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Optical vortices are attracting much attention because of their applications in
various fields of optical processing, communications, enhanced imaging sys-
tems, and bio-inspired devices. Different methods to generate optical vortices
have been devised to date. Among them, several are based on the exploitation
of light–matter interaction in liquid-crystal media. This review focuses on the
main mechanisms of vortex generation in liquid crystals, in particular on vortex
generation induced by umbilics, that is, defects arising in homeotropically
aligned nematic cells, which act as topological matter templates able to realize
the conversion from spin to orbital angular momentum of an incoming
Gaussian beam. Optical vortex induction in a photosensitive light valve is pre-
sented as a self-stabilizing mechanism leading to reconfigurable and program-
mable vortex arrays. On each lattice site, every matter vortex acts as a photonic
spin-to-orbital momentum coupler, converting input arrays of circularly polar-
ized beams into output arrays of vortex beams with topological charges con-
sistent with the matter lattice symmetry. © 2015 Optical Society of America

OCIS codes: (050.4865) Optical vortices; (160.3710) Liquid crystals;
(160.5335) Photosensitive materials; (190.4360) Nonlinear optics,
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Optical vortex induction via light–matter
interaction in liquid-crystal media
R. Barboza, U. Bortolozzo, M. G. Clerc, S. Residori, and
E. Vidal-Henriquez

1. Introduction

1.1. Historical Motivations and Properties
of Optical Vortices

Inspired by the unexpected intricate structures of radio echoes from the bottom
of the Antarctic ice sheet [1–3], Nye and Berry conducted ultrasound pulse ex-
periments on a rough surface, allowing them to establish the emergence of sin-
gularities in wave trains [4], which correspond to dislocations in the wave train.
In optics this wave train dislocation is detected by means of Mach–Zehnder
interferometry [5]. Qualitatively, these wave train dislocations correspond to
the junction of two regions with different numbers of stripes. The concept of
dislocation is taken from the framework of material science, where a dislocation
is a crystallographic defect, or irregularity, within a crystal structure [6], which
adds or removes a line of atoms (stripe) in the crystal lattice.

Likewise, if one considers the complex envelope of the wave train, dislocations
correspond to point-like singularities, a vortex solution [7], which locally break
the symmetry. They exhibit a zero intensity at the singular point with a phase
spiraling around it. Hence, optical vortices are singular points where the electro-
magnetic field goes to zero and around which the phase forms an n-armed spiral
profile, with n the topological charge; see [7–10] and the references therein. The
origin of the topological charge is that the wave train is described by a complex
scalar envelope having its normalized value (when it is defined) spanning the
whole unit circle. The vortex position corresponds to the intersection of the zero-
level lines of real and imaginary parts of the complex envelope amplitude. This is
a point where the phase is not defined, and this is known as phase singularity;
however, the circulation of the phase around this point is well defined by 2πn
with n � �1;�2;…. This integer number accounts for the topological charge
or winding number of the vortex. Two vortices connected through their zero-
level curves have opposite charges; namely, the growth direction of the phase
is opposite in each of the connected vortices. Therefore, if the envelope is a
smooth function in a plane of the wavefront, then the vortices can be created
and destroyed only as pairs.

It is well known that light can exert mechanical effects on matter. This is not
limited to the effect of linear momentum radiation, which can cause particle
translation. Particles can be set in rotation if the radiation is circularly polarized.
In this case, the electromagnetic wave couples its spin angular momentum with
that of the medium under interaction, and this effect is physically observable by
the spinning of the particles around themselves or the object around itself, with
the sense and rate of rotation depending on the helicity of the light beam. The
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first experimental observation of the fact that light can possess an intrinsic an-
gular momentum was reported by Beth [11], who devised an experiment in
which a polarized beam is sent onto a birefringent plate free to rotate. The plate
is a half-wave plate at the operating wavelength and transforms a left-circular-
polarized light beam in a right-circular-polarized beam. The plate experiences a
torque that changes its sign with the input polarization. By measuring the
amount of torque, the value of the angular momentum of the photon can be
calculated if the incoming light intensity is known. The result was ℏ for left-
hand-polarized input and −ℏ for the right-hand one. For intermediate values
it was shown that torque diminishes and vanishes for linearly polarized beams.
In addition to these effects, it was also observed that linearly polarized beams
can, like Laguerre–Gauss beams, set particles in rotation and that they rotate
around the axis of the beam and not around their own axis, as for a circular-
polarized beam [12,13]. This is related to the so-called orbital angular momen-
tum of the beam and its connection to the beam structure, the phase (see review
article [14] and references therein).

Optical vortices have also been introduced on symmetry grounds as the topo-
logical defects arising above the laser transition [15]. In this context they have
been identified as topological defects, that is, point-like phase singularities that
locally break the symmetry of a rotationally invariant complex field and that
appear and disappear in pairs of opposite charge. They have been reported
in several experiments, as in photorefractive cavities [16] and in lasers [17,18].

In Laguerre–Gauss beams, a single optical vortex corresponds to a phase sin-
gularity on the axis of the beam [19]. It has been shown that Laguerre–Gauss
modes carry an orbital angular momentum lℏ per photon, where l is the topo-
logical charge of the phase singularity [20]. Optical vortex beams attract a lot of
attention in view of their applications, including the exchange of angular mo-
mentum between light and matter [20], optical tweezers [21–23], high precision
micromachining [24–26], quantum computation [27], data transmission
[28–31], and the enhancement of astronomical images [32,33]. The ability to
generate and manipulate vortex beams is, therefore, one of the key topics in
current photonics. A recent review of the origins and applications of optical vor-
tices can be found in [19] and references therein.

1.2. Generation of Optical Vortices

Different methods to generate optical vortices have been proposed: spiral phase
plates [34], diffractive elements [35], computer-generated holograms [36],
segmented deformable mirrors [37], and nanostructured glass plates [38].

Optical vortex generation by liquid crystals was initially proposed in the context
of cholesteric liquid crystals, where dislocations in the stripe pattern of the
cholesteric texture were used to produce diffraction orders with topological
charges [39]. Recently, the introduction of q-plates, planar elements with a preset
azimuthal orientation in nematic liquid crystals [40], has opened promising new
avenues in the field of optical vortex generation bymeans of liquid-crystal media.
Other recent experiments deal with the exploitation of the radial director distri-
bution in liquid-crystal droplets [41] or umbilic-like defects in nematic textures
[42,43]. All these approaches provide tunability and high efficiency to the vortex
generation process, although liquid-crystal misalignment can cause some beam
deformation and a consequent degradation of the generated optical vortices [44].
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Recently, by exploiting re-orientational nonlinearities in the nematic liquid-
crystal layer of an optically addressable liquid-crystal cell, a so-called light
valve, the optically addressed self-induction of vortex-beams that are, by nature,
self-aligned with the impinging light beam has been demonstrated [45]. Indeed,
the spontaneous character of the induction process guarantees that the generated
defect is aligned with the incoming light beam. In this framework, optical
vortices derive directly from the induced umbilical defects in the liquid-crystal
texture. The umbilic is a defect that naturally possesses a vortex-like morphol-
ogy, making it attractive for spontaneously enabling the matter template to
impress a helical structure on an incoming light wavefront. Based on the vortex
induction process, the realization of programmable lattices of optical vortices
with arbitrary distributions in space has been demonstrated [46]. Vortex lattices
can also be obtained with other liquid-crystal systems, as confined cholesterics
[47,48], smectic cells [49–51], nematics driven by segmented electrodes [52],
and nematics driven by magnetic fields [53].

1.3. Aim and Outline

The aim of this paper is to review the main mechanisms for vortex generation in
liquid-crystal media. Particular emphasis is made for nematic liquid crystals and
umbilics, the defects arising in homeotropically aligned cells, which act as topo-
logical matter templates that can realize the conversion from spin to orbital an-
gular momentum of an incoming Gaussian beam. Optical vortex induction is
extensively presented as a self-stabilizing mechanism occurring in optically ad-
dressed liquid-crystal light valves (LCLVs). The properties of the induced opti-
cal vortices are characterized in this type of system, where the emergence of
phase singularities is accomplished by sending circularly polarized light beams
onto a homeotropic nematic liquid-crystal cell with a photosensitive wall.

Thanks to the photosensitive wall, local illumination impinging onto the light
valve can induce a spontaneous matter vortex that remains stable and trapped at
the chosen location. In turn, the coupling between the beam and the matter vor-
tex generates an optical vortex with a topological charge consistent with angular
momentum conservation. Theoretically, based on bifurcation theory, and close to
the Fréedericksz transition [54–56], a forced Ginzburg–Landau equation can be
used to describe the system. The mechanism for matter vortex generation and
stabilization is provided by the concurrency of light-induced voltage gradients
and anisotropy of the elasticity that characterizes the deformation of the liquid-
crystal medium. Based on the self-stabilizing mechanism, programmable lattices
of optical vortices are realized with arbitrary distributions in space. On each
lattice site, every matter vortex acts as a photonic spin-to-orbital momentum
coupler, so that input arrays of circularly polarized beams are converted into
output arrays of vortex beams with topological charges consistent with the
matter lattice.

The paper is organized as follows. Section 2 presents the main mechanisms of
optical vortex generation in nematic liquid crystals, namely, q-plates, nematic
droplets, and defects generated in homeotropically aligned nematic liquid-crys-
tal cells. In Section 3, we discuss the dissipative character of vortex defects
obtained by this latter method, due to the coarsening dynamics undergone by
the vortex gas after its origin at the Fréedericksz transition. Section 4 is dedicated
to vortex induction mediated by light–matter interaction in LCLVs. Section 5
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presents the vortex induction process as a method to achieve photo-addressable
q-plates. In Section 6 the origin of vortex induction via anisotropy stabilized
light–matter interaction is derived by model equations that describe the positive
vortex and its swirling arm dynamics. Section 7 presents various methods for
generating vortex arrays in different liquid-crystal systems, while Section 8
focuses on the programmable optical vortex lattices in a photo-addressable
homeotropic LCLV. Finally, in Section 9 are presented the conclusions.
Appendix A contains the detailed derivation of the model description.

2. Optical Vortex Generation by Inhomogeneously
Aligned Nematic Liquid Crystals

Liquid crystals are a state of matter that shares the structures and properties of
liquid and crystalline states (see, for instance, [54,55] and references therein).
The main features of liquid crystals are that they have the ability to flow like
liquids but also display symmetries inherited from crystalline solids. In given
ranges of temperature, liquid crystals form mesophases, that is, intermediate
phases between solids and liquids characterized by a certain level of order
and characteristic organizations of the molecular arrangements. Among them,
the most known are the nematic, cholesteric, smectic, and blue phases [54–56].
Liquid crystals are very attractive from the viewpoint of optics because of their
high birefringence, optical transparency over a wide range of optical wave-
lengths, high sensibility to externally applied electric/magnetic fields, and their
ability to provide strong coupling between matter and electromagnetic fields,
generating changes in the polarization of light and matter [57,58].

Nematics are the most widely used liquid crystals for practical applications, such
as for light modulators and liquid-crystal displays. Nematic liquid crystals are
uniaxial mesophases that present a local orientational order defined by a unit
vector n⃗, known as the nematic director. Therefore, they behave optically as uni-
axial birefringent media. The director orientation can be controlled externally
through electrical bias, optical fields, or surface interactions. We will see in
the following sections that radial or twisted arrangements of the nematic director
can be induced by different methods, leading to the corresponding generation of
wave plates with varying optical axes.

2.1. Inhomogeneously Aligned Nematic Liquid Crystal
Cells: q-Plates

A q-plate is a specifically designed nematic liquid-crystal cell in which a radial
or twisted alignment of the molecules is obtained by rubbing circularly the glass
plates forming the cell [40]. The distribution of the nematic director follows the
radial or twisted conditions imposed at the anchoring surfaces and, therefore,
produces an inhomogeneous retardance wave plate with varying optical axis,
as the optical axis follows the lines along which the molecules are aligned.
The wave plate’s ability to produce optical vortices is related to the winding
number q that characterizes the nematic director distribution, hence, the name
“q-plate.” Examples of q-plates with q � 1∕2 and q � 1 are shown in Fig. 1.

