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Abstract:

A simple mechanical system which exhibits Lorenz chaos is studied both theoreti-
cally and experimentally. Such a system is shown to present a generic bifurcation of
a quasi-reversible system whose amplitude equation are equivalents to the Lorenz
model. The experimental realization of suck a pendulum exhibited a very simple
example of homoclinic Poincaré chaos, which arises because of some imperfection
of the apparatus. _

Résumé:

Nous étudions, théoriquement et expérimentalement un systéme mécanique sim-
ple qui met en évidence des comportements chaotiques du type de ceux observés
dans le modéle de Lorenz. En fait nous montrons que ce systéme présente une
bifurcation quasi-reversible générique dont les équations d’amplitudes sont équiv-
alentes aux équations de Lorenz. En faisant I'expérience, nous avons observé
des comportements chaotiques d'une nature différente, liés & une imperfection de
Pappareillage utilisé. Ceci nous a permis de mettre en évidence une manifestation
trés simple et pédagogique du chaos homocline tel que Poincaré I'a décrit.

The Lorenz model of the dynamics of thermal convection is famous because it
displays chaotic behaviors which have been extensively studied in the 80’s. Lorenz
chaos has never been observed in convection, mainly because the model was based
upon a drastic truncation of the Boussinesq equations [1, 2, 3]. Later, the Maxwell-
Bloch equation describing the interaction of an assembly of two level atoms and an
electromagnetic field have been shown to be identical to the Lorenz equation [5],
when the detuning between a cavity and electromagnetic mode vanishes. Several
attempts to observe Lorenz chaos in lasers have been done, but the experimental
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ifficulty there is to achieve the appropriate parameter ranges and in particular
o make zero the detuning. Although Lorenz equations were also derived using
symptotic analysis for a large class of dispersive instabilities (8], including the
aroclinic instabilities [4], to our knowledge, no experiments in this context have
een performed. The only experiment we are aware of was performed by W.
Aalkus [2]. It consists in a leaky waterwheel apparatus whose modelization leads
o the Lorenz equations. In this short paper, we intend to describe a very simple
nechanical system, a pendulum, whose dynamics is indeed described by the Lorenz
nodel. The idea of such a system comes from a general theory of bifurcations in
juasi-reversible systems [9], in which the Lorenz equations appear as the amplitude
:quations of a generic instability. A surprising chaotic behavior was observed while
ve were constructing our first experimental realization of the pendulum. The
ehavior observed arises because of an experimental imperfection which turns out
.0 be a very interesting example of how the lost of a conserved quantity can lead
.0 homoclinic Poincaré chaos [6].

Figure 1: Sketch of the rotating pendulum.

One of the simple example of a pitchfork bifurcation is given by the rotating
pendulum (see Fig. 1). When the angular velocity (2 of the pendulum exceeds a
critical one, the stationary vertical position of the mass looses its stability, when
the centrifugal force overcomes the gravity. The dimensionless equation describing
this system, in the absence of viscous damping is given by

62
-(-a-t—g- + sin(6)(1 — Q2 cos(8)) = 0,
where the tifhe scale has been chosen as the period of the small oscillations of
the pendyium T = /I/g, where g represents the gravity and [ the length of the
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pendulum. The instability sets in when €y > 1. Close to the instability, this
equation reduces to

824 \
—a't"z'*+EA——A =0

where e = (23 - 1, A = /26,
This integrable Hamiltonian system possesses periodic solutions, a double ho-
moclinic solution and two stable fixed points A, = £/ (see Fig. 2).
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Figure 2: Phase portrait of the small oscillations of the rotating pendulum.

The mechanical pendulum considered so far is indeed a two degree of freedom
system. It is described by two angles # and ¢ and the two angular velocities 6 and
2 = ¢

The equations of the motion are given by

%0 . sin(26) 5
27 +sin(6) - P?=0,
ge Tl - o sin(6)?)°

dP
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where I represents the inertia ratio of the rotating body and P = (I + sin(6)?)
is the total angular momentum with respect to the vertical axis which is of course
conserved. The instability corresponds to a pitchfork bifurcation, in the presence
of a neutral mode associated with the conservation of the vertical component of the
angular momentum. For each value of the conserved quantity, the problem reduces
to the single degree of freedom Hamiltonian system. The dissipation enters in the
problem in two different ways. First, the viscous damping of the fluid in which the
pendulum is swinging has to be included. The Stokes law has been used to model




164 P. Clerc et al.

this damping. It has both an effect on the oscillation and the rotation. Second,
the damping of the rotation axis is assumed to be viscous, i.e. proportional to the
angular velocity. The “energy” is injected in the system through a constant torque
7. With these assumptions, the mechanical system is described by the following
equations ‘

o% sin(20) :
Et—2-+81n(9)'——"—~2 Q +Ve=0:

dP

= = —p{Q — Qo) ~ vQsin(8)?,
dt
where u and v represents the two damping constants. It is important to note that
the dissipative forced dynamical system is three dimensional while the reversible
system is only two dimensional for each value of the conserved angular momentum.
In particular the Stokes damping provides a non trivial feedback of the oscillation
on the rotation. Close to the instability (2 ~ 1), these equations reduces to the

amplitude equations

A‘+eA+uA+AB--A3=o,

B=—jiB +74?,
where « )
= _— ~=E =-—:_£._
5“2(90 1)’ H I’ 7 T+4
and
2 4 I+4
B—-—Z(Q—l)—-I-H, A= 79.

The numerical simulation of the full equations (see Fig. 3), close to the insta-
bility threshold, displays behaviors which are reminiscent of the Lorenz chaos.
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Figure 3: (a) Phase portrait of forced-dissipative rotating pendulum. (b) Corre-
sponding Lorenz map. ‘
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Actually a simple change of variables allows one to reduce the following am-
plitude equations to the Lorenz model:
Oz = a‘(y - :1:) ’
Oy = Rr—-y-—zz,
Oz = —bz+azy,
with

2
(y—m)a B=62(Z-"2£0"'),
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where ¢t = (¢/\/0)t, v = e(c + 1)/0, fi = €b/ /5, n = €(20 - b)/\/o, and € =
vr—1.

Three types of bodies M :

(2) 2 sphere (b) a sphere linked to the (c)aring
axes by roll bearings

Figure 4: Type of bodies used in the experiment. M refers to the body shown in
figure 1. :

We have built a preliminary experiment with two perpendicular, low friction,
ball bearing axis (see Fig. 1). A constant torque is applied on the vertical axe by
using a simple DC motor with constant current intensity control. The rotation
speed § is measured with a tachometer dynamo delivering a DC voltage propor-
tional to it. The time dependent voltage proportional to § is directly analyzed
on a computer. The Poincaré map experimentally constructed is the famous map
introduced by Lorenz by plotting the successive maximas of §2. It will be named
the Lorenz map thereafter. As seen in figure Fig. 4, three different massive bodies
M are used:

* In case (a), only metastable chaotic-like behavior is qualitatively observed.

¢ In case (b), the massive body is immersed in a viscous liquid and a ball
bearing is introduced in order to suppress the local rotation of the massive
body. This allows the change of the damping coefficient ratio p/v: in that
case a chaotic like behavior is observed but the Lorenz map extracted remain
Very noisy.
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e In case (c), an asymmetrical damping is introduced by the ring shape of the
massive body and the Lorenz map (see Fig. 5) is obtained: here, the model
equations must be slightly modified, giving rise to a larger space parameter
domain undergoing chaotic behavior, as supported by simulations and theory.
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Figure 5: Experimental Lorenz map.

In the first experimental realization of the rotating pendulum, the axis of ro-
tation had a slight tilt from vertical. Very surprising complicated behaviors were
then observed even without an external torque. They have been interpreted in
the frame of conservative dynamical systems. As we have mentioned above, the
full system is a two degrees of freedom Hamiltonian system whose integrability is
a consequence of the existence of two conserved quantities: the energy and the
vertical component of the angular momentum. The later being directly related to
the axial symmetry of the mechanical system. Any small tilt breaks this invari-
ance and the associated conserved quantity is lost. The non-integrability generally
manifests itself by the existence of chaotic behavior, as first shown by H. Poincaré
for the three bodies problem. QOur inclined pendulum is in some sense one of the
simplest manifestation of the chaotic homoclinic Poincaré behavior. The equation
of motion of the tilted spherical pendulum are given by

6 = — (sin® cosa + sina sin¢ cos ) + sinf cos O ¢?,

(I+sin20) ¢ = -—2sinbcosf@Pd+ ksina sind cos¢.

One simple way to analyze the chaotic behaviors associated is to consider the
limit of very small tilt. For parameters and initial values where the pendulum
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is rotating, the full equations can be reduced to the classical periodically forced
Duffing equations, which are known to exhibit homoclinic Poincaré chaos [7):

P (Qz _ 1) T — 23 + vsin(Q(t — tg)),

where P/I=Q> 1,7 =6 %2—(%+§)—%,and'y=a\/92(%+§)—-};.

Coming back to the dissipative-forced system, the presence of a tilt increases
the dimension of the dynamical system from three to four. Consequently, the
dimension of the attractor can be higher. A Lorenz map of the slightly tilted dis-
sipative forced pendulum exhibits a thickness which is consistent with the increase
of the Lorenz attractor dimension by one (see Fig. 6). This thickness could well
be at the origin of the thickness of the experimental Lorenz map.
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Figure 6: Lorenz map of the tilted dissipative-forced rotating pendulum.

The pendulum we have been considering has strong similarities with the flyball
governer which has been used for speed control. This instrument was used by G.
B. Airy in the nineteenth century[10] to observe fixed star for extended periods
and he remarked that the mechanism was not always stable. In his own words:
“... and the machine (if I may so express myself) became perfectly wild”. If the
motion observed by Airy was indeed chaotic, we believe that our analysis gives a
direct interpretation.

As a matter of fact this simple problem illustrates well what Pierre Bergé always
stressed to us: the irreducible relevance of experiments in Physics. In other words,
without attempting to build the pendulum, we will have never introduced the
small tilt, which is at the origin of a very pedagogical example of Poincaré's chaos.
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