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Abstract. The Fréedericksz transition can become subcritical in the presence
of a feedback mechanism that leads to the dependence of the applied electric
field onto the liquid crystal re-orientation angle. We have given evidence of a
first-order Fréedericksz transition in a Liquid Crystal Light Valve with opti-
cal feedback. We have characterized this transition both experimentally and
theoretically, with the determination of the bistability region as well as of the
transition and the Maxwell points. In one and two spatial dimension, we have
investigated the propagation of the fronts connecting the stationary states. In
particular, in one spatial dimension we have measured the velocity of front
propagation. Theoretically we have used a minimal description, subcritical
Landau equation, valid close to the Fréedericksz transition. This description
is in a good agreement with the experimental observations.

1. Introduction

Liquid crystals under the influence of electric and magnetic fields exhibit a large
variety of complex dynamical behaviors, like electro-convection [1], optical instabil-
ities [2] and spiral patterns [3, 4]. Pattern formation, defect dynamics and spatio-
temporal instabilities [5, 6].

One of the most well-studied phenomena in the physics of liquid crystals is the
field-induced distortion of a homeotropic or planar aligned liquid-crystal film, called
the Fréedericksz transition [7]. This transition is usually a second order one [8, 9].
Recently, we have shown that the Fréedericksz transition in Liquid Crystal Light
Valve (LCLV) with feedback can become to first order one [10]. The purpose of this
article is to shown that the experimental observations in LCLV with feedback close
to Fréedericksz transition. Experimentally, we observe a hysteresis region of the
first-order Fréedericksz transition. In the bistable region, we study the propagation
of the fronts connecting the stationary states. We have performed experiments
either in one or two spatial dimensions, and we have measured the velocity of the
fronts.

1.1. Experimental setup. A LCLV consists essentially in a nematic liquid-crystal
film sandwiched between a glass and a photoconductive plate over which a dielectric
mirror is deposed. Coating of the two bounding plates induces a planar anchoring
(nematic director ~n parallel to the walls) of the liquid crystal film. Moreover,
transparent electrodes covering the two plates permit the application of an electric
field across the liquid-crystal layer. The photoconductor behaves like a variable
resistor, which resistance decreases for increasing illumination.

The light-driven feedback in LCLV is obtained by sending back onto the pho-
toconductor the light which has passed through the liquid-crystal layer and has
been reflected by the dielectric mirror. This is realized by means of an optical fibre
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bundle. The voltage V0 applied to the LCLV is sinusoidal and of frequency f = 20
KHz, which is much larger than the liquid crystal response time.

ψ

ψ

ρ θ

Figure 1. Experimental setup. Two confocal lenses, not dis-
played in the scheme, provide a 1 : 1 image-forming system from
the front side of the LCLV to its rear side. The optical feedback
loop is closed by a fibre bundle, which is aligned in order to avoid
any rotation or shift. P

in

and P
fb

are, respectively, the input and
feedback polarizer. Their orientation with respect to the liquid
crystal director ~n is indicated in the left bottom of the figure. In
the right bottom it is shown the mask used for the 1D experiments.

The experimental setup, as shown in Fig.1, is designed in such a way that the
light beam experiences no diffraction as well as no geometrical transformation, so
that no transverse structures are induced close to the Fréedericksz transition. The
light intensity I

w

reaching the photoconductor is given by [5]

(1.1) I
w

= | cos(√1) cos √2 + sin√1 sin √2e
°iØcos

2
µ)|2I

in

where µ is the liquid crystal re-orientation angle, Ø ¥ 2kd∆ncos2µ is the overall
phase shift experienced by the light travelling forth and back through the liquid
crystal layer, I

in

is the input intensity, √1 and √2 are the angles formed by the
input and feedback light polarization with the liquid crystal director ~n, respectively,
k = 2º/∏ is the optical wave number, d is the thickness of the liquid crystal layer
and ∆n is the difference between the extraordinary (k to ~n) and ordinary (? to ~n)
index of refraction of the liquid crystal. In our experiment, Ø ' 120 since ∏ = 633
nm, ∆n = 0.2 , d = 30 µm. Input light intensity is typically around I

in

' 0.9
mW/cm2.