The versatile manufacture and use of q-plates is particularly interesting because
of their ability to perform spin-to-orbital angular momentum conversion, leading
to the generation of helical modes. The topological charge of the generated
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optical vortex is controlled by the q number of the plate [59]. In fact, if we ne-
glect diffraction inside the thin liquid-crystal layer (usually a few micrometers
thick), and we consider only the transverse component of the electric field for the
incoming optical beam, the action of the q-plate can be described by a Jones
matrix, which takes the form

M �
�
1 0

0 1

�
cos

Δ
2
� i

�
cos 2θ̃ sin 2θ̃
sin 2θ̃ − cos 2θ̃

�
sin

Δ
2
; (1)

with Δ the overall effective phase shift between the (local) ordinary and (local)
extraordinary component of the electric field. Δ is given by Δ � 2π d

λ �n̄ − no�,
where d is the thickness of the liquid-crystal layer,

n̄ � 1

d

Z
d

0

n�β�dz; (2)

and

n�β� � nenoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2o sin

2 β� n2e cos
2 β

p (3)

is the local refractive index seen by the extraordinary component of the electric
field. Here, ψ is the liquid-crystal tilt angle, no and ne are, respectively, the ordi-
nary and extraordinary refractive index of the liquid crystal, and β, θ̃ are the polar
and azimuthal coordinates of the nematic director.

We will assume for simplicity that θ̃ � qξ� θ̃o�r; z�, where fr; ξ; zg are the local
cylindrical coordinates, and β � β�r; z�. For a circularly polarized input
e⃗σ � A 1ffiffi

2
p �x⃗� iσy⃗�, where σ � �1 stands for left-handed (LH) and σ � −1

for right-handed (RH) circular polarization, and dropping down irrelevant phase
factors, it can be shown that the output beam is given by

E⃗ � A cos
Δ
2
e⃗σ � exp�2iqσξ�A exp�2iσθ̃0� sin

Δ
2
e⃗−σ: (4)

As it appears from Eq. (4), the incoming circularly polarized field is converted to
a beam with opposite polarization and with an additional helical phase factor
exp 2iqξ through a power conversion factor sin2�Δ∕2�. For example, a LH

Figure 1

Examples of q-plates. The local direction of the optical axis is tangent to the
lines. (a) q � 1∕2 and θ̃0 � 0, (b) q � 1 with θ̃0 � 0, and (c) with θ̃0 � π∕2.
Reproduced with permission from Marrucci et al., Phys. Rev. Lett. 96, 163905
(2006) [40]. Copyright 2006 American Physical Society.
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(RH) circularly polarized Gaussian input beam entering a q-plate with q � 1will
exit, for the ideal case Δ � π (half-wave plate with nonuniform optical axis),
with RH (LH) circular polarization and with an additional helical phase with
winding number m � �2 (m � −2). The acquired helical phase profile changes
the structure of the amplitude of the output field. Indeed, the amplitude has to go
to zero at the center of the beam to have a single valued field, giving birth to an
optical vortex beam.

A rapid check of the amount of the momentum transferred to the q-plate shows
that we are in the presence of conversion of the spin angular momentum (from
the input beam) to orbital angular momentum (to the output beam). Indeed, the
angular momentum per photon for the input beam is σℏ, whereas for the output
beam we have to count σℏ cos2�Δ∕2� for the σ polarized component (the spin
part) and −σℏ sin2�Δ∕2� � 2σℏ sin2�Δ∕2� for the −σ polarized component
(spin and orbital part). It appears clearly that the net change in the angular mo-
mentum is 0; hence, we are in the case of spin-to-orbital angular momentum
conversion. Since the total torque density on the q-plate is proportional to
the net change in the optical angular momentum [59], the incident beam does
not exert any torque on the plate.

2.2. Nematic Liquid Crystal Droplets

Spherical droplets of a nematic liquid crystal have been created by dispersing the
nematic liquid crystal 5CB in water [41]. The droplets are stabilized by a sur-
factant and have a controlled diameter of a few micrometers. Inside the droplet,
the director, and hence the local optical axis, follows a spherical distribution.
This is shown in Fig. 2, together with the mechanism of conversion of spin
to orbital angular momentum for an incoming focused Gaussian beam. The

Figure 2

Optical vortex generation from a nematic liquid-crystal droplet. An incident
light beam with circular polarization cin� and a smooth profile (l � 0) is partly
converted into the orthogonal polarization state cout� carrying a phase singularity
(l ≠ 0). Inset a, crossed polarizer image, and inset b, radial structure of
the liquid-crystal director showing the radial distribution inside the droplet.
Reprinted with permission from Brasselet et al., Phys. Rev. Lett. 103,
103903 (2009) [41]. Copyright 2009 American Physical Society.
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spatial conformation of the optical axis inside the droplet defines an inhomo-
geneous birefringent medium with a defect at the center, as it appears from
the pattern observed under cross polarizers [Fig. 2(a)]. When looking at the
median plane, the texture is similar to that of a q-plate with q � 1 and the di-
rector orientation around the defect that winds by 2π [Fig. 2(b)]. When these
droplets are optically trapped in tightly focused circularly polarized Gaussian
beams, their natural on-axis positioning in the focal region leads the trapping
beam to read out the radial birefringence distribution and to generate a spiraling
wavefront (Fig. 2).

The trapping beam itself can, thus, be used for vortex generation: the beam traps
the droplets on-axis and preserves their radial symmetry. Droplets with various
diameters can be trapped using beams with various intensities. The efficiency of
conversion of the input beam into the orthogonally polarized helical wavefront
beam is almost independent of the optical power but depends on the size of the
droplets. An increasing amount of the tightly focused incident Gaussian beam is
converted into a vortex beam as the droplet size increases, typically, from 1.5 to
2.4 μm [41]. The increase in efficiency can be related to the spatial overlap of the
droplet and the Gaussian beam. At 3.2 μm, the subsequent decrease in the con-
version efficiency can be attributed to the decrease of the averaged optical
birefringence seen by the propagating beam [41].

2.3. Umbilics in Homeotropically Aligned Nematic
Liquid Crystal Cells

Besides q-plates, one of the adopted methods for generating optical vortices with
nematics relies on the exploitation of a fixed single topological defect, that is, a
3D orientational structure called “umbilical defect” or, in short “umbilic” [60].
Umbilics have long been reported in the literature [54–56] and have accompa-
nied liquid crystals since their discovery in 1889 by Lehmann [61], who called
these structures kernels. Later, they were observed in a similar experimental
setup by Freidel, who also resolved their detailed topological structure and called
them noyaux [62]. From the theory of elasticity, Frank calculated the detailed
structure of these defects [63] and, because they break the orientational order, he
called them disclinations by analogy with dislocations in crystals of condensed
matter. However, the most widely used name to refer to these defects is nematic
umbilical defects. The term umbilics was coined by Rapini [60] and refers to the
topological structure of the defect corresponding to a string-like object in three
dimensions. This is schematically represented in Fig. 3.

As described above, the nematic liquid-crystal phase is characterized by rod-
shaped molecules that have no positional order but tend to point in the same
direction, described by a unit vector, the so-called nematic director n⃗ [54,55].
In homeotropically aligned liquid-crystal cells, the director n⃗ is perpendicular to
the confining walls. When a nematic liquid-crystal cell is biased and the voltage
across the nematic layer is above the Fréedericksz transition voltage, the mol-
ecules reorient. This is because the torque stemming from the elastic forces link-
ing together the liquid-crystal molecules is overcome by the electric torque due
to the applied voltage. If the nematic liquid-crystal layer is homeotropically
aligned and the dielectric anisotropy is negative, then the molecules will rotate
perpendicularly to the applied electric field. Because of the 2π degeneracy of the
direction of the reorientation, the molecules will align in random directions,
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causing the formation of defects in the texture of the nematic layer. These defects
are in general umbilics with winding number, or Frank index, �1 [54].

The electro-optical properties of umbilics for generating optical vortices were
initially demonstrated in [42,43]. Figure 4 displays the calculated profile for
a �1 umbilic defect used for the purpose of optical vortex generation [43].
From the 2D section of the director field we can note that the molecular arrange-
ment around the defect core is equivalent to a q-plate with q � 1. Hence, the
umbilic creates automatically the required wave plate for the generation of an
optical vortex with topological charge m � 2.

Figure 3

x

y

z

x

z

(a) (b)

(a) Representation of the umbilical defect in an homeotropically aligned nematic
liquid-crystal cell: rods represent the orientation of the director, the green (lighter
gray) rods correspond to the position of the vortex core. (b) Three-dimensional
view of the umbilic, where arrows stand for the position of the vortex core.
Adapted from Fig. 1 in [64].

Figure 4

(a) Longitudinal and (b) transverse cross sections of the director field of a �1

umbilic defect; rc is the core radius of the defect and L is the nematic film thick-
ness. (c) Calculated reduced amplitude a of the tilt angle nearby the defect
located at r � 0. (d) Calculated reduced core radius rc∕L versus reduced voltage
U∕UF , where U is the voltage applied to the liquid-crystal cell and UF is the
Fréedericksz transition voltage. Reprinted with permission from Brasselet,
Phys. Rev. Lett. 108, 087801 (2012) [43]. Copyright 2012 American Physical
Society.
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Because of the complex elasticity theory associated with nematic liquid crystals,
characterized by three types of deformation (bend, twist, and splay), the study of
these defects from the dynamical point of view is a thorny task [54–56]. A sim-
ple and universal strategy is to analyze their behavior near the orientational
instability of the molecules that occurs at the Fréedericksz transition [54,55].
Indeed, close to this transition the dynamics of the director can be reduced
at main order to the Ginzburg–Landau equation with real coefficients [65,66]
(a detailed explanation of the derivation of this equation is presented in
Appendix A):

∂tA � μA − jAj2A� ∇2
⊥A; (5)

where μ is the bifurcation parameter describing the distance from the
Fréedericksz transition voltage,∇⊥ is the transverse Laplacian, and A is the com-
plex amplitude describing the projection of the director field on the x–y plane.

This amplitude equation allows an understanding of the emergence of different
orientational domains, two types of stable vortices with �2π phase jump,
corresponding to winding number �1, and their respective dynamics. In this
approach, however, both defects are indistinguishable in their amplitude and,
as a result of the phase invariance of the Ginzburg–Landau equation, they
account for a continuous family of solutions, parametrized by the phase.

A generalization of the Ginzburg–Landau equation can be derived by taking into
account the anisotropy of the liquid-crystal elastic constants [66] (see
Appendix A):

∂tA � μA − AjAj2 � ∇2A� δ∂ηηĀ; (6)

where ∂η ≡ ∂x � i∂y, ∇2 � ∂ηη̄, and δ � �K1 − K2�∕�K1 � K2�, with K1 and K2

the splay and twist elastic constants of the nematic liquid crystal. This equation is
the anisotropic Ginzburg–Landau equation. Appendix A.3 shows that this form
of the amplitude equation allows discrimination between the positive and neg-
ative vortices. Indeed, the elastic energy associated with these two molecular
reorientations is different [54], which is the physical origin of the asymmetry
between these defects.

3. Umbilics as Dissipative Vortices

Far from equilibrium, systems with injection and dissipation of energy, mo-
menta, and matter exhibit instabilities that lead to spontaneous symmetry
breaking and pattern formation [67]. Due to the inherent fluctuations of these
macroscopic systems, different states may emerge in distinct regions of space;
hence, spatial structures are usually characterized by domains, separated by in-
terfaces, as grain boundaries, defects, or dislocations [68,69]. Among others,
defects in rotationally invariant 2D systems have the structure of vortices—
dissipative vortices—and attract much attention because of their universal char-
acter. Indeed, dissipative vortices are solutions of the complex Ginzburg–Landau
equation (CGLE), which describes a variety of physical systems: fluids,
superfluids, superconductors, liquid crystals, fluidized anisotropic granular
matter, magnetic media, and optical dielectrics, to mention a few [7].
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Nematic liquid crystals with negative anisotropic dielectric constant and homeo-
tropic anchoring are a natural physical context where dissipative vortices are
observed [54,55]. Two types of stable vortices with opposite charges are ob-
served; these are characterized by being attracted (repulsed) to the opposite
(identical) topological charge [7,70,71].

The origin of the topological charge comes from the vectorial nature of the
director field, which can be described by a complex scalar field A with two com-
ponents, the real, Re�A�, and imaginary, Im�A�, parts. As shown in Fig. 5, a
phase singularity, or topological vortex, arises whenever the real and imaginary
parts go simultaneously to zero. Then, the vortex position corresponds to the
intersection of the real and imaginary zero-level curves. The phase tan φ �
Im�A�∕Re�A� is not defined at this point, so we are in the presence of a phase
singularity. The circulation of the phase around the zero-level lines’ intersection
is well defined and corresponds to an integer multiple of 2π:

I
C
∇φ · dr⃗ � 2πn;

with n � �1;�2;…. This integer number accounts for the topological charge
or winding number of the vortex.

3.1. Vortex Gas: Coarsening Dynamics

Two vortices connected through their zero-level curves have opposite charges,
namely, the growth direction of the phase is opposite in each of the connected
vortices, as represented in Fig. 5. Therefore, if the field is a smooth function the
vortices can be created and destroyed only as pairs. Experimentally, the intensity
of the light that emerges from a homeotropically aligned liquid-crystal sample
between crossed polarizers exhibits similar properties to the field ψ�r⃗; t� defined
as ψ ≡ Re�A� · Im�A�. We will call this scalar field a nullcline field. Figure 6(a)
shows a vortex gas obtained by experimental snapshots recorded under
white-light illumination for a homeotropic cell between crossed polarizers.

Figure 5

Topological description for the origin of a vortex. The vector field is represented
by black arrows. The red (blue) curve corresponds to a field completely hori-
zontal (vertical), i.e., represents a zero-level line Im�A� � 0 (Re�A� � 0).
Interception of the zero-level lines leads to the generation of a vortex. The inset
is an experimental image of a pair of umbilical defects observed under linear
crossed polarizers. The symbols � account for their respective topological
charge.
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For comparison, a picture obtained from numerical simulations of Eq. (5) is
shown in Fig. 6(b).

We must note that, even though appealing for the creation of optical vortices, the
position and the number of defects created by the Fréedericksz transition are
uncontrollable, because the system is driven from the unstable condition through
random fluctuations of the director around the homeotropic state. Umbilics with
the same winding number will repel each other, and those with opposite winding
number will attract and annihilate. This dissipative process takes place through a
coarsening dynamics [7] during which the gas of vortices relaxes toward an equi-
librium state that exhibits a uniform texture or a pair of defects (eventually, one
defect of the pair can be hidden by boundary effects) [70]. The remaining
umbilic can, then, be used to generate optical vortices [42,43]; however, the
spontaneous relaxation dynamics of the vortex gas does not offer control of
the system, limiting the ability to select the final vortex position.

4. Vortex Induction Mediated by Light–Matter
Interaction

To overcome the difficulties and limitations related to the dissipative character of
spontaneous defect generation in liquid-crystal samples, it is necessary to
provide a controllable way to generate umbilics. The requirement is that the um-
bilics should be addressable by a specific control method, hence, by which they
can be generated when needed and where required on the liquid-crystal cell.

For this purpose, we rely on the LCLV, whose behavior is detailed in the para-
graph below. The cell is biased, initially, to have the effective voltage across the
liquid-crystal layer slightly below the Fréedericksz transition voltage, with the
intent to avoid the spontaneous formation of umbilics. When a light beam of
Gaussian shape is directed onto the photoconductive side of the LCLV, the
impedance of the photoconductive bismuth silicon oxide (Bi12SiO20, BSO) de-
creases because of the photogenerated charges, making it more conductive
where the intensity is larger. The effective voltage across the liquid-crystal layer

Figure 6

Vortex gas: (a) experimental snapshot recorded under white-light illumination
for a homeotropically aligned liquid-crystal cell between crossed polarizers
and for uniform laser illumination of the photosensitive wall, and (b) nullcline
field ψ obtained from numerical simulations of Eq. (5) for parameters corre-
sponding to the experimental conditions. Reprinted from Barboza et al., New
J. Phys. 15, 013028 (2013) [71]. © IOP Publishing. Reproduced with permis-
sion. All rights reserved.
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acquires, therefore, a bell-shaped profile, higher in the center. By increasing the
bias voltage or the beam intensity, the peak value of the effective voltage can,
eventually, go beyond the Fréedericksz voltage. As a consequence, the mole-
cules will tilt first toward the x–y plane, but not randomly as in an uniformly
biased cell (normal homeotropic one).

The radial symmetry of the voltage drop will give rise to a transverse component
of the electric field, also with the same radial profile. This biases the system,
making the nematic director follow the same symmetry while reorienting,
and giving birth to a single singularity in the texture of the nematic layer
[45,46,72].

4.1. Homeotropic LCLV

The LCLV is schematically represented in Fig. 7(a). It is composed of a liquid-
crystal layer between two slabs of 25 mm × 25 mm transverse size. The input
face is made of a transparent photoconductor BSO with 1 mm thickness,
whereas the other face is made of a glass plate of the same surface and 0.7 mm
thickness. The interior surface of the glass plate and the external surface of the
BSO are coated with indium tin oxide (ITO), a commonly used transparent con-
ductor. The uncoated face of the BSO and the coated face of the glass plate are
treated to provide homeotropic anchoring conditions. The LCLV is, then, as-
sembled with 15 μm spacers and filled with a nematic liquid crystal (MLC6608)
with negative dielectric anisotropy εa � ε‖ − ε⊥ � −4.2, with ε‖ and ε⊥ the di-
electric susceptibility for low-frequency electric fields parallel and orthogonal,

Figure 7
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(a) Vortex induction in the homeotropic LCLV: a circularly polarized beam is
incident on the photoconductive BSO side of the LCLV; the voltage V 0 is such
that only the illuminated region undergoes the Fréedericksz transition. When
reorienting, the liquid-crystal molecules follow the circular pattern associated
with the electric field and create a matter vortex, which, in turn, induces a helical
wavefront at the exit of the sample. (b) Umbilic-like defect exhibiting swirling
arms with superposed molecular organization (left panel); for comparison, the
molecular organization of a defect with straight cross arms is shown in the right
panel. Adapted from Fig. 1 in [72].
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respectively, to the molecular director. The LCLV is biased with a low-frequency
(sine wave) voltage and the frequency is tuned to 100 Hz to obtain an optimal
response to the incoming light. The ordinary and the extraordinary refractive
indices are, respectively, no � 1.4637 and ne � 1.5338, giving a maximum
reachable phase shift of about 3.3π at 633 nm and for a thickness d � 15 μm
of the liquid-crystal layer.

The photoconductive BSO layer acts as an optical tunable impedance producing
a voltage divider arrangement that enables us to spatially tune the effective volt-
age across the liquid-crystal layer by using the proper illumination profile. As an
example, in Fig. 7(b) is depicted the local distribution of the director under local
illumination with a Gaussian beam over the experimental snapshot of a single
umbilic defect obtained with this method. A characteristic feature of the ob-
served vortex is that its arms are bent and, thus, they swirl around the defect
core. For comparison, the molecular organization of a defect with straight cross
arms is shown in the right panel of Fig. 7(b).

Experimental snapshots showing the matter defect with clockwise and counter-
clockwise swirling arms are displayed in the left and right panels, respectively, of
Fig. 8(a). Spatially resolved polarimetry [73] allows discrimination of the sign of
the defect. The local birefringence is analyzed by using quarter-wave plates,
allowing the reconstruction of the director distribution around the defect, as
shown in Fig. 8(b). The obtained polarimetric profile shows that the defect
is, indeed, umbilic-like and of winding number �1. Note that the reconstructed
phase is 2θ, with θ the liquid-crystal tilt in the transverse plane; therefore, the 4π
phase jump around the singularity indicates a 2π change of the liquid-crystal tilt
angle θ. The swirling of the arms appears also from the polarimetric profile. This
is a characteristic feature of the umbilic and can be explained on the basis of
energetic arguments, as described in the following sections.

4.2. Selective Vortex Induction

The experimental setup for the selective induction of vortices in the LCLV is
shown in Fig. 9(a). A circularly polarized Gaussian beam, either RH LH, with
a waist of 395 μm is sent onto the LCLV. The setup is arranged to have a Mach–
Zehnder interferometer with the LCLV on one arm for the visualization of the
optical wavefront at the exit of the LCLV. A quarter-wave plate and a polarizer
are placed after the LCLV to filter out the incoming circular beam, so that at 0 V
the measured output intensity is 0.

Figure 8
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Matter vortices. (a) Intensity profiles recorded under white light illumination and
crossed polarizers showing clockwise (left panel) and counterclockwise (right
panel) swirling arms. (b) Spatially resolved polarimetry in the case of a defect
with counterclockwise swirling arms. Adapted from Fig. 2 in [72].
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To prove the vortex induction, a laser beam of wavelength λ � 632 nm

and power P � 0.55 mW is focused to a diameter of 395 μm on the photocon-
ductive side of the LCLV [45]. The input beam polarization is taken either right-
handed circular or left-handed circular. The bias voltage of the LCLV was
fixed to V 0 � 24 V rms at frequency 100 Hz. The results are displayed in
Figs. 9(b)–9(d) for the RH input. The output beam exhibits a doughnut profile
of the intensity [Fig. 9(b)]. A dislocation of charge 2 in the plane wavefront
interference fringes [Fig. 9(c)] and a two-arm spiral for the spherical wavefront
interference patterns [Fig. 9(d)] confirm that the output beam has a phase sin-
gularity with winding number 2. The spin-to-orbital angular momentum transfer
during the vortex induction is consistent with a �1 q-plate, confirming that the
matter vortex is a �1 defect.

5. Vortex Induction Provides Photo-Addressable
q-Plates

Due to the azimuthal profile of the molecular reorientation, the optically induced
defect acts like a q-plate with q � 1, 1 being the topological charge of the defect
induced in the nematic structure [46,72]. As represented in Fig. 10, the incoming
circularly polarized field is converted to a beam with opposite polarization and
with an additional helical phase factor exp 2iqξ through a conversion factor
sin2�Δ∕2�. As a matter of fact, an incoming LH/RH circularly polarized
Gaussian input beam entering the LCLV will exit, for the ideal case Δ � π, with
RH/LH circular polarization and an additional helical phase with winding
number �2 (in our case q � 1).

Figure 9

(a) Setup for the vortex induction in a LCLV and visualization of the optical
wavefront with a Mach–Zehnder interferometer. POL, polarizer; QWP, quar-
ter-wave plate; HWP, half-wave plate; Obj, microscope objective; M, mirror;
BS, beam splitter; CCD, CMOS camera; L, lens; LCLV, liquid-crystal light
valve. (b) Output intensity showing a Gauss–Laguerre beam, (c) fringe pattern
after interference with a planar wavefront, and (d) spiraling interference patterns
after interference with a spherical wavefront. Adapted from Fig. 2 in [45], copy-
right 2012, with permission from the American Physical Society.
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The direction of the spiral arm rotation is reversed for the two types of polari-
zation, thus confirming that, for the LH/RH input, the output is RH/LH polarized
with topological charge �2.

5.1. Induction of the Opposite Topological Charge

Due to the geometrical configuration of the cells and the anisotropy of the liquid-
crystal elastic constants, the optical vortex induction also induces a positive vor-
tex, or umbilic with 2π winding number. As seen above, this acts as a q � �1

plate. To induce the matter vortex with the opposite topological charge, hence a
q � −1 plate, we can proceed in the following way. We induce two adjacent
vortices with topological charge �1 and, by increasing the voltage applied
to the LCLV, the deformation around each vortex reaches the adjacent one, thus
creating a spontaneous vortex with the opposite topological charge between the
two, to fulfill the constraints imposed by the continuity of the zero-level curves
of the director field.

An example of vortex induction with −1 topological charge is shown in Fig. 11.
For comparison, the upper panels display the induction of a �1 charged vortex.
The equivalent q-plates lead to the generation of an optical vortex with charge
−2 ��2� for the �1 �−1� vortex and left-handed circular polarization (LHP) of
the input beams and to the generation of an optical vortex with charge �2 �−2�
for the�1�−1� vortex and right-handed circular polarization (RHP) of the input
beams [46]. This process is illustrated by the experimental snapshots in Fig. 11.

Numerical simulations of the anisotropic and forced Ginzburg–Landau equation
[Eq. (13)] exhibit similar behavior. When two �1 adjacent vortices are initially
addressed, a −1 vortex spontaneously appears between them [46]. A numerical
snapshot showing the generation of the −1 vortex between two positive vortices
is shown in Fig. 12. This procedure can be exploited for the selective creation
of �1 topological charges of the photoinduced vortices. As we will show in

Figure 10
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+2

-2

Schematic representation of the spin-orbital angular momentum transfer during
the vortex induction process: an RHP (LHP) circularly polarized beam is con-
verted into an LHP (RHP) beam with a phase singularity of topological charge
−2 (�2); experimental interferograms are shown beside the respective panels.
The induced q � 1 plate is schematically depicted by the director orientation
around the matter vortex. Adapted from Fig. 1 in [72].
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Section 8, the same process leads to the generation of interconnected arrays of
�1 and −1 vortices.

6. Origin of the Vortex Induction Via Anisotropy
Stabilized Light–Matter Interaction

From the above experimental observations, it is clearly established that umbilics
and vortex induction play important roles in the process of optical vortex
generation. In the following section the role of the photoconductor is taken into

Figure 11
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Experimental realization of the q � �1 vortex (upper panels) and q � −1 vor-
tex (lower panels). Left panels: a q � �1 defect is created in the center of an
illuminated area and a q � −1 defect is generated between two spots. Central
panels: for an input LHP, the q � �1 (q � −1) defect yields an optical vortex
with charge −2 (�2). Right panels: for an input RHP, the q � �1 (q � −1)
defect produces an optical vortex with charge �2�−2�. Adapted from Fig. 5
in [46], copyright 2013, with permission from the American Physical Society.

Figure 12

0 -0.80.8-

Nullcline field ψ�r⃗; t� obtained from numerical simulation of the anisotropic
forced Ginzburg–Landau equation [Eq. (13)] with periodical boundary condi-
tions, forced with two localized Gaussian beams, on the left and right side,
respectively. Two vortices of positive charge are initially addressed, a vortex
with negative charge spontaneously appears between them. Adapted from
Fig. 5 in [46], copyright 2013, with permission from the American Physical
Society.
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account for the generalization of the theoretical description of defect induction in
photosensitive liquid-crystal media. We will see how the inclusion of this
element translates into an external forcing in the amplitude equation describing
the director field deformation.

6.1. Amplitude Equation Close to the Fréedericksz
Transition for an LCLV

Let us consider a nematic liquid-crystal layer with negative anisotropic dielectric
constant εa < 0 and homeotropic anchoring under the influence of low-
frequency voltage of the order of kilohertz. The orientation of the director is
described by the vector field n⃗�r⃗; t�, where fr⃗; tg are the space and time coor-
dinates. The dynamical equation for the molecular director n⃗ is the Frank–Oseen
mode, which reads [55]

γ∂tn⃗ � K3�∇2n⃗ − n⃗�n⃗ · ∇2n⃗�	
� �K3 − K1��n⃗�n⃗ · ~∇�� ~∇ · n⃗� − ~∇� ~∇ · n⃗�	
� �K2 − K3��2�n⃗ · ~∇ × n⃗��n⃗�n⃗ · ~∇ × n⃗� − ~∇ × n⃗�
� n⃗ × ~∇�n⃗ · ~∇ × n⃗�	 � εa�n⃗ · E⃗��E⃗ − n⃗�n⃗ · E⃗�	; (7)

where γ is the rotational viscosity coefficient, εa is the anisotropic dielectric
constant that accounts for nonlinear response of the dielectric constant, and
fK1;K2;K3g are the nematic liquid-crystal elastic constants, which account, re-
spectively, for the elastic deformation of the splay, twist, and bend types. The
electric field is given by E⃗ � �V∕d�ẑ ≡ Ezẑ, where Ez is the root mean square
amplitude of the electric field, V is the applied voltage, and d is the width of the
liquid-crystal layer.

A trivial equilibrium of the liquid-crystal layer consistent with the anchoring
condition is the homeotropic state, n⃗ � ẑ. To study the dynamics around this
equilibrium, let us consider the ansatz n⃗ � �u; v; 1 − �u2 � v2�∕2�, where
fu�z; t�; v�z; t�g are small perturbations. Retaining the leading order, we obtain
the following set of decoupled equations:

γ _u � K3∂zzu − εaE
2u;

γ _v � K3∂zzv − εaE
2v: (8)

By taking a solution of the form u�z; t� � u0e
σt sin�πnz∕d� and v�z; t� �

v0e
σt sin�πnz∕d�, with fu0;V 0g constants and n an integer number, we obtain

the rate growth relation

γσn � −K3

�
πn

d

�
2 − E2εa: (9)

Hence, the homeotropic state undergoes a degenerate stationary instability
(σ � 0) when the anisotropic dielectric constant is negative (εa < 0) for critical
values of the voltage that match the Fréedericksz transition threshold V FT �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−K3π

2∕εa
p

. Then, the director undergoes orientational instability, i.e., the
molecules tend to align perpendicularly to the electric field E⃗. As a result of
the elastic coupling between the molecules, the director has a cone of possible
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equilibria. From the point of view of bifurcation theory, this instability corre-
sponds to a degenerate pitchfork bifurcation with O�2�-symmetry [69].
Figure 13 outlines the bifurcation diagram for this instability.

To figure out the mechanism of creation and pinning of matter vortices, we
derive an amplitude equation in the vicinity of the Fréedericksz transition.
Illuminating the LCLV with a Gaussian beam, induces a voltage drop with a
bell-shaped profile across the liquid-crystal layer, higher in the middle of the
illuminated area. To determine the shape of the voltage drop within the sample,
one can consider the sample as consisting of two infinitely extended planar par-
allel plates separated by a thickness d. The upper plate, located in z � d, is lit by
a Gaussian beam. By introducing cylindrical coordinates, the voltage V �r; θ; z�
satisfies the Laplace equation:

∂zzV � ε⊥
ε∥

∇2
⊥V � 0; (10)

where ∇2
⊥ stands for the transversal Laplacian operator in polar coordinates. The

voltage satisfies the boundary conditions in the respective plates V �r; θ; z �
d� � V 0 � αI�r� and V �r; θ; z � 0� � 0, with �r; θ� the polar coordinates in
the plane where the origin of the coordinate system corresponds to the center
of the beam and θ � 0 corresponds to the x axis [see Fig. 7(b)]. I�r� stands for
the intensity of the Gaussian beam, I�r� � I0e

−r2∕ω2

, with I0 the peak intensity,
ω the beam waist, and α a phenomenological parameter that describes the linear
response of the photoconductor. By using the Fourier transform in polar
coordinates and solving the above equation with the corresponding boundary
conditions, after straightforward calculations one obtains [46]

V �z; r� � 1

2π

Z
∞

−∞
dke−ik·r⊥

sinh

� ffiffiffiffi
ε⊥
ε‖

q
kz

�

sinh

� ffiffiffiffi
ε⊥
ε‖

q
kd

�
�Z

∞

0

dr
⊥e
ik·r
⊥ �V 0 � αI�r
⊥∕ω�	

�
:

(11)

This expression is an exact analytical solution; however, it is too intricate to infer
results from. For the sake of simplicity, one can consider the limit of a Gaussian
beam sufficiently flattened (ω → ∞). This limit is consistent with experimental

Figure 13
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Schematic representation of Fréedericksz transition. The horizontal axis repre-
sents the voltage applied to the liquid-crystal sample. The transverse plane
stands for the projection of the director in the horizontal plane of the sample.
Adapted from Fig. 1 in [64], copyright 2014, with permission from the American
Physical Society.
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observations, since the beam waist (about 200 μm) is much larger than the size of
the vortex (5 μm). In this limit the above expression, at the dominant order, takes
the form

V �z; r� ≈ z

d
�V 0 � αI�r∕ω�	: (12)

The first and second terms on the right-hand side of the above expression ac-
count for the externally applied bias and the voltage drop induced by the
Gaussian beam impinging on the sample, respectively. Figure 14(a) illustrates
the voltage drop inside the LCLV in a vertical cross-sectional view. Then, the
electric field E⃗�r; θ; z� inside the LCLV takes the form

E⃗ � −∇V � Ezẑ� Err̂ � − 1

d
�V 0 � αI�r∕ω�	ẑ − zα

dω

dI�rω�
dr

r̂;

with ẑ and r̂ the unitary vectors in cylindrical coordinates [see Fig. 14(a)]. Note
that the electric field contains an axis-symmetrical structure. This structure of the
electric field projected onto the x − y plane corresponds to a vortex with positive
charge and zero phase, which is similar to the one shown in Fig. 30(d). This
structure of the electric field will be responsible for inducing a matter vortex.
The presence of an inhomogeneous electric field strongly modifies the dynamics

Figure 14
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Electric field and voltage inside the liquid-crystal sample. (a) Vertical and
(b) horizontal cross section showing a schematic representation of the electric
field (arrows) and voltage drop (lines) across the liquid-crystal layer when a laser
beam illuminates the sample from the top. The illuminating laser beam is im-
pinging at the center of the sample. (c) 3D structure of the photoinduced umbilic.
Adapted from Fig. 3 in [72].
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of the liquid-crystal director n⃗. The dynamical equation for the molecular
director n⃗ is given by Eq. (7). We consider the ansatz for the amplitude of
the critical mode:

n⃗�r; θ; z� ≈

0
B@

u�r; θ; t� sin�πzd �
w�r; θ; t� sin�πzd �

1 − �u2�w2�
2

sin2�πzd �

1
CA:

Introducing the above ansatz in the director equation [Eq. (7)], integrating in the
z coordinate over one period, and by defining the complex amplitude
A ≡ u� iw, after straightforward calculations one obtains (the anisotropic forced
Ginzburg–Landau equation [46])

γ∂tA � μA − aAjAj2 �∇2
⊥A� δ∂ηηĀ� b

Er�z�
z

Eze
iθ; (13)

which is the amplitude equation for self-stabilization of the matter vortex [46]. A
similar procedure to derive the amplitude equation is presented in Appendix A.
Here μ ≡ −K3k

2 − εaE
2
z �r; z� is the bifurcation parameter (note that μ is a

spatially dependent parameter), a ≡ −�−K1k
2∕2� 3εaE

2
z∕4� > 0 is a parameter

of order 1 that accounts for the nonlinear saturation, and b ≡ εa2d∕π. The details
of the derivation of the anisotropic forced Ginzburg–Landau equation will be
presented in Appendix A.1.

The first expression does not depend on the z coordinate and it is proportional
to the derivative of a Gaussian. E�z; r� corresponds to a Gaussian translated.
Hence, the last term on the right-hand side of the anisotropic forced
Ginzburg–Landau equation is an external forcing generated by the inhomo-
geneous radial electric field, which, in turn, is induced by the inhomogeneous
profile of the light beam. This forcing term is responsible for inducing a matter
vortex with positive charge in the center position where the applied Gaussian
beam is peaked, which is at the origin of the self-stabilization mechanism
for the vortex induction.

6.2. Positive Vortex with Swirling Arms

When the Fréedericksz transition starts from the unstable state A � 0 in the pres-
ence of noise, or under uniform illumination, the system initially generates a
large number of vortices that subsequently annihilate by pairs of opposite topo-
logical charge or fade toward the edges (see Figs. 15 and 16). Let us now con-
sider the effect of forcing, Er ≠ 0, that occurs in the presence of a nonuniform
illumination. Such a forcing simultaneously breaks the translational symmetry
and the spatial rotation and, consequently, leads to a single positive vortex to be
attracted and trapped in the central position of the illuminated area.

Figures 15 and 16 show sequences of pictures from, respectively, experimental
observation and numerical simulations of the forced amplitude equation
[Eq. (13)] without anisotropy (δ � 0), illustrating the process described above.
Starting from three generated vortices, a couple of them, oppositely charged,
mutually attract and annihilate [see Figs. 16(a)–16(c)], thus leaving a single pos-
itive vortex at the end [Fig. 16(c)]. The single vortex is then attracted to the
center of the illuminated area, where it remains pinned [Fig. 16(d)]. A similar
dynamical evolution is observed in the experiment as it is depicted in Fig. 15. If
we illuminate a large area of the LCLV, the system generates several vortices that
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subsequently annihilate by pairs of opposite topological charge, leaving just one
vortex at the end.

Figures 17(e) and 17(f) show, respectively, the nullcline field and the corre-
sponding phase of an initial unstable vortex, which is inconsistent with the
forcing. This state evolves to a stable swirling vortex, as shown in Figs. 17(a)
and 17(b). Note that the phase jump is always consistent in the outer region with
that imposed by the forcing, while the inner region is consistent with the
anisotropy. Notice also that negatively charged vortices are not consistent with
the charge induced by the forcing; therefore, they are not a steady state.

We now consider simultaneously the effects of the elastic anisotropy, which is
intrinsic to the medium properties, and the spatial forcing that is induced by the
light. While the forcing induces a vortex that is pinned at the center of the light
beam and tries to impose the phase jump, the elastic anisotropy imposes a phase
jump that must be consistent with the four possible φ0, which will be explained
in the following sections. Because the anisotropy is proportional to the spatial
derivatives, we expect it to be more relevant near the core of the vortex.
Therefore, one expects that the anisotropy imposes the phase jump in the region
close to the vortex core, and the spatial forcing imposes the phase jump in the

Figure 15

Temporal sequence of experimental observations of the dynamical evolution of
vortices recorded with crossed polarizers.

Figure 16

Dynamical evolution of the vortices observed in the forced amplitude equation
[Eq. (13)] without anisotropy (δ � 0) starting from the unstable state, A � 0,
with an initial noise. The temporal evolution is from the left to the right panel.
The magnitude of the amplitude jAj is displayed in gray. The steady state, which
corresponds to a single vortex trapped in the center, is shown in the right image.
Simulations were realized with μ � −0.5� 1.69e−r2∕σ2 , σ � 18, δ � 0.7, and
b Er

z Ez � 0.00169re−r2∕σ2 . Adapted from Fig. 5 of [72].
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Figure 17

Nullcline and phase field, top and bottom panels, respectively, of vortex solu-
tions of the anisotropic and forced amplitude equation [Eq. (13)] with
positive anisotropy (δ > 0), where the forcing term of Eq. (13) is replaced
by b�Er�z�∕z	Eze

iθ�φ0 and considering different φ0 angles, respectively,
φ0 � f0; π∕4; π∕2g. μ � −0.5� 1.69e−r2∕σ2 , σ � 18, δ � 0.7, and b Er

z Ez �
0.00169re−r2∕σ2 . Adapted from Fig. 4 in [72].

Figure 18
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(a)–(c) Adapted from Fig. 6 in [72]. Bending process of the arms of a single
positive vortex obtained from the forced amplitude equation [Eq. (13)] for
positive elastic anisotropy. The time evolution proceeds from left to right.
The nullcline field ψ is displayed in gray. During its evolution, the vortex
develops a swirling of the arms around its core. The final configuration is shown
in (c). Simulations were realized with μ � −0.5� 1.69e−r2∕σ2 , σ � 18, δ � 0.7,
and b Er

z Ez � 0.00169re−r2∕σ2 , and the time shown is scaled by γ.
(d)–(f) Successive experimental snapshots (time delay 3.2 s) recorded from
the evolution of the vortex arms under geometrical frustration imposed from
the boundaries.
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outer regions of the vortex. Figure 17 illustrates stationary vortices for positive
anisotropy and with a forcing term of the form b�Er�z�∕z	Eze

iθ�φ0 , where φ0 �
fπ∕2; 3π∕2g are privileged [72]. in the left, center, and right panels are consid-
ered 0, π∕4, and π∕2, respectively. As a result of adjusting the respective angles
of the phase jump, the vortex solution exhibits a phase gradient, which induces a
small force responsible for slightly displacing the vortex from its center.

Therefore, the origin of the bent arms of the vortices is, simply, the result of the
competition between two effects: the anisotropy, imposing a phase jump angle in
the core of the vortex, and the spatial forcing, imposing another phase jump
angle in the outside regions. The top panels of Fig. 18 show the numerical evo-
lution of a positive vortex initially consistent with the spatial forcing and its later
temporal evolution resulting from the anisotropy. For comparison, a sequence of
experimental snapshots showing similar evolution of the vortex arms is shown in
the bottom panels of Fig. 18. To give more evidence to the swirling effect, the
vortex was created in a position where a geometrical frustration was imposed by
the presence of other vortices, which induces a large mismatch between the
initial position of the vortex arms and the final equilibrium position fixed by
the simultaneous occurrence of forcing and anisotropy.

7. Vortex Arrays in Various Liquid-Crystal Systems

7.1. Torons in Photosensitive Frustrated Chiral Nematic
Liquid Crystals

Introduction of molecular chirality leads to chiral nematic liquid crystal (CNLC)
phases, for which the ground-state director field n⃗�r⃗� shows a spatial twist, pre-
cessing at a constant rate along a helical axis. This constitutes a cholesteric
phase, characterized by a helical arrangement of the molecular distribution
[54–56]. The helix pitch can be controlled by changing the amount of chiral
dopant in the nematic host. Under geometric confinement, the natural helix
of the cholesterics can be unwound to form a uniform state. This uniform frus-
trated state can be twisted or untwisted back, with the possibility of forming
twisted localized regions that behave like particle excitations immersed in a
background field. The optical creation and multistable switching of localized
configurations in the molecular orientation of a chiral nematic liquid crystal
has been demonstrated in homeotropically aligned cells, where the confinement
of the liquid-crystal layer induces a frustration of the helical structures [47].

In these experiments, the CNLC forms an equilibrium helical pitch p confined
into a cell of thickness d and with the inner surfaces treated to induce homeo-
tropic alignment of the molecules. These boundary conditions are incompatible
with the ground-state cholesteric-phase twist, and tend to unwind the twisted
structures, forcing a uniform bulk alignment with n̂ orthogonal to the cell walls.
The helical structure is unwound (nematic-like) when the cell gap is much
smaller than the pitch (p ≫ d), whereas for larger cell gaps (p ≪ d), the director
twists freely in the center of the sample and meets the vertical-boundary con-
ditions at the glass plates by introducing splay and bend distortions. The CNLC
unwinding occurs at d∕p ≃ 1 or smaller, at which the sample is at first in a uni-
form initial state. Then, localized chiroelastic particle-like excitations—called
triple-twist torons (T3s)—are generated by vortex laser beams and embed
the localized 3D twist into a uniform background.
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To generate the torons, the CNLC cell is locally shone by Laguerre–Gauss vor-
tex beams with helical wavefront and various topological charges, typically from
m � 1 to m � 10. T3s are optically generated at will at a selected place and then
structurally characterized with full detail in three dimensions. Confocal polar-
izing microscopy and computer simulations reveal the equilibrium internal
structures of the torons, manifesting both skyrmion-like and Hopf fibration fea-
tures [47]. The basic T3 configuration is a double-twist cylinder closed on itself
in the form of a torus (Fig. 19(a)) and coupled to the surrounding uniform field
by point or line topological singularities (Fig. 19(b)–19(f)). Remarkably, the
torons enable twist in all three spatial directions and are stabilized by strong
energy barriers associated with nucleation of topological defects.

Similar structures have been recently exploited for the realization of reconfig-
urable arrays of optical vortex generators [48]. These generators are elastic par-
ticle-like structures optically inscribed in frustrated cholesteric films by means of
the laser-induced local winding of the chiral liquid-crystal mesophase. Such

Figure 19

Triple-twist toron field configurations generated by Laguerre–Gauss beams and
embedded into a uniform field by defects. Panel a shows a toron structure with
topological charge �2 owing to the twist-escaped nonsingular disclination ring
of strength s � �1 shown by the red line. Panels (b) and (c) show, respectively, a
−1 hyperbolic point defect and a ring of s � −1∕2 disclination topologically
equivalent to a −1 point defect, both showing twist of n⃗�r⃗� with the sense of
twist shown by the red arrows. Panel (d) is the T3-1 configuration with the toron
accompanied by two hyperbolic point defects. Panel (e) shows a T3-2 structure
containing a point defect and a disclination ring. Panel (f) is a T3-3 configuration
with two s � −1∕2 defect rings. Panels (g)–(j) show light-intensity distributions
in the transverse x–y (left) and axial x–z (right) planes of the Laguerre–Gaussian
beams of topological charge marked for each of the image pairs; the square cross
sections are 4 μm wide. Reprinted by permission from Macmillan Publishers
Ltd: Smalyukh et al., Nat. Mater. 9, 139–145 (2010) [47]. Copyright 2010.
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structures are shown to produce optical vortices with a well-defined orbital state
resulting from the spin-to-orbital angular momentum conversion process. The
structure of the vortex generators is unveiled by polarimetric measurements,
as shown in Fig. 20.

7.2. Self-Assembled Defects in Smectic Liquid Crystals

Recently, a method to produce closely packed ordered optical vortex arrays
using self-assembled smectic liquid-crystal defects has been demonstrated
[49–51]. These defects are called focal conic domains (FCDs) because of the
conical symmetry of the director layers orienting tangentially along circular
focal conical surfaces. The typical structure of a FCD is shown in Fig. 21(a).

FCDs in smectic layers organize spontaneously into vortex lattices with hexago-
nal symmetry. Each defect on the lattice sites has a size of the order of 10–35 μm
and generates an optical vortex with topological charge m � 2. The spiral pro-
files obtained in the interferometric observations have confirmed the formation
of optical vortices, as predicted by the Jones matrix calculations. An example of

Figure 20

Optical vortex generation by optical addressing of frustrated chiral nematic
films. (a) Normalized intensity spatial distribution Iα with α � 0°; 45°; 90°,
and 135° under circularly polarized monochromatic illumination, where Iα refers
to the intensity distribution obtained by placing a polarizer at an angle α from the
x axis at the output of the film. (b) Phase spatial distribution of the contra-
circularly polarized component of the output field with respect to the circular
polarization state of the incident probe beam deduced from the data shown
in panel (a). (c) Azimuthal phase profile along circles of different radii that reveal
a phase singularity with topological charge 2. Reprinted with permission from
Yang and Brasselet, J. Opt. 15, 044021 (2013) [48].

Figure 21

Experimental observation of the focal conic defects. (a) 3D view of the FCD in a
smectic layer. (b) Image of the hexagonal FCD arrays between crossed polar-
izers; scale bar is 100 μm. (c) Magnified image; scale bar is 10 μm. Reprinted
with permission from Son et al., Opt. Express 22, 4699 (2014) [51].
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a self-assembled FCD vortex array is shown in Fig. 21(b). This method is very
attractive because of its self-assembled nature and its ability to generate micro-
scale vortices. Nevertheless, it must be considered that the arrays are fully
connected, prohibiting the addressing of single vortex sites for a fully reconfig-
urable matrix.

7.3. Umbilics in Nematics Driven by Microarrays of
Electrodes

Electrically tunable microarrays of q-plates have been recently realized and dem-
onstrated to realize efficient conversion from spin-to-orbital angular momentum
of an incoming light beam [52].

As shown in Fig. 22, the micropattern consists in a 1D array of 60 μm side square
electrodes. The liquid-crystal cell has a thickness of 13 μm and is filled with a
nematic liquid crystal with negative dielectric anisotropy. When driven with low-
frequency voltages a nonsingular topological defect, that is, an umbilical defect,
is spontaneously formed in correspondence with each electrode patch.

The topological strength of the umbilic is found to be�1 in all cases. The typical
intensity and phase distribution of the generated optical vortex with topological
charge 2 depends on the geometrical factors of the patterned electrode as well as
on the driving voltage. Even though the extension to 2D patterns seems not yet
straightforward because of the increasing complexity of the electrical driving,
the method is attractive in terms of potential applications for parallel processing
of optical orbital angular momentum.

7.4. Umbilics in Nematics Driven by Magnetic Fields

The controlled generation of umbilics in a nematic layer with homeotropic an-
choring has also been realized by using magnetic fields [53]. The method is an
extension of that used previously by Gilli and co-workers for the study of Ising
and Bloch walls in an almost homogeneous rotating magnetic field created by
two parallelepipedic magnets [65]. In the paper by Pieranski et al. [53], the

Figure 22

(a) Patterned electrode for the generation of umbilics. (b) Defects observed be-
tween crossed linear polarizers and under white-light illumination. (c) Defects
observed between crossed circular polarizers and under 633 nm wavelength
illumination. (d) Phase profile of the generated vortex field with topological
charge 1; scale bar is 60 μm. Reprinted with permission from Loussert et al.,
Appl. Phys. Lett. 105, 121108 (2014) [52]. Copyright 2014, AIP Publishing
LLC.
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nematic samples are submitted to magnetic fields created by small NdFeB mag-
nets, and the induced umbilics are unveiled by observation between crossed po-
larizers in monochromatic or white light.

The sample consists of a nematic layer of thickness d sandwiched between two
glass plates coated with transparent ITO electrodes and homeotropically aligned.
In its ground state without fields, the director field is homogeneous and the sam-
ple has axial symmetry around the z axis. Owing to the anisotropy χa � χ∥ − χ⊥
of the diamagnetic susceptibility of the nematic liquid crystal, a magnetic field B⃗
applied to such a sample exerts a torque,

Γm � χa
μ0

�n⃗ · B⃗��n⃗ × B⃗� ≈ χa
μ0

Bz�n⃗ × B⃗�;

on the director and tilts it out from the initial orientation n⃗ � �0; 0; 1�. The new
orientation of the director results from the balance between this magnetic torque
and the restoring elastic torque Γel. In approximation of small distortions, nx,
ny ≪ 1 and nz ≈ 1, the elastic torque can be written as

Γel � K
∂2n⃗⊥
∂z2

× n⃗;

with

n⃗⊥�z� � n⃗⊥0 cos

�
πz

d

�
;

and one finally obtains

n⃗⊥0 ≈
BzB⃗⊥

B2
c

;

where Bc is the threshold of the Fréedericksz transition in magnetic field and B⃗⊥
is the projection of the magnetic field on the x–y plane of the sample. By using
the above relationship, permanent magnets and magnetic fields suitable for the
production of umbilics can be designed and realized.

Moreover, by adding an AC voltage to the sample and by using various geo-
metrical distributions of magnets, umbilics of �1 topological charge can be

Figure 23

Generation of umbilics by a periodic system of magnets: panel a shows a 4 × 5

matrix made of magnets 2 mm in diameter, and panel b is the corresponding
lattice of umbilics. [Copyright 2013 from “Generation of umbilics by magnets
and flows,” by Pieranski et al. [53]. Reproduced by permission of Taylor and
Francis Group, LLC, a division of Informa.]
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selectively induced and arranged over the sample. In particular, a regular peri-
odic system of magnets induces lattices of umbilics, as in the example reported
in Fig. 23. Even though not yet exploited for photonic applications, such recon-
figurable and magnetically driven arrays of vortices could constitute an addi-
tional possibility for the generation of topological charges via the interaction
of light with soft matter systems.

8. Programmable Optical Vortex Lattices in a
Photo-Addressable Homeotropic LCLV

The process of vortex induction via anisotropy stabilized light–matter interaction
allows the creation of closely packed lattices of optical vortices with arbitrary
and reconfigurable geometric distributions [46]. As long as liquid-crystal reor-
ientation occurs only in the illuminated areas (which happens for relatively low
amplitudes of voltage applied to the light valve), the vortices on adjacent lattice
sites are independent from one another and all have the same �1 sign.
Conversely, when reorientation occurs in the whole liquid-crystal layer (for large
enough applied voltage), all the vortices become tightly coupled together, lead-
ing to the spontaneous generation of defects with −1 sign between adjacent lat-
tice sites. The resulting vortex arrangements are consistent with the topologic
conservation rules that accounts for the reconnection of reorientation lines in
the distorted nematic layer.

Remarkably enough, all the topological reconnections in the light valve are re-
configurable, optically addressable, and tunable via the applied electric field.
Moreover, the induced defect lattices act as arrays of photonic spin-to-orbital
angular momentum couplers with both signs of the topological charge. For a
circularly polarized input beam, the matter vortex at each lattice site generates
a Laguerre–Gauss output beam with topological charge determined by the sign
of the defect and the spin-to-orbital angular momentum transfer.

8.1. Addressing Different Vortex Lattice Symmetries

The setup for generating vortex lattices is sketched in Fig. 24. The beam
of a diode-pumped frequency-doubled solid-state (DPSS) laser at wavelength
λ � 532 nm is expanded, collimated, and directed to a spatial light modulator
(SLM). The SLM is computer driven by intensity masks (an example is
shown in the inset; the lattice period is 0.5 mm, and the diameter of the
vortex core is 1.2 μm), which, through a lens, are imaged onto the BSO side
of the LCLV. The vortex beams at the LCLV output are recorded by a CCD
camera. To observe the whole orientational structure inside the liquid-crystal
layer, the LCLV can also be illuminated by white light and the transmitted
field imaged at the CCD plane. Note that white light that illuminates the
LCLV induces an extra voltage on the liquid-crystal sample. Therefore, the
Fréedericksz threshold voltage with respect to the externally applied voltage
V 0 decreases as a result of the additional voltage induced by the white
light. Polarizers and red filters discriminate the green vortex beams from
the white light transmitted through the valve. An He–Ne laser at wavelength
λ � 632 nm is used to generate an interferometer, through which the phase
singularities are visualized by making the whole vortex lattice interfere with
an expanded collimated beam.
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Figure 24

Experimental setup for optical writing of the vortex arrays. OBJ, objective; BS,
beam splitter; M, mirror; SLM, spatial light modulator; NDF, neutral density
filter; F, red filter; POL, polarizer; HWP, half-wave plate; QWP, quarter-wave
plate; PH, pinhole; L, lens; CCD, charge-coupled device camera. Bottom inset:
example of a square modulation mask as input to the SLM. Upper inset: zoomed-
in view of the sample observed under crossed polarizers when illuminated with
the square grid (green laser spots) and white light; on the left is an enlarged view
of a single vortex. Reprinted with permission from Barboza et al., Phys. Rev.
Lett. 111, 93902 (2013) [46]. Copyright 2013 American Physical Society.

Figure 25

Hexagonal vortex lattices. (a) Laser intensity distribution, V � 19 V ; the dashed
lines mark the lattice structure. (b) and (c) white-light images under crossed po-
larizers: (b) independent vortices, V � 18 V , and (c) fully coupled vortex lattice,
V � 22 V ; the circles indicate the positions of the addressing light spots.
(d) Interferogram of the vortex lattice, V � 12 V , with adequate lighting system
to generate these diagrams; the input intensity is I � 250 μW∕cm2. (e) and
(f) Spatially resolved polarimetry: (e) V � 18 V , and (f) V � 22 V . [Adapted
from Fig. 3 in [46], copyright 2013, with permission from the American Physical
Society.]
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Defect lattices were generated with various symmetries and spatial distribu-
tions, specifically designing the intensity masks for the SLM to achieve
close packing of the vortices. Examples of hexagonal vortex lattices are dis-
played in Fig. 25. At low applied voltage, the vortices are practically inde-
pendent one from another and can be individually addressed [Figs. 25(a) and
25(b)]. Indeed, at low frustration, interactions between adjacent vortices can
be neglected. When the voltage is increased, adjacent vortices become
coupled through reorientation in the whole nematic background. Because
of the topological constraints associated to the reconnection of reorientation
lines, two (initially generated) adjacent vortices of equal sign induce a vor-
tex of opposite charge in between them. An example of a fully connected
network of vortices with alternating signs is visible in Fig. 25(c). The spa-
tially resolved polarimetry of the vortex distribution in Figs. 25(e) and 25(f)
immediately shows the sign of each vortex by the direction of circulation of
the phase arms. Figure 25(d) presents the interferograms obtained with a
plane reference wave. Note that the Fréedericksz threshold voltage is here
decreased due to the different illuminating conditions with respect to the
situations of Figs. 25(a), 25(b), and 25(e). Moreover, the fork dislocation
present in the middle of each group of six adjacent vortices (illuminated
green spots) is a precursor of the matter vortex induced by topological con-
straints at higher voltage.

Figure 26

(a)

(d)

(b)

(e) (f)

(c)

(g) (h) (i)

Vortex lattices with various spatial distributions; images are taken through
crossed polarizers. (a)–(c) Squares with V 0 � 14; 18; 22 V rms, (d)–(f) hexagons
with a defect in the center for V � 14; 18; 22 V rms, and (g)–(i) Penrose lattice for
V 0 � 14; 18; 22 V rms; the dashed lines mark the corresponding lattice structures.
The addressing light intensity is I � 250 μW∕cm2 in all cases. [Adapted from
Fig. 4 in [46] copyright 2013, with permission from the American Physical
Society.]
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By employing suitably designed intensity masks, we created vortex lattices with
various distributions, as shown in Fig. 26 for the cases of a square lattice, a
Penrose lattice, and a hexagonal lattice with a topological frustration in the
center. Again, as the bias was increased from low to high voltages, we observed
the transition from independent vortices to a fully connected network of adjacent
vortices of alternating signs. In hexagonal lattices, a topological frustration can
be induced by addressing a defect in the center of a hexagonal cell. If this is done
when the fully connected network is already established, the optically addressed
defect undergoes a topological frustration with respect to the defect that was
present at the same site. As a consequence, the unmatched reorientation lines
reorganize themselves and give rise to a transient unwinding dynamic of the
defect spiral arms, until the system is able to self-heal into a stationary configu-
rational trade-off [46].

8.2. Random Lattices: Dynamics of the Vortex
Realignment

Random lattices can be generated at will by appropriate intensity masks deliv-
ered by the SLM. An example showing the transition from a random lattice to
another one is shown in Fig. 27, where the dynamical transition between the
two can be appreciated. The switching time between the initial and the final
configuration is approximately 1 s.

9. Conclusions and Outlook

Liquid-crystal media provide versatile and efficient platforms for optical
vortex generation. Either single selected vortices or fully connected vortex arrays
can be addressed, depending on the specifically chosen liquid-crystal system, as
well as on the method used to drive it. Liquid crystals exist in various meso-
phases and, correspondingly, the optical vortex generators consist of different
structures embedded in the matter texture. One of the most widely used
liquid-crystal matter templates capable of generating optical vortices is the um-
bilic, that is, a non-singular defect, string-like object in three dimensions, arising
in nematic liquid crystals because of surface interactions [40], electric bias [41],
or magnetic field driving [53]. Cholesteric liquid crystals, characterized by a
chiral twist of the molecular arrangement, have been shown to produce, under
appropriate frustrating confinement conditions, another type of optical vortex
generator, the so-called toron, which is a chiral particle-like elastic structure
where the twist is reestablished locally over a uniform background [47].

Figure 27

Dynamical transition between random arrays. The initial state in (a) is driven to
the final state in (e) by addressing the light valve with another intensity mask.
The experimental snapshots are separated by 250 ms.
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Another type of optical vortex generator is the FCD that arises in smectic liquid
crystals [49].

Therefore, a large number of possibilities is offered by liquid crystals for op-
tical vortex generation, and a growing interest for this domain of research is
triggered by the high level of technological maturity reached by numerous
liquid-crystal-based technologies. In particular, by using a nematic liquid crys-
tal in a homeotropic light-valve geometry, we experimentally demonstrated a
robust phenomenon of controlled vortex induction, which is, at the same time,
spontaneous, self-stabilizing, and positionally stable. After its induction, the
vortex develops a swirling of the arms, which remain stationary and stable.
The process is described by a theoretical model based on an amplitude equa-
tion derived close to the Fréedericksz transition, which allows us to understand
the origin of the induced vortex and the competition between the forcing in-
duced by the light and the elastic anisotropy that generates the swirling arms
of the vortex.

By using suitable intensity masks on the photosensitive wall of the light valve,
reconfigurable and programmable vortex arrays can be induced and manipulated
with a large degree of flexibility of the configurations. Interlaced lattices of �1

and−1 vortices are generated by exploiting the topological reconnection lines of
the distorted nematic director field. In future work, methods for the selective
generation of higher topological charges could be devised, either based on other
geometrical configurations of liquid-crystal cells or the combined use of light
valves with other liquid-crystal mesophases.

Appendix A: Derivation of the Model Description

A.1. Derivation of the Amplitude Equation Close to the
Fréedericksz Transition

Let us consider a nematic liquid-crystal layer with negative anisotropic dielectric
constant and homeotropic anchoring under the influence of low-frequency volt-
age of the order of kilohertz. For the sake of simplicity we neglect here the con-
tribution of the transverse electric field. To understand the nonlinear response of
the system at the onset of the Fréedericksz transition, we follow the weakly non-
linear analysis presented in Refs. [65,66]. Let us introduce

n⃗�r⃗; t� �

0
B@

n1�r⃗; t�
n2�r⃗; t�
1 − n2

1
�n2

2

2

1
CA (A1)

into the Frank–Oseen equation:

γ∂tn⃗ � K3�∇2n⃗ − n⃗�n⃗ · ∇2n⃗�	
� �K3 − K1��n⃗�n⃗ · ~∇�� ~∇ · n⃗� − ~∇� ~∇ · n⃗�	
� �K2 − K3��2�n⃗ · ~∇ × n⃗��n⃗�n⃗ · ~∇ × n⃗� − ~∇ × n⃗�
� n⃗ × ~∇�n⃗ · ~∇ × n⃗�	 � εa�n⃗ · E⃗��E⃗ − n⃗�n⃗ · E⃗�	; (A2)

and, by neglecting higher nonlinear orders, we obtain
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γ _n1 � K3�∇2n1 � n1��∂zn1�2 � �∂zn2�2�	
− �K3 − K1��n1∂zz�n21 � n22�∕2� ∂xxn1 � ∂xyn2	
� �K2 − K3��−∂xyn2 � ∂yyn1	 − εan1E

2
z �1 − n21 − n22�;

γ _n2 � K3�∇2n2 � n2��∂zn1�2 � �∂zn2�2�	
− �K3 − K1��n2∂zz�n21 � n22�∕2� ∂xyn1 � ∂yyn2	
� �K2 − K3��∂xxn2 − ∂xyn1	 − εan2E

2
z �1 − n21 − n22�:

The other remaining equation is trivially satisfied by the normalization condi-
tion. To take into account the dynamics of the critical mode, we consider the
ansatz n1 � X �x; y; t� sin�kcz� �W 1�r⃗; t� and n2 � Y �x; y; t� sin�kcz��
W 2�r⃗; t�, with kc ≡ π∕d. W⃗ � �W 1;W 2� stands for higher order corrections.
Using this ansatz in the above set of equations and linearizing in W⃗ , it reads

γ _X sin�kz�
� �K3∂zz − εaE

2
z �W 1 � K3 sin�kz��∇⊥X − k2X � k2X �X 2 � Y 2�cos2�kz�	

− �K3 − K1� sin�kz��Xk2�X 2 � Y 2��cos2�kz� − sin2�kz�� � ∂xxX � ∂xyY 	
� �K2 − K3� sin�kz��∂yyX − ∂xyY 	 − εaX sin�kz�E2

z �1 − �X 2 � Y 2�sin2�kz��;
γ _Y sin�kz�
� �K3∂zz − εaE

2
z �W 2 � K3 sin�kz��∇⊥Y − k2Y � k2Y �X 2 � Y 2�cos2�kz�	

− �K3 − K1� sin�kz��Yk2�X 2 � Y 2��cos2�kz� − sin2�kz�� � ∂xyX � ∂yyY 	
� �K2 − K3� sin�kz��∂xxY − ∂xyX 	
− εaY sin�kz�E2

z �1 − �X 2 � Y 2�sin2�kz��:

The linear operator acting on W⃗ is

L �
�
K3∂zz − εaE

2
z 0

0 K3∂zz − εaE
2
z

�
:

By introducing the inner product hf jgi � R
d
0 dzf · g, this operator is self-adjoint

and its kernel is KerfL†g � f�sin�kz�; 0�; �0; sin�kz��g. Hence, for solving the
above linear equation, we apply the solvability condition or the Freedholm
alternative, and we obtain

γ _X � K3�∇⊥X − k2X � k2X �X 2 � Y 2�∕4	
− �K3 −K1���∂xxX � ∂xyY �−Xk2�X 2 � Y 2�∕2	 � �K2 −K3��∂yyX − ∂xyY 	
− εaXE

2
z �1–3�X 2 � Y 2�∕4�;

γ _Y � K3�∇⊥Y − k2Y � k2Y �X 2 � Y 2�∕4	
− �K3 −K1���∂xyX � ∂yyY �− Yk2�X 2 � Y 2�∕2	 � �K2 −K3��∂xxY − ∂xyX 	
− εaYE

2
z �1–3�X 2 � Y 2�∕4�:

Introducing the change of variable A�x; y; t� ≡ �X � iY �∕ ffiffiffi
a

p
; defining

∂η ≡ ∂x � i∂y, ∇2 � ∂ηη̄, μ ≡ −K3k
2 − εaE

2
z , and a � �2K1k

2 − 3εaE
2
z �∕4; and

scaling the space by a factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�K1 � K2�∕2

p
, we get [65,66]
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∂tA � μA − AjAj2 � ∇2A� δ∂ηηĀ; (A3)

where δ � �K1 − K2�∕�K1 � K2�. This is the anisotropic Ginzburg–Landau
equation, where μ is the bifurcation parameter, which accounts for the compe-
tition between the elastic and electric forces; the second term corresponds to
nonlinear saturation; the third one accounts for the diffusion, which is a conse-
quence of the elastic coupling; and the last term is the anisotropic correction, a
consequence of how the different deformations in the system have different en-
ergy. Without this anisotropic term, δ � 0, this equation corresponds to the
Ginzburg–Landau equation with real coefficients, an equation widely studied
because of its importance in dynamical systems, as we have mentioned before.

Similar equations were derived before using the method of homogenization for a
nematic liquid-crystal cell in the limit where its thickness approaches zero [64],
and for modeling self-organization in an array of microtubules interacting via
molecular motors in [74].

Note that Eq. (A3) can be rewritten in the form

∂tA � − δE
δĀ

; (A4)

where the free energy has the form

E�A; δ� ≡
Z
Ω
dS

�
j∇Aj2 � 1

2
�μ − jAj2�2 � δRef�∂ηĀ�2g

�
; (A5)

where Ω is a bounded domain. In other words, the time-dependent anisotropic
Ginzburg–Landau equation [Eq. (A3)] is simply a gradient flow of the free en-
ergy. E is a Lyapunov functional. Therefore, the trivial equilibria that minimize
the free energy are jAj2 � μ. However, this equation has nontrivial inhomo-
geneous equilibria, as we will see in the following section.

A.2. Isotropic Limit, the Ginzburg–Landau Equation with
Real Coefficients

Considering the isotropic limit (K1 � K2 � K3) δ � 0, the above model
reduces to the well-known CGLE with real coefficients:

∂tA � μA − jAj2A� ∇2
⊥A: (A6)

This model with complex coefficients was initially proposed by Ginzburg and
Landau for understanding superconductivity [75]. The Ginzburg–Landau equa-
tion has attracted much interest by describing several physical systems such as
fluids, superfluids, superconductors, liquid crystals, magnetic media, and optical
cavities [7,76].

The Ginzburg–Landau model has a family of uniform solutions parameterized
by the phase of the form A � ffiffiffi

μ
p

eiϕo , where ϕo is a constant. The connections
among different domains of these solutions are separated by vortices. Hence, this
equation admits stable dissipative vortex solutions with topological charge
�1 [7,68].
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Figure 28 illustrates the vortex solution of the Ginzburg–Landau equation. If one
considers polar representation A � Rv�r�ei�mφ�φ0�, where m � �1 is the topo-
logical charge, fr;φg are the polar coordinates in the plane, and φ0 is a continu-
ous parameter that accounts for the phase invariance of the amplitude equation
[Eq. (5)], the modulus of the amplitude, Rv�r�, satisfies

μRv − R3
v − m2

r2
Rv �

1

r

dRv

dr
� d2Rv

d2r
� 0: (A7)

There are no analytical expressions for the defect solutions of this model, which
were first observed numerically and characterized their asymptotic behavior in
Refs. [77–79]. The asymptotic behavior is

Rv�r� →
�
r r → 0ffiffiffi
μ

p �
1 − 1

2r2

	
r → ∞ :

By using the Padé approximant, one can obtain suitable approximations for the
vortex solutions [7]. Note that the equation for the modulus of the amplitude
[Eq. (A.7) does not depend on the sign of the topological charge. Hence, both
vortices are indistinguishable from the point of view of the magnitude of the
amplitude and nullcline field. A suitable scalar field to characterize the dynamics
of vortices both experimental and theoretical is the nullcline field ψ�r⃗; t� �
Re�A�Im�A�. This auxiliary field becomes zero when the real or imaginary part
of A vanishes. Then, the arms and position of the vortex are represented, respec-
tively, by the zero and the intersection of the zero-level curves. The nullcline
field for the vortex solutions takes the form ψ�r;φ� � R2

v�r� sin�2�mφ� φ0��∕2.
Thus, the vortex arms are characterized by being straight and orthogonal, form-
ing a cross whose center determines the position of the vortex. An example of
this case is shown in Figs. 28(c) and 28(f). In addition, the phase jump is

Figure 28

Vortex solutions of the Ginzburg–Landau equation [Eq. (5)] with μ � 1 (from
numerical simulations using the finite difference method). Graphs of the mag-
nitude (a), phase (b), and nullcline scalar field (c) of the positive vortex. Graphs
of the magnitude (d), phase (e), and nullcline scalar field (f) of the negative
vortex. [Adapted from Fig. 2 in [64], copyright 2014, with permission from
the American Physical Society.]
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characterized by a straight line emerging from the position of the vortex [see
Figs. 28(b) and 28(e)].

There is extensive literature devoted to the rigorous study of vortices in the com-
plex Ginzburg–Landau equation (see [80] and references therein). The isotropic
Ginzburg–Landau equation [Eq. (A6)] is invariant under the following sym-
metries: r⃗ → r⃗� r⃗0 (spatial translation invariance), φ → φ� φ0 (coordinates
rotation), φ → −φ (coordinates reflection), A → Aeiφ0 (phase invariance), and
A → Ā (reflection invariance).

A.3. Anisotropic Ginzburg–Landau Equation with Real
Coefficients: on the Nature of the Positive and
Negative Vortices

The equation for the amplitude magnitude does not depend on the sign of the
topological charge. Hence, the two vortices are indistinguishable from the point
of view of their magnitude and nullcline field. Figure 28(c) shows the nullcline
field obtained by using theGinzburg–Landau equation [Eq. (5)]. Note that the two
defects are still indistinguishable (see Fig. 28); however, these defects are exper-
imentally distinguishable (see in the inset of Fig. 5) [60,81,82]. The different col-
ors observed experimentally are due to the different optical paths produced by the
different orientations of the molecules. Moreover, from the Ginzburg–Landau
equation, one deduces that the interaction between vortices is symmetric
[7,71], but it has been reported that the speeds of �1 umbilic defects in the
process of collision are different [70]. Numerical simulations that consider the
dynamic of the nematic liquid crystal show the same result, where the speed asym-
metry arises from backflow effects and anisotropy in the elastic constants [70].

For the purpose of the preceding discussion we assume that μ � 1. Let us
now consider the effect of the anisotropy of the elastic constants (δ ≠ 0).
From the point of view of symmetries, Eq. (5) and the free energy E are still
invariant under spatial translation, but phase invariance and coordinates
rotation are no longer valid symmetries. They are replaced by a joint symmetry
A�ζ; t� → A�ζe−iφ0 ; t�eiφ0 , where ζ is the complex variable that represents the
Cartesian plane, i.e., ζ � x� iy.

Figure 29 illustrates vortices with positive and negative topological charge found
in the anisotropic Ginzburg–Landau equation [Eq. (A3)]. Note that from the
nullcline field ψ�r; t�, it is not possible to differentiate these vortices, compared
to the magnitude field jA�r; t�j, where they are distinguishable (see Fig. 29). For
the vortex with charge�1, the modulus remains rotationally invariant, while for
the −1 vortex, the rotational invariance around the core is broken by the fourfold
symmetry. Indeed, in a single color map representation of jAj, one can identify
the positive and negative charges on their circular and cross structures, respec-
tively [see Fig. 29(f)]. Note that when one increases the anisotropy, the size of
the cross structure grows.

By introducing the ansatz A�r; θ; fφ0g� � R�r�ei�θ�φ0� in the anisotropic
Ginzburg–Landau equation [Eq. (A3)], for the vortex solution with positive
topological charge, one obtains the following set of scalar equations [64]:

0 � μ0R − R3 � �1� δe−2iφ0�
�
d2R

d2r
� 1

r

dR

dr
− R

r2

�
; (A8)
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0 � δ sin 2φ0

�
d2R

d2r
� 1

r

dR

dr
− R

r2

�
: (A9)

From Eq. (A9), the only possible way to obtain a nontrivial solution is to con-
sider the phase parameter satisfying sin 2φ0 � 0, which gives the discrete
solutions φ0 � f0; π∕2; π; 3π∕2g. Therefore, from the continuous family of
possible phase jumps, only four possibilities survive. On the other hand, the
equation for the magnitude of the amplitude reads

0 � μ0R − R3 � �1� δ cos 2φ0�
�
d2R

d2r
� 1

r

dR

dr
− R

r2

�
: (A10)

Since φ0 � f0; π∕2; π; 3π∕2g, we must have cos 2φ0 � �1. Rescaling the space
by the factor

ffiffiffiffiffiffiffiffiffiffiffi
1� δ

p
, the above equation becomes Eq. (A7). Therefore, the iso-

tropic positive vortex has the form

A � R�
v

�
rffiffiffiffiffiffiffiffiffiffiffi
1� δ

p
�
ei�θ�π

4
�π

4
�nπ�; (A11)

with Rv the magnitude of the vortex solution of the Ginzburg–Landau equation
[Eq. (5)] and n � 0;�1;�2;…. Consequently, the anisotropic vortex solution
with positive charge corresponds to a simple scaling of the isotropic vortex
solution, although, with a finite number of possible phase jumps (φ0 �
f0; π∕2; π; 3π∕2g), in opposition to the isotropic system, which has an infinite
number of solutions parameterized by the continuous parameter φ0.

Figure 30 illustrates the magnitude of a vortex with positive topological charge
for the anisotropic Ginzburg–Landau equation [Eq. (A3)], for positive and neg-
ative anisotropy. Note that the difference between the vortices R�

v and R−
v in the

amplitude is the different sizes of the vortex core. For positive (negative)

Figure 29

Vortex solution of the anisotropic Ginzburg–Landau equation [Eq. (A3)] with
μ � 1 and δ � 0.7 (from numerical simulations). Structure of the (a) magnitude
and (b) phase of the positive vortex. Structure of the (c) magnitude and (d) phase
of the negative vortex. (e) Color map of nullcline field ψ�x; y; t� � Re�A�Im�A�,
and (f) modulus of the amplitude A at given time. [Adapted from Fig. 3 in [64],
copyright 2014, with permission from the American Physical Society.]
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anisotropy, the largest core is for vortex R�
v (R−

v ). Also, because of the different
φ0, both vortices represent different configurations for the director orientation
[see Figs. 30(c) and 30(d)].

It is worth noting that it is known, from the variational approach to the Frank free
energy, that the elastic anisotropy allows a discrete number of four possible
phase jumps for umbilics with positive topological charge [60,81]. These fea-
tures are recovered by the analytical expression in Eq. (A11) [64]. In the context
of self-organization of an array of microtubules interacting via molecular motors,
similar configurations have been numerically found for the orientational field
with φ0 � 0 and φ0 � π∕2, which have been named, respectively, the aster
and the ideal vortex [74]. Notice that these configurations and their continuous
deformation are vortex solutions, like Frank remarked at the dawn of the theory
of liquid crystals [63].

To study the existence, stability properties, and bifurcation diagram of the vortex
solution with positive topological charge, one can analyze the properties of the
free energy E [Eq. (A5). Using the vortex solution A � R�

v �r∕
ffiffiffiffiffiffiffiffiffiffiffi
1� δ

p �ei�θ�φ0�,
where the� sign represents� for φ0 � f0; πg and − for φ0 � fπ∕2; 3π∕2g, and
taking a finite large domain Ω, one obtains, after straightforward calculations
and following the same strategy presented in Ref. [7], the energy of the vortex
with positive topological charge [64]:

E � π ln

�
L

a0
ffiffiffiffiffiffiffiffiffiffiffi
1� δ

p
�
� π�1� δ�

2
� πδ

�
ln

�
L

a0
ffiffiffiffiffiffiffiffiffiffiffi
1� δ

p
�
� 1

�
: (A12)

Figure 31 shows the energy for the two different vortices with positive topologi-
cal charge (two respective signs). The lines and geometrical symbols represent,

Figure 30

(a)

(b)

(c)

(d)

(e)

Vortex solution with positive topological charge of the anisotropic Ginzburg–
Landau equation [Eq. (A3)] with μ0 � 1 and δ � 0.1. Magnitude of the vortex
with (a) positive and (b) negative anisotropy. The dashed curve stands for the
magnitude of the vortex for isotropic systems (δ � 0). (c) and (d) Schematic
representations of the orientation field A�r; θ; fφ0g� for different values of
φ0:R

−
v (φ0 � π∕2) and R�

v (φ0 � 0). (e) Schematic representation of the orien-
tation amplitude field for the negative topological charge. [Adapted from Fig. 4
in [64], copyright 2014, with permission from the American Physical Society.]
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respectively, the energy obtained using Eq. (A12) and obtained from numerical
simulations of Eq. (A3). The numerical results show quite good agreement with
the analytical expressions. Note that this figure shows that the scaling

ffiffiffiffiffiffiffiffiffiffiffi
1� δ

p
that makes the core smaller is the one with less energy and is, therefore, preferred
by the system. Therefore, if δ < 0 (δ > 0) the solution with minimal energy is
the one with φ0 � f0; πg (φ0 � fπ∕2; 3π∕2g). Numerical simulations of the
anisotropic Ginzburg–Landau equation [Eq. (A3)] show that the vortices with
positive topological charge and large core are unstable. Thus, the stable vortices
are those with small core. The respective stability of these solutions is repre-
sented by continuous (stable) and dashed (unstable) lines in Fig. (31). One
expects that vortices with small core are the more stable, because the energy
privileges the uniform state jAj2 � μ.

The above analysis shows that there are two positive vortex solutions that exist
for every value of δ. These phase singularity solutions exchange stability in the
isotropic limit (δ � 0), where φ0 � f0; πg goes from a stable to an unstable sol-
ution, and vice versa for φ0 � fπ∕2; 3π∕2g. The mechanism through which
these solutions exchange stability is not by the usual collision of solutions of
the transcritical bifurcation [83,84], but rather by passing through a degenerate
point at δ � 0, where an infinite number of solutions exists and φ0 can take any
continuous value between 0 and 2π. Hence, this bifurcation is a degenerate

Figure 31

Energy of the positive vortex solutions for different jump phase φ0 as function of
δ. Numerical results obtained from vortex solutions of Eq. (16) are shown by the
geometrical symbols (circles and diamonds) and the theoretical result obtained
from expression (25) by continuous and dashed lines. The continuous and
dashed line indicate, respectively, the stable and unstable vortex solution with
positive topological charge. The star symbols account for the energy of vortex
with negative charge. The bottom panel schematically illustrates the bifurcation
diagram for the phase jump φ0, which corresponds to a degenerate transcritical
bifurcation. The dark and white circles account for stable and unstable solutions.
Reprinted with permission from Clerc et al., Phys. Rev. E 90, 012507 (2014)
[64]. Copyright 2014 the American Physical Society.
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transcritical bifurcation and it is schematically shown in the bottom panel of
Fig. 31, where the solid and open circles account for stable and unstable
solutions, respectively.

The above analysis yields a complete description of vortices with topological
charge�1. As we have mentioned, in vortices with negative topological charge,
their rotational invariance around the core is broken by a fourfold symmetry (see
Fig. 29). To grasp these phase singularities, one can consider the strategy of
perturbative analysis of these solutions for small anisotropy (δ ≪ 1). Hence,
one can consider the following ansatz:

A�r; θ� ≈ �Rv�r� � δg�r; θ� � O�δ2�	e−i�θ−δΘ�r;θ�	; (A13)

where g�r; θ� and Θ�r; θ� are leading correction functions to the isotropic neg-
ative vortex, and with the condition that Θ has no topological charge, i.e.,H
Γ∇Θ · d⃗l � 0, where the path Γ encircles the core of the vortex. Using the
above ansatz [Eq. (A13)] in the anisotropic Ginzburg–Landau equation
[Eq. (A3)] and taking the leading order in δ, we obtain

0 � e−iθ
�
μg − 3R2

vg � ∂2g
∂r2

� 2i
∂Θ
∂r

∂Rv

∂r
� iRv

∂2Θ
∂r2

� 1

r

∂g
∂r

� iRv

r

∂Θ
∂r

� 1

r2
∂2g
∂θ2

− 2i

r2
∂g
∂θ

� iRv

r2
∂2Θ
∂θ2

� 2Rv

r2
∂Θ
∂θ

− g

r2

�
� e3iθ

�
∂2Rv

∂r2
� 3Rv

r2
− 3

r

∂Rv

∂r

�
; (A14)

separating, respectively, the real and imaginary parts:

0 � μg − 3R2
vg � ∂2g

∂r2
� 1

r

∂g
∂r

� 1

r2
∂2g
∂θ2

� 2Rv

r2
∂Θ
∂θ

− g

r2

� cos�4θ�
�
∂2Rv

∂r2
� 3Rv

r2
− 3

r

∂Rv

∂r

�
;

0 � 2
∂Θ
∂r

∂Rv

∂r
� Rv

∂2Θ
∂r2

� Rv

r

∂Θ
∂r

� Rv

r2
∂2Θ
∂θ2

− 2

r2
∂g
∂θ

� sin�4θ�
�
∂2Rv

∂r2
� 3Rv

r2
− 3

r

∂Rv

∂r

�
: (A15)

The θ-dependence is easily addressed by doing variable separation, by setting
g�r; θ� � g4�r� cos�4θ� and Θ�r; θ� � θ4�r� sin�4θ�. Thus, one obtains the
following set of equations for the radial dependency [64]:

0 � μg4 − 3R2
vg4 �

∂2g4
∂r2

� 1

r

∂g4
∂r

− 16g4
r2

� 8Rvθ4
r2

− g4
r2

� ∂2Rv

∂r2
� 3Rv

r2
− 3

r

∂Rv

∂r
;

0 � 2
∂θ4
∂r

∂Rv

∂r
� Rv

∂2θ4
∂r2

� Rv

r

∂θ4
∂r

� 8g4
r2

− 16Rvθ4
r2

� ∂2Rv

∂r2
� 3Rv

r2
− 3

r

∂Rv

∂r
:

(A16)

As r → ∞, the solution of this set of equations behaves as follows:
g4�r� → 9∕4r2, θ4�r� → 3∕16. Then, the phase correction converges to a con-
stant value. Using a variational approach to the Frank free energy far from the
core of the vortex, neglecting the spatial dependence, and considering a modal
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angular expansion, one can recover the values of θ4 � 3∕16 and g4 � 0 [81].
However, this ansatz does not allow us to characterize the spatial structure of the
negative vortex solution. Asymptotically, the correction of the magnitude of the
amplitude, g4�r�, decreases as the inverse of the square of the distance. A
numerical solution for g4�r� has quite good agreement with the above asymp-
totic expression [64].

Note that in the perturbative analysis the phase jump, φ0, is not predetermined,
because if we consider a more general ansatz,

A�r; θ;φ0� ≈ �Rv�r� � δg�r; θ�	e−i�θ�φ0−δΘ�r;θ�	; (A17)

the previous analysis remains the same by setting g�r; θ� � g4�r� cos�4θ − 2φ0�
and Θ�r; θ� � θ4�r� sin�4θ − 2φ0�. Therefore, the vortex solution with negative
topological charge is a continuous family of solutions parametrized by φ0.
Furthermore, when the anisotropy parameter δ is modified numerically, the
vortex does not exhibit any bifurcation.

By using the vortex solution with negative topological charge obtained numeri-
cally from the anisotropic Ginzburg–Landau equation [Eq. (A3)] and evaluating
the free energy E [Eq. (A5)], we can reveal the dependence of the free energy as a
function of the anisotropy, E�δ�. Figure 31 shows this function for various criti-
cal points of E; the numerical evaluation of this energy is represented by stars.
The energy of the vortex with negative charge is exactly like the positive one,
except at δ � 0. The vortex with positive topological charge is always more
stable for anisotropic nematic liquid crystals. It is worth noting that vortices
are always created by pairs to conserve the topological charge, even though
one vortex has more energy than the other. Furthermore, the scenario of the
collision of opposite vortices described by the isotropic Ginzburg–Landau
(see [7,71] and references therein) does not account for the whole picture of
the collision of opposite nematic umbilics, as is shown in [70]. The characteri-
zation of vortex interaction in the anisotropic Ginzburg–Landau equation is an
open problem.

Therefore, the anisotropic elasticity is responsible for the dissimilarity of the
defects with different topological charges. One possible experimental protocol
for characterizing several properties of these nematic umbilics is through the use
of crossed circular polarizers [82] and modification of the elastic constants by
changing the temperature. Temperature allows us to handle the values of the
elastic anisotropy constants. In particular, the elastic constants are quite sensitive
to temperature near the nematic–smectic transition [54].
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