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Van der Waals-like transition in fluidized
granular matter

Rodrigo Soto, Médéric Argentina, and Marcel G. Clerc

Departamento de F́ısica, Facultad de Ciencias F́ısicas y Matemáticas, Universidad
de Chile, Casilla 487-3, Santiago, Chile.

Summary. A phase separation of fluidized granular matter is presented. Molecular
dynamics simulations of a granular system, in two spatial dimensions, with a vibrat-
ing wall and without gravity exhibit appearance, coagulation, and evaporation of
bubbles. The instability is produced by the existence of a negative compressibility
region, that is caused by the energy dissipation at collisions. The phenomenon is
analogous to the spinodal decomposition of the gas-liquid transition of the van der
Waals model. A hydrodynamic model gives account for the negative compressibility
and predicts a critical point that is in qualitative agreement with the results of the
simulations. In the onset of phase separation, we have deduced a macroscopic model
that agrees quite well with molecular dynamics simulations.

Granular matter, when fluidized by continuous energy injection exhibits a
variety of phenomena that resembles those of molecular fluids: patterns and
instabilities appear, Rayleigh-Benard like convection is developed, etc [1–3].
The main difference with molecular fluids is that, at collisions, grains dissipate
kinetic energy into the internal degrees of freedom of the grains. Hence energy
must be supplied continuously to sustain a fluidized regime. Experimentally,
energy is usually injected through vibrating walls or by the gravitational field.

Fluidized granular systems have the tendency to create large gradients in
the hydrodynamic fields, and microscopic and macroscopic time and length
scales are not enough separated as in elastic fluids [4]. However, when dissipa-
tion is not too large, fluidized regimes of granular matter are described suc-
cessfully using hydrodynamic models. These models are similar to the Navier-
Stokes equations for elastic fluids, with the addition of an energy dissipation
term.

Here, we describe a new type of instability observed in fluidized granular
matter, analogous to the spinodal decomposition of the gas-liquid transition
in the van der Waals model [5]. The instability was first predicted using a
linear stability analysis of the hydrodynamic equations [6] and later in Ref.
[7]. An nonlinear analysis, as well as the time evolution of the instability was
performed by the authors in Ref. [8].
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The origin of the instability relies on the fact that for granular media the
average granular temperature is a decreasing function of the density for fixed
boundary conditions (see later for a detailed explanation). This results in
negative compressibility for dissipations larger than a critical value giving rise
to a spatial instability. We also show that the instability can be understood
using a simple hydrodynamic model.

We consider a two-dimensional system of grains on an horizontal surface,
with friction ignored, placed in a box with large aspect ratio (see Fig. 1).
Henceforth, we will refer to horizontal and vertical directions as the long
and short directions, respectively; the system is periodic in the horizontal di-
rection. The top wall reflects grains elastically while the bottom one injects
energy into the system by means of a vibrating wall at high frequency ω and
small amplitude A. The collisions with the wall are elastic with no friction,
thus conserving horizontal momentum. Due to the high frequency, the colli-
sions with the wall are uncorrelated, being modeled in a stochastic way. For
simplicity, the vibrating wall is well modeled by a stochastic wall: each time a
grain collides with the wall, it is reflected conserving the tangential component
of the velocity, but the normal component is sorted from a Maxwellian distri-
bution at a certain temperature, that scales as T ∼ m(Aω)2,m being the mass
of the gains [9]. We define the granular temperature (the temperature from
now on), like in molecular fluids, to be proportional to the kinetic energy per
particle in the reference frame of the fluid. We emphasize that both collisions
with the walls and between the grains conserve horizontal momentum.

x

y Elastic wall

Vibrating wall

Fig. 1. Schematic representation of the studied system. Grains are placed in an hor-
izontal box. The bottom wall is vibrating while the top one reflects grains elastically.
The system is periodic in the x direction.