2. Minimal description

The dynamical evolution of the nematic film is characterized by the Frank free
energy. We express this free energy by taking into account the feedback effect
as well as the usual non linear elastic term. Then, close to the transition point,
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Figure 2. Experimental bifurcation diagrams recorded for three
different values of the polarizer angle: a) √1 = √2 = 45o , b)
√1 = 45o and √2 = 38o, c) √1 = 45o and √2 = 18o. Arrows
mark the limits of the hysteresis region, dashed lines indicate the
Maxwell point and thin lines are guides for the eyes. In c) the
bifurcation has become a second-order one.

we can derive an amplitude equation for the first excited spatial mode. Let us
call u (x, y; t) the order parameter that describes the amplitude of first excited
spatial mode ({x, y} are the coordinates that describe transversely the nematic
liquid crystal sample). Since, under the influence of an horizontal electric field, the
molecules can turn indifferently clockwise or counterclockwise, the order parameter
is invariant under reflection transformation, so that u (x, y; t) ! °u (x, y; t). The
order parameter satisfies the equation [10]

(2.1) @
t
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3 + c5u

5 +
K

∞
r2
?u.
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∞ and k are the rotational viscosity and elastic constant of the nematic film, re-
spectively, and E0 = V0/d. The coefficient c1 is proportional to the bifurcation
parameter. The non-linear coefficients c3 and c5 characterize the nature of the
bifurcation.

For negative and order one c3, one can neglect asymptotically the coefficient c5.
Then, the Fréedericksz transition is a second order type, as is illustrated in Fig.2c.
As long as c3 is small, the system is asymptotically described by the above model.
For positive c3 and negative c5 the Fréedericksz transition becomes first-order type,
as shown in Fig.2(a)(b). It is important to note that the voltage V

o

applied to
the nematic film is the control parameter whereas the polarizer angles control the
nature of the bifurcation, which can be changed from first to second order type.
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Figure 3. a) Coefficients c3 and c5 as a function of the polarizer
angle √2, c1 = 0 and √1 = º

4 . b) Phase diagram as a function of
the input intensity I

in

and polarizer angle √2 (radian). Solid line
corresponds to c3 = 0, marking the border between the subcritical
and the supercritical case.

In Fig.3 we show the behavior of the coefficients c3 and c5 as a function of the
feeedback polarizer angle √2 .

Henceforth, we will limit ourselves to the case 0 < c3 ø 1 and c5 > 0. By
scaling the time, the space coordinates and the amplitude of the order parameter,
the above model equation, Eq.(2.1), takes the form

(2.2) @
t

u = µu + u3 ° u5 +r2
?u

where U
o

= (c3/c5)
1/2, T

o

= c5/c2
3, R

o

= K
°
c5/c2

3

¢
and µ = c1c5/c2

3. Hence, the
first-order Fréedericksz transition is fully characterized by a single parameter µ,
which is proportional to the bifurcation parameter c1.

2.1. stationary states. The main feature of a first order transition is the appear-
ance of hysteresis in the bifurcation diagram [12], that is, the system exhibits bista-
bility for a certain parameter range. In Fig.4 it is shown the bifurcation diagram
associated to the above model equation, Eq.(2.2). For negative µ and large enough
amplitude (µ < °0.25), the system has only one stable state u (x, t) = u0 = 0.
This state corresponds to a planar unperturbed alignment of the liquid crystal
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film. When the bifurcation parameter is increased, this steady state becomes un-
stable for positive µ. This transition is a subcritical pitchfork bifurcation and in
our experiment it corresponds to a first-order Fréedericksz transition. As a result,
for 1/4 ∑ µ ∑ 0, the model exhibits bistability and the stationary solutions are
given by

u
o

= 0,

u+,± = ±
p

1 +
p

1 + 4µ

2
,

u°,± = ±
p

1°
p

1 + 4µ

2
.

The states u
o

and u+,± are stable and whereas u°,± are unstable. Note that
Eq.(2.2) is a variational one and is characterized by the potential

V (u) = °µ
u2

2
° u4

4
+

u6

6
.

