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Abstract. Light feedback in a Liquid-Crystal-light-Valve can render the Fréedericksz transition a
first order one. A theoretical and experimental study of this first order transition is presented. An
amplitude equation is derived, valid close to the transition. Depending on the values of the feedback
parameters, both theory and experiment exhibit bistability, propagation of fronts and a Maxwell
point.

INTRODUCTION

One of the most well-studied phenomena in the physics of liquid crystals is the field-
induced distortion of a nematic liquid-crystal film, called the Fréedericksz transition
(FT) [1]. For a nematic film, FT is usually a second-order transition [2]. The possibility
of modifying FT into a first-order one has been considered, either through the simulta-
neous application of electric and magnetic field [3] or through the action of an optical
field [4], for liquid crystals possessing a very large optical anisotropy. In both cases, an
experimental verification is difficult to attain, especially over a large area of the liquid
crystal film. Another approach, is to realize a global feedback by means of spatially inte-
grated light intensity [5]. In this case, the FT experimentally displays clear features of a
first-order transition. However, spatial dynamics are lost as a consequence of integration.

By means of a a Liquid Crystal Light Valve (LCLV), we have realized an experiment
in which the local feedback is high enough to render FT first-order over a large size
(' cm2) of the nematic film [6]. Thus, all the spatial phenomena that we expect to
be associated with a first-order phase transition can be observed and investigated. In
particular, the classical nucleation theory applies, and we show that a local perturbation
leads to a front propagation which, depending on the distance from the Maxwell point,
is associated to shrinking or expanding droplets.

Experimental setup. A LCLV consists essentially in a nematic liquid-crystal film
sandwiched between a glass and a photoconductive plate over which a dielectric mirror
is deposed. Coating of the two bounding plates induces a planar anchoring (nematic di-
rector~n parallel to the walls) of the liquid crystal film. Moreover, transparent electrodes
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FIGURE 1. Experimental setup. Two confocal lenses, (not displayed in the scheme), provide a1 : 1
image-forming system from the front side of the LCLV to its rear side. The optical feedback loop is closed
by a fiber bundle, which is aligned in order to avoid any rotation or shift.Pin andPf b are, respectively, the
input and feedback polarizer. Their orientation with respect to the liquid crystal director is indicated in the
left bottom of the figure.

covering the two plates permit the application of an electric field across the liquid-crystal
layer. The photoconductor behaves like a variable resistor, which resistance decreases for
increasing illumination. The light-driven feedback is obtained by sending back onto the
photoconductor the light which has passed through the liquid-crystal layer and has been
reflected by the dielectric mirror. The voltageV0 applied to the LCLV is sinusoidal and
of frequencyf = 20KHz, which is much larger than the liquid crystal response time.

The experimental setup, displayed in Fig.1, consists of a LCLV with optical feedback,
[7]. Here, the optical loop is designed in such a way that the light beam experiences no
diffraction as well as no geometrical transformation, so that no transverse structures are
formed close to the FT. The light intensityIw reaching the photoconductor is given by
[8]

Iw = |cos(ψ1)cosψ2 +sinψ1sinψ2e−iβcos2θ)|2Iin (1)

whereθ is the liquid crystal re-orientation angle,β≡ 2kd∆ncos2θ is the overall phase
shift experienced by the light traveling forth and back through the liquid crystal layer,
Iin is the input intensity,ψ1 andψ2 are the angles formed by the input and feedback
light polarization with the liquid crystal director~n, respectively,k = 2π/λ is the optical
wavenumber,d is the thickness of the liquid crystal layer and∆n is the difference
between the extraordinary (‖ to~n) and ordinary (⊥ to~n) index of refraction of the liquid
crystal. In our experiment,β' 120sinceλ = 633nm, ∆n = 0.2, d = 30 µm. Input light
intensity is typically aroundIin ' 0.9 mW/cm2.

THEORETICAL DESCRIPTION

Derivation of the normal form. For a nematic liquid crystal layer on which an
electric field is applied, the dynamical equation for the director reads [2]

γ~n∧∂t~n =−~n∧ δF
δ~n

, ~n.~n = 1 (2)



whereγ is the rotational viscosity, andF the Frank free energy which is expressed by

F =
1
2

Z
K1(~∇.~n)2 +K2(~n.(~∇∧~n))2 +K3(~n.(~∇∧~n))2

−ε⊥~E2(~n)− εa(~n.~E(~n))2d~r. (3)

Ki are the elastic constants of the liquid crystal,εa the dielectric anisotropy andε⊥ the
perpendicular dielectric permeability. For the sake of simplicity, we assumeK1 = K2 =
K3 = K, leading to

γ∂t~n = K(∇2~n−~n(~n.∇2~n))+ εa(~n.~E)(~E−~n(~n.~E))+ ε⊥
2

∂~E2

∂~n
− ε⊥

2 (~n. ∂
∂~n)~E2 + εa

2 (~n.~E)~n.((~n. ∂
∂~n)~E).

(4)

The total electric field applied to the liquid crystal layer depends on the response
of the photoconductor to the write intensityIw and to the voltage applied to the liquid
crystal layer (V0 = E0/d). As the light intensity is sufficiently small, the response of the
photoconductor is linear. Thus, the total electric field readsE(n) = E0 + αIw(~n), where
α ' 4 is a phenomenological parameter that we can evaluate from the experimental
characteristics of the LCLV, (measuringIw in mW/cm2).

After substituting (??) in the expression for the electric field, it becomesE(n) =
E0+A+Bcos(βcos2θ), whereA= 1

4(cos2(ψ1−ψ2)+cos2(ψ1 +ψ2)+2)αIin andB=
1
4(cos2(ψ1−ψ2)− cos2(ψ1 +ψ2))αIin. Since the liquid crystals are aligned parallel
to the walls (planar anchoring) and are submitted to a perpendicular electric field, the
electric field is~E = (0,0,E) and~n = (nx,0,nz) with n2

x + n2
z = 1. By insertingE(n)

in (??) and by means of standard bifurcation theory, we derive an amplitude equation
for the first unstable Fourier mode,nz = u(x,y)sin(πz/d) andnx = 1−u2sin2(πz/d)/2,
which describes the director orientation at the onset of the instability. The equation reads

∂tu = c1u+c3u3 +c5u5 +K∇2
⊥u (5)

where the coefficientsc1, c3 andc5 are given by

γc1 =−Kπ2

d2 +(A+E0 +Bcos(β))(εa(A+E0)+B(εacos(β)+2ε⊥βsin(β)))
γc3 = 1

3
Kπ2

d2 − 2
3εa(E0 +A)2 + 2

π2 ε⊥(2Bβsin(β))2− 2
3π2(12β2ε⊥+π2εa)(Bcos(β))2

+ β
π2(εa(8+π2)− ε⊥π2)(A+E0 +Bcos(β))Bsin(β)

− 4
3π2(6β2ε⊥+π2εa)(E0 +A)Bcos(β))

γc5 = (2Bβ
π2 )2((4+π2)εa−π2ε⊥)(sin(β)2−cos(β)2)

− Bβ
12π4(192β2ε⊥+(9π2 +64)π2εa)(E0 +A)sin(β)− (2β

π2 )2((4+π2)εa−π2ε⊥)(E0

+A)Bcos(β)− B2

12π4(9π2 +64)εa +768β2ε⊥)βsin(β)cos(β).
(6)

Discussion. Whenc3 is negative and of order one, Eq. (??) describes a second order
FT. The FT becomes first order whenc1 andc3 are positive (and small), withc5 negative.
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FIGURE 2. Iw as a function of the r.m.s. values of the applied voltageV0, for different angles,ψ1 and
ψ2, between the polarizers and the liquid crystal director.

Qualitatively, this situation well describes the experimental observations.c3 is a function
of the polarizer angles, of the input intensity and of the voltage applied to the LCLV. In
particular, we have verified that changes in the polarizer angles produce effects with the
same sign in the theory and in the experiment. However, it is important to underline
that the theoretical description of the transition is valid only in the asymptotic limit
c3∼ (c1)1/2. Instead, a quantitative description of the experiment would requirec3∼ 1,
which cannot be obtained from an asymptotic analysis [9]. Henceforth we consider
c3 > 0 andc5 < 0.