The system is studied using molecular dynamics simulations of the Inelas-
tic Hard Sphere model (IHS) [10–12]. Grains are modeled as smooth rigid
disks and the collisions are characterized by a constant normal restitution
coefficient α. Grains only have translational degrees of freedom and there is
no tangential friction between grains at collisions. The IHS has been widely
studied and reproduces well many of the observed phenomena in granular
fluids at moderate densities, where rotation is not fundamental (see, for ex-
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ample, [10–12]). Units are chosen such that the diameter σ and mass m of
each disk is one. Also, taking the wall temperature as one, energy units are
fixed. Under these conditions, the system is completely defined by the total
number of grains N , the aspect ratio λ = Lx/Ly À 1, the global number den-
sity n0 = N/(LxLy), and the restitution coefficient of the grains α = (1−2q);
the elastic limit corresponds to q = 0.

At low dissipation, the granular media develops vertical density and tem-
perature profiles induced by the dissipation at collisions and the energy injec-
tion mechanism, but both fields are homogeneous in the horizontal direction.
The system is hotter and less dense near the injecting wall, and colder and
denser by the opposite wall (see Fig. 1). For a detailed study of this state see
Ref. [13].

t= 77158

t= 54010

t= 30863

t=100305

Fig. 2. Snapshots of a system with N = 153600, λ = 102.4, n0 = 0.15, Lx = 10240,
and q = 0.02. The configurations correspond to different simulation times. Each
black dot represents a simulated grain and the aspect ratio has been distorted to
make the system visible. The bubble appears at t ≈ 40000.

For a larger dissipation (N = 153600, λ = 102.4, n0 = 0.15, Lx = 10240,
and q = 0.02) an spatial instability is observed: the system exhibits the co-
existence of two fluid phases, characterized by different densities (see Fig. 2).
Initially the fluid remains horizontally homogeneous and suddenly a bubble
(low density region) appears and grows until it achieves its final size. After
that, the system remains stationary with the two phases coexisting.

To characterize in more detail this instability, we analyze the temporal
evolution of the vertically averaged density (coarse grained density) ρ(x, t) =

L−1y
∫ Ly
0

n(x, y, t)dy, where n(x, y, t) is the density field. In Fig. 3 the spatio-
temporal evolution of ρ(x, t) is presented. It is clearly seen that the system
remains in a homogeneous state for a finite large time until the bubble is
nucleated due to density fluctuations. Therefore, this homogeneous state is a
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metastable one. Afterward, the bubble grows with a nearly constant velocity
while two densification fronts propagate away from the bubble at a larger,
but also constant, velocity (illustrated in Fig. 3). When the fronts reach the
growing bubble —through the periodic boundary conditions— it is pushed
inward, leading to damped oscillations in its size. Finally, the system achieves
a stationary state with the bubble.

0 0.25 Lx 0.5 Lx 0.75 Lx Lx
0

0.5 105

1.0 105

1.5 105

2.0 105

2.5 105

Fig. 3. Spatiotemporal evolution of the coarse grained density ρ(x, t), with time
on the vertical axis and increasing upward. The gray scale is proportional to den-
sity, with darker regions representing denser regions in the system. The top graph
corresponds to the molecular dynamics simulation with the same parameters as
in Fig. 2, where the bubble nucleation is triggered by internal noise. In the final
state, the vertically averaged density of the bubble is ρ = 0.025, while in the dense
region ρ = 0.257. The densification fronts are marked with lines of crosses. The
bottom graph is obtained by the simulation of the model defined by Eq. (11) with
ε = −6.6 × 10−4 and ν = 2. The system size is 5400 and the total simulation is
time T = 3.5 × 105. An initial condition (with u = 1.4 × 10−2) that overcomes the
nucleation barrier is imposed. The minimum (light gray) and maximum (dark gray)
densities are u = −2.6× 10−2 and u = 2.9× 10−2, respectively.
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The system shows a different behavior, according to the value of the dissi-
pation parameter q. In Fig. 4 the spatiotemporal evolution of a system with a
smaller dissipation is shown (q = 0.01). In this case four bubbles are created
in the fluid with no apparent metastable time. Two of them merge into a
single one, and later on, the smallest one disappears or evaporates. Later on
the two remaining bubbles evolve slowly, one of them growing while the other
one decreases. Densification fronts, created with the bubbles, are also seen.

0 0.25 Lx 0.5 Lx 0.75 Lx Lx
0

2 104

4 104

6 104

8 104

Fig. 4. The same representation as in Fig. 3, but changing the dissipation parameter
to q = 0.01. In the final simulated state, the vertically averaged density of the
bubbles is ρ = 0.046, while in the dense regions ρ = 0.216. In the bottom graph,
we use the same parameters and gray scale as in Fig. 3 and the initial condition is
u = 7.4× 10−3. In this case there is no nucleation barrier and the initial condition
used in the solution of the model is homogeneous with small fluctuations that are
amplified by the instability.

We have also made a series of simulations keeping constant the value of
q and changing the value of the global density n0. All the simulations were
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done with the following parameters N = 153600, q = 0.02, and Ly = 100. The
spatio-temporal evolution of the coarse grained density ρ(x, t) is represented
in Fig. 5 for different values of n0. For global densities smaller that n0 = 0.03
the system remains stable; for densities between n0 = 0.033 and n0 = 0.15 the
system is unstable or metastable and depending on the case low density regions
(bubbles) or large density ones (droplets) are created; finally for densities
larger than n0 = 0.25 no instabilities were observed. Note that in all cases
(specially visible for n0 = 0.03) density waves created by density fluctuations
are observed in the background regions. These waves propagate with well
defined velocities.

Fig. 5. Spatiotemporal evolution of the coarse grained density ρ(x, t). All the sim-
ulations are done with N = 153600, q = 0.02, and Ly = 100. The simulations
differ in the global density; from left to right and top to bottom the densities are
n0 = 0.03, 0.033, 0.035, 0.04, 0.05, 0.08, 0.15, and 0.30.

The observed behavior is similar to the van der Waals gas liquid transition,
where for temperatures lower that the critical one, there is a density range
for which the homogeneous state is unstable. Here, in the granular fluid, the
control parameter is the dissipation coefficient q instead of the thermodynamic
temperature.

The origin of the instability can be understood as follows. In thermody-
namic equilibrium, the pressure is a monotonous increasing function of the
density and the temperature [14]. But, in this system, the granular tempera-
ture adjusts itself to a stationary profile given by the energy balance between
dissipation at collisions and injection at the vibrating wall. As the dissipation
rate is proportional to density, the stationary temperature is a decreasing
function of ρ. As an outcome, the effective pressure (that is independent of
y due to the absence of gravity) can present a region where it decreases with
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an increasing density. That is, the temperature drop produced by collisions
can be large enough to give rise to a decrease in pressure when increasing
the global density [15]. Then, there can be a region of negative compressibil-
ity (∂pxx/∂n0 < 0) in the same sense as the van der Waals loop in classical
fluids, that triggers the instability.

The existence of the negative compressibility region can be verified nu-
merically as follows. We have performed molecular dynamics simulations of
the IHS system in tall boxes (Lx ¿ Ly) to prevent the spatial instability
to develop; when the horizontal system size is small, there is a large surface
energy cost in creating a bubble, and the system remains stable. We com-
pute the horizontal momentum flux (x−x component of the pressure tensor,
pxx), averaged over the vertical direction for different values of the global
density n0 and the dissipation coefficient q. For constant q, the pressure pxx
exhibits the appearance of van der Waals loops, with a critical point located
at q ≈ 0.0047 and n0 ≈ 0.15 (see Fig. 6). For larger values of q there is a region
with negative compressibility that is bounded by the spinodal curve. Also, we
can compute the coexistence curve using Maxwell’s construction. The region
between the coexistence and spinodal curves define the metastability region,
where bubbles or droplets can nucleate thanks to density fluctuations. Inside
the spinodal curve, the system is mechanically unstable.

In the previous paragraph, we used concepts of equilibrium thermodynam-
ics like surface energy and Maxwell’s construction. Below we show that the
system dynamics is described by a free energy (Landau type) allowing the use
of this concepts.

The existence of the negative compressibility region can be studied theo-
retically using a hydrodynamic description of granular fluids [16]. In Ref. [17]
the negative compressibility region was also observed, but due to the use of
constitutive relations of dilute granular gases does there was no saturation.

Here we investigate the presence of the negative compressibility region
with a different perspective. As in Ref. [16] we consider simple hydrodynamic
equations that mimic the Navier-Stokes ones with a dissipation term in the
energy equation, modeling the energy dissipation at collisions. For sufficiently
small dissipation (q ¿ 1), one has [18–21]

∂n

∂t
+∇ · (n~v) = 0,

n

(
∂~v

∂t
+ (~v · ∇)~v

)
= −∇ · IP,

n

(
∂T

∂t
+ (~v · ∇)T

)
= −∇ · ~J − IP : ∇~v − ω, (1)

with the usual constitutive equations for the pressure tensor (hydrostatic pres-
sure and Newton’s law) and the Fourier’s law for the heat, and the new con-
stitutive equation for the energy dissipation rate flux,
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Fig. 6. (A) Phase diagram obtained from molecular dynamics simulations in tall,
narrow boxes. The dotted curves correspond to the horizontal component of the
pressure tensor pxx for the dissipations q = 0.0032 (open triangles) and q = 0.0070
(filled circles), smaller and larger than the critical one, respectively. The second
case presents a van der Waals loop. The coexistence curve (solid line) and spinodal
curve (dashed line) are plotted. (B) Phase diagram obtained from the hydrodynamic
model. The solid line (long-dashed) curve is the coexistence (spinodal) curve. The
gray region is the metastability region. The dotted (short-dashed) curve correspond
to the hydrodynamic pressure for the dissipation q = 0.007 (q = 0.0130).

IPi,j =p(n, T )δi,j − η(n, T )
(
∂vi
∂xj

+
∂vj
∂xi

)
− (ξ(n, T )− η(n, T ))∇ · ~vδi,j

~J =− k(n, T )∇T
ω =ω0(n, T )n

2T 3/2.

(2)

where p is the hydrostatic pressure, η is the shear viscosity, ξ is the bulk
viscosity, k is the thermal conductivity, and ω0 is a factor that accounts for
the energy dissipation at collisions.

The transport coefficients in the limit of small dissipation are the same
as for elastic spheres in 2D [22], except for the one associated to the energy
dissipation, that is calculated directly using the Enskog theory [23]. All the
transport coefficients are expressed in terms of the pair correlation function
of elastic disks at contact, χ [23].
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χ(n) =
1− 7πn/64

(1− πn/4)2
(3)

p(n, T ) = nT

(
1 + π2n2/128

)

(1− πn/4)2
(4)

η(n, T ) =
1

2χ

(
1 + πnχ/2 + 0.87(πnχ/2)2

)
√
T

π
(5)

ξ(n, T ) =
1.246

2χ
(πnχ/2)2

√
T

π
(6)

k(n, T ) =
2

χ

(
1 + 3πnχ/4 + 0.87(πnχ/2)2

)
√
T

π
(7)

ω0 = 4
√
πqχ(n) (8)

The use of hydrodynamic equations for describing granular fluids is con-
troversial because hydrodynamic theory is based on the local tendency of
fluids toward equilibrium, condition that is not necessarily satisfied in gran-
ular fluids. However, the use of kinetic theory give a support for this kind of
description at least in the dilute and quasielastic case (see for example Refs.
[18, 24]) . In this article we will not put into question the validity of the hy-
drodynamic model, and we will use it to obtain qualitative and quantitative
predictions.

In the model (1), density and horizontal momentum satisfy conservation
equations. We consider that the the velocity field is small enough to neglect
nonlinear terms in ~v. Density and horizontal momentum can be vertically
averaged giving ρ(x, t) and j(x, t), that obey the equations

∂tρ (x, t) = −∂xj (x, t) , (9a)

∂tj (x, t) = −∂xΦ, (9b)

where Φ is the vertical average of the x−x component of the pressure tensor.
Eqs. (9) show that the conserved fields ρ and j have an evolution given by

a time scale proportional to the value of the horizontal gradients. When the
horizontal gradients are much smaller than the vertical ones, ρ and j behave
as the only slow variables and govern the system dynamics. The other fields
(vertical momentum, temperature, and Φ) have fast dynamics and behave as
slave variables of ρ and j, that is their values follow the evolution of the slow
fields.

The value of Φ can be computed using the equations for the tempera-
ture and vertical momentum. The vertical momentum relaxes fast to its equi-
librium value, zero, due to the boundary conditions. Then, the pressure is
independent of y (Φ = p). Energy is not conserved implying that temper-

ature is also a fast variable and satisfies the equation ∇ · ~J + ω = 0. The
equations of T and Φ can be solved numerically with the boundary condi-



320 R. Soto, M. Argentina, M. G. Clerc

tions T = 1 at the bottom and ~J = 0 at the top, and the integral condition∫ Ly
0

n(x, y, t)dy = Ly ρ(x, t).
For fixed q, the pressure exhibits, as proposed before, van der Waals loops

as a function of n0 = ρ(x, t) (see Fig. 6). The negative compressibility region
has a critical point at q ≈ 0.0086 and n0 ≈ 0.11.

The results on the hydrodynamic model are in qualitative agreement with
the molecular dynamics simulations in tall boxes. The difference is originated
mainly in the boundary condition for T . Indeed, even though particles are
forced to come out of the bottom wall with velocities characteristic of a tem-
perature equal to 1, the granular temperature at the boundary is less than
one because, due to dissipation, the particles that arrive at the wall come with
a smaller kinetic energy. This is a well known effect in dilute gases (Knudsen
layer effects [25]), that become also important in granular fluids.

Having verified that the mechanism that originates the instability is a neg-
ative compressibility in the effective pressure, we can describe the dynamics
of the dominant mode near the bifurcation point (critical point in the van
der Waals language). The critical point is defined by the condition that both
∂Φ/∂ρ and ∂2Φ/∂ρ2 vanish. Using symmetry and scaling arguments it can be
argued that the averaged pressure Φ close to the critical point can be written
as (see Ref. [8])

Φ ≈ Φo +
∂Φ

∂ρ
ρ̄+

∂2Φ

∂2ρ

ρ̄2

2
+
∂3Φ

∂3ρ

ρ̄3

6
+
∂Φ

∂j2
j2

+
∂Φ

∂ρxx
ρ̄xx +

∂Φ

∂jx
jx, (10)

where ρ̄ = ρ− n0.
For sake of simplicity, we define now u = ρ− ρM , where ρM is the density

at the Maxwell point (i.e. where ∂2Φ/∂2ρ
∣∣
ρM

= 0). Scaling u and x, Eqs. (9)

are approximated at the dominant order by the Van der Waals normal form

∂ttu = ∂xx
(
εu+ u3 − ∂xxu+ ν∂tu

)
,

= ∂xx
δF
δu

+ ν∂xxtu, (11)

where ε = ∂Φ/∂ρ|ρM is the control parameter and ν∂xxtu is a diffusion term.

The variables scale as u ∼ ε1/2, j ∼ ε, ∂x ∼ ε1/2, ∂t ∼ ε and ν ∼ o (1).
Note that, the convection term in the momentum flux ( ∂Φ∂j2 j

2 ∼ ε2) has been
neglected, in comparison with the dominant part (order ε3/2). The sign of
∂Φ/∂ρxx|ρM has been chosen to be negative, in order to saturate the linear
instability and to impose the existence of a global minimum for the free energy

F =

∫
dx

{
ε
u2

2
+
u4

4
+

(∂xu)
2

2

}
. (12)
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Eq. (11), that describes the time evolution of the system close to the crit-
ical point, implies that the system evolves in a irreversible manner toward
an stationary state characterized by the minimization of the F . It can be
directly checked form Eq. (11) that (K + F) decreases monotonically, where
K =

∫
dx(∂tΛ)

2 and Λ is the primitive of u. Then, the final state is stationary
and with the minimum value of F . Also, is a small noise were added to the
equation (to describe fluctuations) it can be shown that the stationary prob-
ability distribution of u is of the form P (u) ∼ e−F [u]/η, where η is the noise
intensity [26–28]. These properties make appropriate to call F a free energy
or a Lyapunov functional.

The study of instabilities in non-linear physics have shown that the ex-
istence of a non-equilibrium free energy, allows to use some concepts of
equilibrium thermodynamics in non-equilibrium instabilities. In particular,
Maxwell’s construction can be used to determine the coexisting densities.
Also, the structure of F indicates that large density gradients (thus inter-
faces) are energetically suppressed.

We emphasize that the Landau free energy F has the classical phase di-
agram, with coexistence and spinodal curves [29]; as those observed in bi-
nary fluids, binary alloys, and 3He−4He mixtures, to mention a few examples
(see [5] and references cited therein).

For negative ε, the homogeneous solution (u = 0) undergoes a spatial in-
stability, characterized by the appearance of equally distributed bubbles. Later
on, closest bubbles merge into a bigger one, as a consequence of a coalescence
process. Subsequently, bubble dynamics is led by the interaction mediated
by waves (see Figs. 4 and 5). The above dynamics is a consequence of the
system tendency to minimize its free energy (see Ref. [30] for a complemen-
tary discussion). With periodic boundary conditions, the global minimum is a
unique bubble, as the solution shown in Fig. 3. Further work in this coarsening
process is in progress.

In the metastability region (see Fig. 6), i.e. the region bounded by the spin-
odal and coexistence curves, the homogeneous state is stable. Nevertheless, a
finite fluctuation that overcomes the nucleation barrier gives rise to a bubble
along with two state-waves (densification waves), which propagate away from
the bubble (see Fig. 3). These fronts are a result of mass conservation: when
the bubble is created the excess mass must be ejected. Due to the periodic
boundary conditions, later on, the waves collide with the bubble producing its
oscillation. Afterward, due to viscosity, the oscillations are damped and the
final state is a single bubble at rest.

It has been shown in a full linear stability analysis of the hydrodynamic
equations that for aspect ratios λ = Lx/Ly smaller than a critical value, the
instability is suppressed [6, 16, 31]. The fact that the system becomes stable
for small enough values of λ is also captured in the van der Waals equation.
A linear stability analysis of Eq. 11 around the homogeneous state shows that
the perturbations with wave-vectors larger than kc =

√
−ε− 3u20 are stable,

where u0 is the reference scaled density. Then, if the horizontal system size is
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smaller than Lcx = 2π/kc, the system is always stable. This is an effect of the
surface energy already mentioned. We have used this result to compute the
van der Waals loops in thin columns.

The numerical solutions of Eq. (11) (see Figs. 3 and 4) in the unstable
and metastable regions show good qualitative agreement with the molecular
dynamic simulations. That is, the model captures the main features of the
system dynamics close to the instability (density waves, fronts, metastability,
and instability).

The model (11) implies also that for global densities smaller than the
Maxwell point density (u < 0), dense regions (instead of low density regions)
can nucleate. This prediction is in agreement with the simulations presented
in Fig. 5, where one or many dense regions are nucleated for n0 < 0.05. The
dynamics of ρ(x, t) is, however, not completely well described by the model
because these simulations are done with parameters not close to the critical
point. The case of n0 = 0.03 is special, because in this case a long wavelength
density modulation is created before the droplet appears. This phenomenon
is not captured by the model.

In experiments there is always a small amount of friction with the air or
the walls. In this case momentum is not exactly conserved and the model must
be modified. The momentum density satisfies the following equation

∂tj = −∂xΦ− µj, (13)

where µ is the friction coefficient. Inserting (13) into (9a) and doing the ap-
propriate scalings we obtain the modified van der Waals equation

∂ttu+ µ∂tu = ∂xx
(
εu+ u3 − ∂xxu+ ν∂tu

)
. (14)

If µ is large, the above equation reduces adiabatically to the usual Cahn-
Hilliard equation [29] that differs from the van der Waals equation in that it
does not present waves and the dynamics is much slower (see Appendix). Note
that, usual spinodal decomposition in binary mixtures, for example, obeys the
Cahn-Hilliard and not the van der Waals equation. Therefore, in experiments,
the detection of density and shock waves will depend on the intensity of the
friction. In Fig. 7 the time evolution of the spinodal decomposition process
with and without friction is presented. In both cases noise is added (see Ap-
pendix) to trigger nucleation. In the case without friction waves are observed
and the coarsening evolution is faster, while in the case with friction waves are
almost suppressed. Also, the coarsening process is much slower in this case.

As a final test of the model, we have made MD simulations of the system in
the elongated box setup (extended system). For two global densities (n0 = 0.08
and n0 = 0.15) and a number of different inelasticities, the systems were
simulated until a final steady state is achieved with one or no bubble inside.
When the final configuration contained one bubble (or droplet) the vertical-
averaged density profile ρ(x) was extracted. In the Ginzburg-Landau theory
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Fig. 7. Spatiotemporal evolution of the coarse grained density in the unstable region,
modeled by Eq. (16). Left: ε = −0.51, ν = 0.5, η0 = 0.5, and µ = 0.0. Right: the
same parameters but with moderate friction connected, µ = 0.3.

[32] it is shown that the density profile that minimizes the Landau free energy
(12) is a single bubble were the kink profile is given a by an hyperbolic tangent.
Then, we fit ρ(x) to

ρ(x) = ρ1 +
ρ2 − ρ1

2

[
tanh

(
x− xA
∆x

)
− tanh

(
x− xB
∆x

)]
(15)

where ρ1 and ρ2 are the homogeneous densities of the two phases, ∆x is the
interface width, and xA and xB are the position of the kinks (bubble borders).

In each case we computed also the vertical average of the horizontal com-
ponent of the pressure tensor pxx. Even in the presence of bubble, it is hori-
zontally homogeneous, as the system is is mechanical equilibrium.

The homogeneous densities ρ1 and ρ2 should correspond to the coexistence
densities of the van der Waals theory. In Fig. 8 we present these densities as
a function of the homogeneous pressure pxx. We note that the coexisting
densities in both series of simulations (made with different global densities)
coincide. Also the final pressure depends only on the inelasticity q, but not on
the global density. These results confirm that the phenomenon is a van der
Waals separation.

The coexisting densities are compared in Fig. 8 with the predictions ob-
tained using Maxwell’s construction in the simulation on tall columns. The
comparison is fairly good indicating that the phenomenological Landau free
energy (12), from where we made the Maxwell construction, is qualitatively
correct even far from the critical point.

In summary, we have studied the phase separation in fluidized granular
matter. Molecular dynamics simulations of a grain system, in two dimensions,
with a vibrating wall and no gravity exhibit appearance, coagulation and
disappearance of low density regions (bubbles). Rarefaction and densification
density waves lead the bubble dynamics. The mechanism of phase separation
is triggered by a negative compressibility which, in turns, is a result of the
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Fig. 8. Coexistence densities ρcoex as a function of the x − x component of the
pressure tensor. Symbols are results obtained in MD simulations of extended systems
for two global densities: n0 = 0.08 and n0 = 0.15. Different points correspond
to different inelasticities. The continuous line is the prediction obtained from the
Maxwell construction extracted from the simulations in tall columns.

fact that for granular media in closed geometries the granular temperature is
a decreasing function of the density.

A simple hydrodynamic model is able to predict the existence of van der
Waals loops in the effective pressure. The predicted critical point is in quali-
tative agreement with the results of molecular dynamic simulations.

Close to the transition, the system is described by the van der Waals
normal form (11). This model describes quite well the molecular dynamics
simulations. The phase separation is the analog to the spinodal decomposition
of the gas-liquid transition of the van der Waals model, but the transient
evolution of the system is led by state-waves.

The van der Waals instability should be observed independently of the pe-
culiarities of the energy injection mechanism or of its stochastic modelization,
as long as the particle collisions with the wall conserve horizontal momentum.
It should also be observed in the presence of a small gravitational field either
by inclining slightly the table or by placing the system vertically with char-
acteristic injected energy much larger than the gravitational potential energy
(m(Aω)2 À mgLy). In both possible generalizations, the general theoreti-
cal framework continues to be valid, and preliminary numerical simulations
confirm it (in preparation).
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A Density fluctuations

Density fluctuations are a important aspect of the described phenomenon.
They are responsible for the nucleation of bubbles in the metastable region.
Also, in the homogeneous phases, they seem to propagate with well defined
velocities (see Figs. 3-5). The dynamics of these fluctuations can be understood
using the van der Waals model. A study of the system dynamics close to the
instability threshold, where noise is amplified was done in Ref. [31].

In fact, density fluctuations are created by internal noise, and they obey
the linearized van der Waals equation, with the addition of a noise term.
In the spirit of Landau and Lifshitz’s theory [33], the noise term must be
added to the constitutive relation (10). If n0 is the homogeneous density, the
density fluctuations n(x, t) = ρ(x, t) − n0 and the momentum density j(x, t)
are described by

∂tn = −∂xj
∂tj = −∂x (cn− ∂xxn− ν∂xj)− µj − ∂xη (16)

where η(x, t) is a noise term and c = ε+ 2n20.
The above equations can be solved in Fourier space n(x, t) = nk(t)e

ikx,
j(x, t) = jk(t)e

ikx, in terms of the noise. The statistical properties of the noise
are unknown, especially because the reference system is out of equilibrium
and fluctuation-disipation theorems cannot be applied. However, close to the
critical point the only slow variables are the order parameters, all the others
having fast dynamics and short correlation times. Then, close to the critical
point, it can be safely assumed that the noise is white and delta correlated in
space. That is, we assume that 〈ηk(t)ηk′(t′)〉 = η0δ(t− t′)δ(k + k′).

The statistical properties of the density fluctuations are obtained comput-
ing the intermediate scattering function

F (k, t) = lim
t′→∞

〈nk(t+ t′)n−k(t
′)〉 (17)

where the average is over realizations. With the assumption of white noise it
reduces to
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F (k, t) = η0k
2

∫ ∞

0

ds
[
eAk(t+s)

]
12

[
eA−ks

]
12

(18)

where the matrix Ak is

Ak =

(
0 −ik
−ikc− ik3 −µ− νk2

)
(19)

and the subscript 12 means that this component of the matrix must be taken.
The instantaneous density fluctuations are described by

F (k) = F (k, 0) =
η0k

2

2(c+ k2)(µ+ νk2)
(20)

that has a maximum at k∗ = (cµ/ν)
1/4

. Note that if there is no friction
(µ = 0) long wavelength fluctuations are the predominant ones.

The time evolution of the density fluctuations are given by the eigenvalues
of Ak, that can be real or complex conjugate. In the real case, the evolution
is purely diffusive, while in the complex case waves propagate. For a given
wave-vector k, waves propagate if

4(ck2 + k4)− (µ+ k2ν)2 > 0, (21)

condition that is fulfilled in general when the dissipation mechanisms (µ and
ν) are small. The critical condition for the suppression of all waves is that

ν =
c2 + µ2

cµ
(22)

when all fluctuations diffuse. Note that in the Cahn-Hilliard limit (µ → ∞)
the evolution, then, is simply diffusive. In Fig. 9 numerical solutions of the
Eq. (16) are presented. It is seen that when friction is connected (µ 6= 0),
waves are suppressed and the evolution is diffusive.

Fig. 9. Spatiotemporal evolution of the density fluctuations in the stable region,
modeled by Eq. (16). Left: ε = 0.47, ν = 0.1, η0 = 0.5, and µ = 0.0. Right: the
same parameters but with friction connected, µ = 0.52.