It is now straightforward to derive the Maxwell point, which is located at µ =
µ

M

= °3/16, for which the system satisfies V (u
o

; µ = µ
M

) = V (u+,±;µ = µ
M

).
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Figure 4. The generic features of a subcritical bifurcation dia-
gram and the associated directions of the front propagation. a) B,
µ

M

and Fréedericksz transition mark the beginning of the hystere-
sis region, the Maxwell point and the Fréedericksz transition point,
respectively. The front connecting the u0 to the u+,+ state prop-
agates towards the most stable state, this one being u0 or u+,+

depending on the value of the bifurcation parameter µ with re-
spect to the Maxwell point µ

M

. The front dynamics are the same
on the lower branch u+,°. b) The front propagation is shown to-
gether with its corresponding spatio-temporal diagram, on both
the contracting and the expanding side of the bifurcation diagram.

2.2. Experimental measurement of the bifurcation diagram. We measure
the intensity I

w

reaching the photoconductor as function of the voltage V0 applied
to the nematic film. A typical bifurcation diagram, recorded for √1 = √2 = 45o,
is shown in Fig.5. Note that the Fréedericksz transition takes place at V0 ' 3.2
V r.m.s. Moreover the transition from the non-oriented state to the oriented one
is characterized by a large hysteresis region, that we can clearly identify when
the applied voltage V0 is decreased. In the bistability region, we can trigger the
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transition to the upper state by sending into the feedback loop an additional writing
light (low power He-Ne laser) which acts as a small perturbation. It is important
to remark that our experimental procedure does not allow to distinguish between
the two possible rotations of the molecules (µ and °µ). Indeed, we measure I

w

,
which is related to cos2(µ). A quantity sensitive to the sign of µ would instead
lead to a bifurcation diagram with two symmetric branches, as the one shown in
Fig.4. However, in any physical device there is always a small symmetry breaking
which induce a preferential selection of one of the two possible states, rendering the
bifurcation an imperfect one. It is indeed the case for the LCLV, since for stability
reasons an extremely low pre-tilt is imposed on the surface at the fabrication stage.
For this reason, we have to consider only one half of the ideal bifurcation diagram
and our experimental procedure fully describes the system behavior.

B FTµM

Figure 5. Experimental bifurcation diagram and front propaga-
tion: open circles are dark states with writing light off; stars are
white states with writing light off; cross are white states with writ-
ing light on. The white state shrinks to zero or expands to infinity
depending on the initial location of the perturbation. Beyond (and
close to) the Maxwell point it exists a critical droplet radius for
which the front velocity is zero.

3. Front propagation

In the precedent description, we have considered only homogeneous stationary
states, but in fact a perturbation of these states gives rise transients characterized
by a rich front dynamics. At the onset of bistability (°0.25 < µ ∑ µ

M

), a spatially
localized perturbation of the metastable state leads locally to the appearance of
the other stable state. Thus, the system displays a moving interface that connects
two steady states, so called a front . The front moves into the less energetically
favorable state with a well defined velocity, as is represented in the spatio-temporal
diagram in Fig.4. In the case of one or two spatial dimension and small interface
curvature, the front velocity is proportional to the energy difference between the
two stables states.

In two dimensions, the velocity of the front can be modified by its curvature, the
so called Gibbs-Thomson effect or non variational dynamics [13]. Increasing the
bifurcation parameter, at some point the metastable state becomes energetically
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equivalent to the other one, thus the front stops to propagate. By further increase
of the bifurcation parameter, the front velocity is reversed. A generic bifurcation
diagram with reflection symmetry, together with the associated directions of the
front propagation, is shown in Fig.4.

Once determined the three critical points of the model Eq. (2.2) and of the
experiments, that is, beginning of the bistability B µ = °1/4, Maxwell point µ

M

=
°3/16 and Fréedericksz transition transition point µ = 0, the front dynamics is
entirely characterized. For 1/4 ∑ µ ∑ 0, the system displays several fronts between
the stationary states (u

o

, u+,±, u+,®, and u°,®):
• 1/4 < µ < µ

M

, the fronts {u
o

; u+,±} propagate towards u+,±, respectively,
see. Fig.4. Correspondingly, if one perturbs enough the planar state then
the system relaxes quickly to different domains between the stable states,
and later on the less favorable domains disappear.

• µ = µ
M

: the fronts {u
o

; u+,±} or kink solutions do not propagate, because
both states are energetically equivalent. In one spatial dimension, when the
system exhibits several domains, constituted by the alternation of kink and
anti-kink solutions, these domains disappear slowly, because of the attrac-
tive exponential interaction between kink and anti-kink [14]. In two spatial
dimensions, the curvature effect leads to a faster dynamics of domains.

• µ
M

∑ µ ∑ 0: the model predicts fronts {u
o

;u+,±} that propagate towards
the planar state u

o

, which is now metastable. In this parameter region,
the system also presents the kink or wall solution between the symmet-
rical states u+,+ and u+,°. It is important to note that these fronts are
the analog of Ising walls in magnetic films. In one dimension, the do-
mains are transient states, whose mean life time is quite large, that is, they
are metastable states. By decreasing the bifurcation parameter below the
Maxwell point (µ < µ

M

), the wall solution becomes unstable. Indeed, the
core of the front pass through the planar state (u0 = 0), so that it starts
to nucleate the u0 state which is energetically more favorable [15]. Experi-
mentally, this kind of wall is not observed in the LCLV, because the liquid
crystal film has a small pre-tilt due to the anchoring conditions.

• For µ > 0: the state becomes unstable through a pitchfork bifurcation.
Fluctuations of the initial state give rise to the appearance of the other
states. In this case there is a front connecting a stable state with an un-
stable one ( {u

o

;u+,±}). This type of front is called Fisher-Kolmogorov-
Petrosvky-Piskunov (FKPP) [16, 17]. At variance with the normal front,
the velocity of the FKPP front is not determined by the difference of energy
between the two connected states. Instead of a given velocity, there is an
infinity of different possible velocities, each one determined by the initial
conditions. This set of possible velocities is lower bounded by a minimum
value v

min

[18, 19]. At longer time, the dynamics is characterized by coars-
ening u+,+ and u+,°of the u+,+ and u+,° domains. This coarsening is an
effect driven by the influence of the front curvature on its own velocity.

3.1. 1D experiments: measurement of the front velocity. We have measured
the velocity of the normal fronts connecting the stable states that are present in
the subcritical regime. In order to avoid the influence of curvature effects on the
front velocity, we have realized 1D experiments by inserting a ring mask in the
feedback loop (see Fig.1). In these conditions, we set the values of the voltage V0
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Figure 6. Snapshots of the front propagation along the ring,
recorded at V0 = 3.20 V

rms

. White rectangles contain the indi-
cation of the instantaneous time (in seconds) of the image acqui-
sition.

applied to the LCLV close to the Fréedericksz transition point. Then, by means
of a computer controlled synthesizer, we switch on and off V0 and we record the
images of the front apparition and of its propagation along the ring. Instantaneous
snapshot recorded for V0 = 3.20 V

rms

are shown in Fig. 6.
Above the Maxwell point, the front arise naturally by nucleation over some

inhomogeneity that is present in the LCLV. The nucleation point is not fixed but
changes by small adjustments of the ring mask or very small misalignment of the
feedback light. Indeed, the nucleation point is just the point that is the more
favored by any symmetry breaking mechanism. Below the Maxwell point, we need
to switch on the writing light in order to develop the white state and to induce a
front in the ring. When we switch off the writing light, the front velocity is reversed
and the white state contracts to zero.

Either below or above the Maxwell point, we have measured the front velocity by
the following procedure. Once recorded a time sequence of images, we have chosen
a circle passing through the median radius of the ring and then, for each image,
we have unfolded this circle over a line. This way, we have constructed the spatio-
temporal diagram of each recorded set of images. The spatio-temporal diagram
recorded at V0 = 3.20 V

rms

and corresponding to the snapshots displayed in Fig.6,
is shown in Fig.7. The front velocity can be evaluated by simply measuring the
ratio between the horizontal (space-x) and vertical (time-t) displacements.

The resulting front velocities are shown in Fig.8 as a function of the applied
voltage V0. On this Figure, we can identify the Maxwell point where the front
velocity goes to zero and the Fréedericksz transition point, beyond which the fronts
become of a FKPP type. The regime of FKPP fronts is characterized by a transient
propagation with a quite high velocity, which then relaxes to the minimal one. In
Fig.8 we report both the transient and the steady-state velocity for the FKPP
fronts. In Fig.9 we show a spatio- temporal diagram for a FKPP front, recorded at
V0 = 3.50 V

rms

.We can see the presence of two different slopes, that characterize
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Figure 7. Spatiotemporal diagram showing the propagation of
the front at V0 = 3.20 V

rms

, corresponding to the images in Fig.6.
The front velocity is v

f

= 0.2 mm/s.

the transient and the steady-state propagation, respectively. Numerical simulation
of the Model (2.2) exhibit the same behavior as is illustrated in Fig.9.
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-2-1
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2.8 3.0 3.2 3.4 3.60.00
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a)

b)

∝MB FT

Figure 8. Front velocity as a function of the bifurcation param-
eter V0. Dashed lines mark the three critical points: B, µ

M

, FT.
Lighter circles in a) represent the transient velocities of the FKPP
fronts. In b) we show en enlargement of the central region.

4. 2D spatial dynamics: experimental results and comparison with

the model

In Fig.5, we show I
w

as a function of V0 and in the presence of feedback. The
transition point is characterized by an abrupt change in the intensity, which reaches
its maximum value. Notice that I

w

is measured by a small area photodiode, i.e., it
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is a local measurement taken at the center of the feedback beam. By looking at the
entire image of the feedback beam with a CCD camera, we see that the transition
point is characterized by a white spot developing over a dark background. In the
course of time, the front of the white spot expands and the white state overcomes
the dark one. For the model, this represents the FKPP front between the unstable
state u0 = 0 and the stable state u+,±. By further increasing the voltage, the
LCLV birefringence changes and the white state becomes grey until the dark value
is reached again. Successive transitions to the white state are present for larger
values of the applied voltage. These states correspond to parameter values far from
the Fréedericksz transition and have already been investigated in optical pattern
formation [20].

By decreasing the voltage, we observe a hysteresis cycle. In order to determine
the size of the bistable region, we inject an additional light spot (low power He-Ne
laser) into the feedback loop. This acts as a small perturbation, triggering the
transition from the dark state to the white one. The white state persists when we
block the additional writing light, while it switches to the dark state if we perturb
the feedback. In Fig.5, the arrows delimit the region over which this writing-erasing
procedure is robust. Notice that spatial inhomogeneities and other noise sources
can influence the stability of the two states.

In Fig.5 are illustrated the three representative images of front dynamic in 2D.
These images show the direction of the front propagation, depending on the mutual
stability of the white and the dark homogeneous state. The dashed line marks the
point at which the front propagation is zero, usually called the Maxwell point.
Below this point the white state is less stable than the dark one and the white
spot, once created by the writing light, contracts to zero. Above the Fréedericksz
transition point, the white spot nucleates spontaneously and its front expands until
the white state covers all the background. In between, the front of the spot expands
or retracts depending on the size of the perturbation.

Note that the Maxwell and the Fréedericksz transition points are slightly shifted
with respect to the 1D case. This is indeed related to the front curvature effect,
which affects the front velocity in 2D. As a consequence, in the 2D experiments the
location of the Maxwell point is overestimated whereas the Fréedericksz transition
point is shifted to smaller values of the bifurcation parameter.

5. Conclusions

The Fréedericksz transition can become subcritical in the presence of a feedback
mechanism that leads to the dependence of the applied electric field onto the liquid
crystal re-orientation angle. We have performed 2D and 1D experiments in a LCLV
with optical feedback and reported the features of a first-order transition over a
spatially extended system. Thus, we have opened the possibility to investigate the
spatial dynamics related to front propagation.

In order to account for the rich dynamics observed in the experiment, we have
used a Landau normal form as a standard model for a subcritical bifurcation. Then,
we have been able to express the coefficients as a function of all the relevant physical
parameter of the experiment. This allow us a quantitative comparison between the
predictions of the model and the experimental findings.

We have depicted the qualitative dynamics of front propagation in one and two
spatial dimension. In the 1D cases, the theoretical model provides all the main
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Figure 9. a) Experimental spatiotemporal diagram recorded at
V0 = 3.50 V

rms

, showing the propagation of a FKPP front. b)
Numerical spatiotemporal diagram of a FKPP front.

features of the dynamics of normal and FKPP front. Experimentally, we have
observed these fronts and measured their velocity in one dimension. We have also
determined the Maxwell point, where the front velocity is zero, and the Fréedericksz
transition point, beyond which the front becomes of a FKPP type.

In conclusion, we have presented here quite a complete description of the spatial
features related to the first order Fréedericksz transition, giving a general model
which is supported by a considerable amounts of experimental observations. More-
over, our experimental approach opens the way to further investigations in view of
the observation of other fundamental phenomena in the spatial dynamics of fronts.
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