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Asymmetric counterpropagating fronts without flow
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Out-of-equilibrium systems exhibit domain walls between different states. These walls, depending on the type
of connected states, can display rich spatiotemporal dynamics. In this Rapid Communication, we investigate
the asymmetrical counterpropagation of fronts in an in-plane-switching cell filled with a nematic liquid crystal.
Experimentally, we characterize the different front shapes and propagation speeds. These fronts present dissimilar
elastic deformations that are responsible for their asymmetric speeds. Theoretically, using a phenomenological
model, we describe the observed dynamics with fair agreement.
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Macroscopic systems influenced by injection and dissipa-
tion of energy and/or matter typically exhibit coexistence of
different stable states—this feature is usually denominated
multistability [1–3]. Heterogeneous initial conditions caused
by inherent fluctuations generate spatial domains, which are
separated by interfacial domain walls. These interfaces are
known as front interfaces or domain walls [2,3]. Interfaces be-
tween these metastable states appear in the form of propagating
fronts and give rise to a rich spatiotemporal dynamic [4–6].
Front dynamics have been observed in several contexts, such as
walls separating magnetic domains [7], directed solidification
processes [8], nematic liquid crystals [9], oscillating chemical
reactions [10], and fluidized granular media [11], among oth-
ers. According to the dynamical system theory, in one spatial
dimension, a front is a nonlinear solution that is identified in
the comoving frame system as a heteroclinic orbit linking two
spatially extended uniform states [12]. The front solutions can
be regarded as a particle type, i.e., they can be characterized
by a set of continuous parameters such as position, core width,
and so forth. The front propagation depends on the nature of
the states that are being connected. For example, in the case of
a front connecting a stable and an unstable state, its speed is
not unique but determined by the initial conditions [13]. This
scenario changes for a front connecting two stable uniform
states. For variational systems, the most stable state invades
the other one in order to minimize its nonequilibrium energy
or Lyapunov functional; in this sense, the front is always
propagating towards the higher energy state [6]. There is
only one point in the parameter space for which the front
is motionless. Commonly called Maxwell’s point, it is the
point for which both connected states have exactly the same
energy [14]; close to this point, based on variational methods,
one can analytically determine the front speed. Furthermore,
far from Maxwell’s point, implicit expressions for the front
speed can be obtained for variational systems [6], through the
solution of the corresponding nonlinear eigenvalue problem.

In a bistable isotropic system, one expects that two
counterpropagating fronts with the same speed can be created
though a finite perturbation over the less favorable state, thus
making the most stable state to emerge. Notwithstanding, we
have observed that perturbations of an Ising type walls in
nematic liquid crystals with reflection symmetry generate two
asymmetric counterpropagating fronts, each with a different

speed and shape (see Fig. 1). The perturbations are generated
by the presence of glass spheres inside the liquid crystal
sample. The dynamical behavior observed is common in
systems under the influence of an external flow, i.e., drifting
or convective systems [15]. In such case, the front that
propagates in the drag force direction spreads faster than the
one which propagates in the opposite direction. Likewise,
the speed difference between the fronts accounts for the
drag force. In addition, anisotropic propagation of defects
with opposite topological charges has been reported in liquid
crystals [16–18]. In this case the asymmetry of the propagation
is due to the backflow around moving defects.

In this Rapid Communication, we investigate the coun-
terpropagation of asymmetrical fronts connecting different
molecular-orientation configurations in an in-plane-switching
cell filled with a nematic liquid crystal without a flow. These
fronts are triggered by the presence of glass bead within the
sample. Experimentally, we characterize the profile and the
speed of these fronts with respect to the voltage applied to
the liquid crystal cell. Based on the liquid-crystal molecular
orientation induced by the glass bead, we elucidate that
the fronts generated by these spheres have different elastic
deformations at the core of the fronts. These deformations are
responsible for the asymmetry in the shape and speed of the
fronts. We propose a simple phenomenological equation—a
bistable model under the influence of a nonlinear gradient—to
describe the asymmetric counterpropagating fronts without
flow. Analytically, we characterize the shape and the speed of
the asymmetric counterpropagating fronts which qualitatively
describes the observed dynamics.

Experimental setup. To investigate the front propagation
we have considered an in-plane-switching cell filled with a
nematic liquid crystal. The experimental setup under study is
depicted in Fig. 2. A layer of E7 nematic liquid crystal is
inserted between two glass plates, thickness g = 1 mm, with
a cell gap d = 8.8 ± 0.2 µm. The elastic constants of the
liquid crystal under consideration are K1 = 11.2, K2 = 6.8,
and K3 = 18.6 (×10−12 N). The perpendicular and parallel
dielectric constants are ϵ⊥ = 5.16 and ϵ∥ = 18.96, respec-
tively [19–22]. We consider an in-plane-switching cell, with an
homogeneous planar alignment (following y axis, cf. Fig. 2)
and a perpendicular rubbing to the electric field (Instec,
IPS02A88uX00). The indium tin oxide (ITO) electrode width
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FIG. 1. (Color online) Asymmetric counter propagating fronts in
an in-plane-switching cell filled with an E7 nematic liquid crystal,
applying a tension of V = 20 Vpp and f = 1 kHz. Experimental
snapshots at different times. Parallel polarizer and analyzer (following
the x axis) for t < 0 and crossed polarizer (following the y axis) and
analyzer (following the x axis) for t > 0. The black disk in the center
is a glass sphere and the dashed lines emphasize the speed with which
each front propagates.

and the gap width are the same, e = 15 µm. The height of
the electrodes is negligible (∼25 nm) compared to the cell
thickness (d = 8.8 µm). The active zone is a square of side
l = 1 cm. Under these settings, we can consider the cell in
a good approximation as an infinite media in the transverse
directions. The electrodes are aligned in the direction of the
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FIG. 2. (Color online) Sketch of the experimental setup, which
represents an in-plane-switching cell connected to the functions
generator and observed through a microscope (top) with white light
(down). Thickness between the two glass plates, d = 8.8 ± 0.2 µm.
Thickness of a glass plate, g = 1 mm. Active zone, l × l = 1 cm2.
Gap between two electrodes, e = 15 µm. The polarizer P and the
analyzer A can be either perpendicular or parallel to each other.
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FIG. 3. (Color online) