ∗

bi

∣∣


+
1√

1 +
1

γ T
i γi

(
∂Wo(z)

∂z

)
Λo fo(z) ≤ 0.

Now, if the rotor flux components are eliminated from

Eqs. (14) and (15), i.e.
(
∂Wo(z)
∂z

)
= z = 0, for i = 1, 2, and

the corresponding factors depending on z will vanish without
employing any adaptive law, so θ( j+1) = θ̇( j+1) = γ( j+1) =

γ̇( j+1) = 0, j = 1, 2 can be imposed. Besides, from (18) and
(19), by setting the controller in the stator coordinate system,
where ωg = 0, a more simplified controller applicable to each
subsystem (8) is obtained from (14)–(16) as follows:

ui (yi , z, θhi ) = θ1i yi + θ4iµi

θ̇1i = −sign(Λ∗

bi )
γ−1

1√
1 +

1
γ T

i γi

y2
i

θ̇4i = −sign(Λ∗

bi )
γ−1

4√
1 +

1
γ T

i γi

µi yi

γ̇1i = − (γ1i yi )
2

γ̇4i = − (γ4iµi )
2



i = 1, 2
h = 1, 4

(26)

4.4. Practical considerations in the design

The designs obtained up to here are based on Assumption 1
and use both desired and real variables. Next we will explain
how to apply these controllers in practice. In the control scheme
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we will use a typical cascade control for induction motors
as shown in Fig. 3, obtaining the controller output variables.
Another assumption on these variables is made.

Assumption 3. The desired current and flux variables, i∗sx , i∗sy
and ψ∗

r x , ψ
∗
r y , obtained by applying a desired input voltage

u∗
sx , u∗

sy (Assumption 1) are the same variables as are obtained
from the speed controller output (Fig. 3(a)) and the flux
controller output (Fig. 3(b)) respectively.

On the basis of Assumption 3 we can write

u1 = u∗
sx − usx , with u∗

sx = µ1

u2 = u∗
sy − usy, with u∗

sy = µ2.
(27)

From (27) we obtain the real voltages to be applied:

usx = µ1 − u1

usy = µ2 − u2.

Besides, it is known that a proportional controller of the form
µi = −kyi for i = 1, 2 turns a passive system asymptotically
stable [9,10]. This is exactly the kind of feedback that will be
used here (P controller).

5. Simulation results

In order to verify the advantages of the proposed controllers
a comparison between the proposed controllers and a traditional
current regulated PWM induction motor drive with PI loop
controllers was carried out. In the simulations there was
considered a squirrel-cage induction motor whose nominal
parameters are: 15 [kW] (20 [HP]), 220 [V], f p = 0.853, 4
poles, 60 [Hz], Rs = 0.1062 [�], Xls = Xlr = 0.2145 [�],
xm = 5.8339 [�], Rr = 0.0764 [�], J = 2.8 [kg m2

] and
Bp = 0. These parameters were taken from [12]. The reference
speed will increase in a ramp fashion up to 0.5 s. and after that
time it will remain constant. On the other hand the load torque
will be fixed equal to the nominal value. All the simulations
were made using the software package MATLAB SIMULINK
with the ODE 15s (stiff/NDF) integration method and a variable
step size.

In Fig. 4 some steady state motor characteristics are shown,
when a nominal voltage is supplied. It can be seen from Fig. 4
that even though the nominal torque is equal to 69.5 [N m],
this motor can supply a torque of 230 [N m]. Besides, in spite
the fact that the nominal current is 49.7 [A] it can reach values
of 280 [A] at each phase. This is very important because in
some cases the motor should be able to develop such high
torque values in transient periods, for example to satisfy high
performance.

The control schemes used in this study are shown in
Figs. 5 and 6, where in the proposed control scheme simple
proportional controllers are employed.

The control scheme shown in Fig. 5 was taken from
[12], where it is important to note that the “Torque Flux
Control” block depends on the exact values or the estimates
of parameters Xr , Xm, Rr . Besides, the “Field orient” block
depends on the exact values or the estimates of Xm and Tr . The
Fig. 4. Steady state characteristics of the 20 HP motor employed in this study.

PI speed controller is tuned with P = 30 and I = 10 (see
Ref. [12]). The other control loops (flux and current) are not PI
controllers.

The proposed control scheme is shown in Fig. 6. The two
proposed controllers CFAG and CTVAG were developed and
tested in the “Proposed Controller” block. It is important to
observe that the speed, rotor flux, and stator current controllers
are simple proportional (P) gains. These proportional gains
were tuned such that the current, flux, speed and voltage were
in suitable ranges.

This control scheme just needs the exact values or the
estimates of parameters Xm and Tr for the “Field orient” block.
No other parameter or state estimations are needed.

Fig. 7 shows the information used to compare the two
control schemes. There are shown the variations of the
reference speed ω∗

r (Fig. 7(a)), the variations in load torque
(Fig. 7(b)), the variation of about 30% in the stator and rotor
resistance (Fig. 7(c) and Fig. 7(d)), the linear increasing up
to the double the load inertia during the motor operation
(Fig. 7(e)) and the variations in the viscous friction coefficient
(Fig. 7(f)). For both proposed control strategies and the
selected traditional control, five comparative tests considering
the variations shown in Fig. 7 were carried out. These tests will
allow us to study the behavior of the schemes in the following
situations:
Situations:

1. Initially all the schemes are simulated with the motor
nominal data. The reference of speed is increased as a ramp
from 0 to 190 [RPM] in 0.5 [s] and the load torque is fixed at
the nominal value 69.5 [N m].

2. Variations of the load torque, as indicated in Fig. 7(b).
3. Variations of the speed reference, as shown in Fig. 7(a).
4. Variation of the motor resistances, as shown in Fig. 7(c)

and 7(d).
5. Variation of the load parameters, as indicated in Fig. 7(e)

and 7(f).
6. Changes in the controller parameters (P and I ) of the

control loops.
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Fig. 5. Traditional current regulated PWM induction motor drive with PI controllers.

Fig. 6. Proposed control scheme with field oriented block.
In all the simulation results for the proposed controllers
shown in what follows, the initial conditions of all the controller
parameters and adaptive gains were set equal to zero, that is to
say, θik(0) = γih(0) = 0, for i = 1, 2 and h = 1, 4.

Figs. 8(a), 8(b) and 8(c) show the results obtained for the
three controllers under normal conditions (i.e. according to
Situation 1).

In Fig. 8(a) it can be seen how the traditional control
based on linear controllers exhibits a steady state velocity
error tending to 0.75%. The transient response is slow and
presents initial oscillations. We can observe how the machine is
magnetized, with the flow expressed in volts. The torque during
the ramp is large to compensate for the inertia. Something
similar happens with the phase current. The other phase
voltages and currents present a waveform similar to that shown
in Fig. 8(a), although shifted by 120◦.

It is observed from Fig. 8(b) that the controller CFAG
presents a better transient response after 0.5 [s] and with a
more accurate stationary state (with a velocity error less than
0.5%) than the traditional case. In Fig. 8(c) we can see that
the CTVAG is as accurate as the CFAG. Nevertheless, a better
transient response is observed, being as fast as the CFAG case
but less oscillatory.

We see in Figs. 9(a), 9(b) and 9(c) how the different schemes
behave under variations of the load torque, as described in
Fig. 7(b). From Fig. 9(a) it can be seen that for lower load torque
greater speed accuracy is obtained, tending to zero error for the
case when there is no load torque. The error in steady state is
about 1% for a nominal load and 0.45 % for half a nominal load.

In the case of the CFAGshown in Fig. 9(b), the error values
are smaller than for the traditional case, being 0.5% for a
nominal load and 0.22% for half a nominal load. We observe
how this controller is less affected under abrupt variations of
load torque.

The controller CTVAG presents a similar response to
CFAG, but in all the cases the transient response is of better
quality. This can be concluded from Fig. 9(c).

We see now in Figs. 10(a), 10(b) and 10(c) the behavior
under variations of the speed reference at nominal load,
according to the variations indicated in Fig. 7(a). In the case of
the traditional controller (Fig. 10(a)) the error in stationary state
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Fig. 7. Parameter and reference variations used in the set of comparative tests.

Fig. 8(a). Results of the traditional control scheme without considering parameter variations, under a speed ramp.
increases for lower speed. The error is about 1% at nominal
speed and approximately double for half of nominal speed.

The results for proposed controllers CFAG and CTVAG are
much better than the traditional ones, getting smaller errors,
whereas the rest of the variables have a suitable behavior,
similar to the one found for the traditional controller (see
Figs. 10(b) and 10(c)). In these cases we have an error of about
0.5% for nominal speed and approximately 1.1% at half of the
nominal speed.

When analyzing Situation 4 (Fig. 7(c) and (d)) all of the
controllers present a good behavior under changes of the stator
resistance (see Figs. 11(a)–11(c)). Nevertheless, under changes



70 J.C. Travieso-Torres, M.A. Duarte-Mermoud / ISA Transactions 47 (2008) 60–79
Fig. 8(b). Results using CFAG, without considering parameter variations, under a speed ramp.