RESULTS AND COMPARISON WITH THE MODEL

In Fig.2 we showIw as a function ofV0 and in the presence of feedback. Three bifurcation
diagrams are reported, for three different values of the polarizer anglesψ1 andψ2. For
ψ1 = ψ2 = 450, which maximizes the birefringence of the LCLV, the diagram displays an
abrupt change at the transition point and an hysteresis region. For this value ofψ1 and
ψ2, the extension of the hysteresis region is maximum, in agreement with the model.
Notice thatIw is measured by a small area photodiode, i.e., it is a local measurement
taken at the center of the feedback beam. By looking at the entire image of the feedback
beam with a CCD camera, we see that the transition point is characterized by a white
spot developing over a dark background. In the course of time, the front of the white
spot expands and the white state overcomes the dark one. For the amplitude equation,
this represents a front solution between the unstable stateu0 = 0 and the stable state

u2± = (−c3±
√

c2
3−4c1c5)/(2c5), a Kolmogorov-type front [10]. By further increasing

the voltage, the LCLV birefringence changes and the white state becomes ”grey” until
the dark value is reached again. Successive transitions to the white state are present for
larger values of the applied voltage. These states correspond to parameter values far
from the FT, and hence they are not considered here.

By decreasing the voltage, we observe a hysteresis cycle. In order to determine the
size of the bistable region, we inject an additional light spot (low power He-Ne laser)
into the feedback loop. This acts as a small perturbation, triggering the transition from
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FIGURE 3. Bistability and front propagation. On the left,Iw vsV0 plot; circles: dark state with writing
light off; stars: white state with writing light off; cross: white state with writing light on. On the right, a)
τr (circles) andτ f (cross); b)τon (cross) andτo f f (circles) as a function ofV0.

the dark state to the white one. The white state persists when we block the additional
writing light, while it switches to the dark state if we perturb the feedback. In Fig.2, the
arrows delimit the region over which this writing-erasing procedure is robust. Notice
that spatial inhomogeneities and other noise sources can influence the stability of the
two states. Furthermore, just before the transition, there is an appreciable decrease of the
intensityIw. This is indeed a signature of the fact that we are approaching the transition
point, where fluctuations become very large and light is diffused in all directions, in the
same way as it occurs at the critical point for a liquid-vapor transition. This sort of critical
opalescence [11], is responsible for the diminished efficiency of the light reflection from
the LCLV.

Forψ1 = ψ2 = 450, a more detailed set of measurements is reported in Fig.3, left side,
for aV0 range centered around the transition point and together with three representative
images of the feedback field. These images show the direction of the front propagation,
depending on the mutual stability of the white and the dark state. The dashed line
marks the point at which the front propagation is zero, usually called the Maxwell
point. Below this point the white state is less stable than the dark one and the white
spot, once created by the writing light, contracts to zero. Above the FT point, the white
spot nucleates spontaneously and its front expands until the white state covers all the
background. In between, the front of the spot expands or retracts depending on the size
of the perturbation.

The three crucial points, i.e., the beginning of the bistability, the Maxwell point and
the FT point, are identified by the divergence of the response times. We show in Fig.3,
right side, the response times associated with the bifurcation diagram. In a, we show
the rise timeτr needed for a white spot to develop once the writing light is switched
on and the fall timeτ f taken by the white spot to disappear when the writing light is
switched off. The divergence of the first one identifies the beginning of the bistable
region whereas the divergence of the second one corresponds to the Maxwell point. In b,
we show the riseτon and fallτo f f time when the feedback is switched respectively on and
off. The divergence of these two times corresponds to the FT point. Correspondingly,
in the amplitude equation (??), the beginning of the bistability is characterized by
c2

3− 4c1c5 ≥ 0, c1 < 0, the Maxwell point byc2
3 = 16c5c1/3 (c1 < 0) and the FT by



c1 = 0.

CONCLUSION

In conclusion, we have derived an amplitude equation valid close to the FT for a nematic
liquid crystal layer in the presence of a light-driven feedback. We have shown that, as
a consequence of feedback, FT becomes first order. Our theoretical description is in a
fair qualitative agreement with the experimental observations. The feedback is provided
by the conversion of optical intensity into electric field via a photoconductive transducer
(LCLV). Bistability is very robust here and is present for a relatively wide range of the
experimental parameters. Spatial dynamics of front propagation is also reported.
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