Fig. 8(c). Results using CTVAG, without considering variations of parameters, under a speed ramp.
of the rotor resistance the correct field orientation is lost and the
speed response is considerably affected. Notice how the flow of
the machine diminishes considerably.

For the proposed controllers shown in Figs. 11(b) and 11(c),
the responses in all the cases are much more robust than the
traditional controller (Fig. 11(a)). Both proposed controllers
present lesser speed errors in the steady state than the classical
scheme.

Considering now the variations of the load parameters
according to Situation 5 (Fig. 7(e) and (f)), none of the three
controllers under study was substantially affected, as shown in
Figs. 12(a)–12(c).
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Fig. 9(a). Results of the traditional controller under variations of load torque.

Fig. 9(b). Results using CFAG, under variations of the load torque.
For the proposed controllers, differences found in the
general behavior still remain. CFAG presents a lesser error in
the steady state than the traditional controller. CTVAG exhibits
a similar response to that of the CFAG but with a better
transient behavior.
In Fig. 13(a) the results corresponding to the traditional
controller are shown for variation of the proportional constant
(P) in the speed loop, from a value of 30 according to [12]
to a value of P = 20. That is, for a variation of 33.3%.
The rest of the flux and current controller parameters and the
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Fig. 9(c). Results using CTVAG, under variations of the load torque.

Fig. 10(a). Results of the traditional control under variations in the speed reference.
value of the integral constant (I ) of the speed loop were not
modified.

It important to point out that with the variation of only
one controller parameter the control scheme does not perform
properly. That is why it was not necessary to explore the
influence of other parameter variations.

In the case of the proposed controllers, the proportional
gains of all the control loops were changed while the integral
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Fig. 10(b). Results using CFAG under variations in the speed reference.

Fig. 10(c). Results using CTVAG under variations in the speed reference.
constant was kept fixed at the value 10. For both controllers
CFAG and CTVAG, variations for the speed control parameters
of 37.5% were applied (P from 80 to 50). The flux control
parameter was varied by 13% (P from 69 to 60). The
proportional gains in the current loops were varied by 33.3% (P
from 30 to 20). From Figs. 13(b) and 13(c) it can be seen that in
spite of these simultaneous variations the speed error continues
to be less than 1% and the transient response after 0.5 [s] was
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Fig. 11(a). Results of the traditional control scheme under variations of motor parameters.

Fig. 11(b). Results using CFAG, for variations of motor parameters.
not affected. CFAG as well as CTVAG guarantee good results
for wide ranges of variations of the proportional gains.

With the proposed control schemes wider parameter
variations can be handled and a large number of parameters can
be changed without an important deterioration of the overall
system behavior.
6. Conclusions

A principle called the “Principle of Torque–Flux Control”
has been proposed in this paper; it is applied to the adaptive
controllers based on passivity given in [9,10]. As a result, two
simplified SISO control schemes have been obtained without
state estimation (components of the rotor flux) and without
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Fig. 11(c). Results using CTVAG, for variations of motor parameters.

Fig. 12(a). Results of the traditional control, for variations of the load parameters.
parameter estimation (parameters of the motor–load set) except
those used for the field orientation block. Their behaviors were
studied and compared with that of a classical control scheme
[12], and they were found suitable and robust.

Compared with other control schemes proposed in the
literature such as those based on sliding modes [3–5], artificial
intelligence [6,7] and non-adaptive passivity [5,8], we have
presented two simple and novel SISO controllers. They have
adaptive characteristics, they are robust in the presence of
load parameter variations and they use simple proportional
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Fig. 12(b). Results of CFAG under variations of load parameters.

Fig. 12(c). Results of CTVAG under variations of load parameters.
controllers in the rotor speed, rotor flux and stator current
control loops. They are also robust for a large range of
proportional gain variations.

All of the above mentioned characteristics for the proposed
control schemes guarantee high performance control, such as
high starting torque at low speed and during the transient,
accuracy in steady state, wide range of speed control and good
response under speed changes.

It was shown that the controller CTVAG presents better
transient response than the controller CFAG, due to the time-
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Fig. 13(a). Results for the traditional controller, under changes in the tuning of the proportional gain of the speed loop control.

Fig. 13(b). Results using CFAG under changes in the tuning of the proportional gains.
varying adaptive gains included. Besides, it has some additional
adjustment possibilities such as adjustment of the initial values
of the controller parameters plus the initial values of time-
varying adaptive gains.
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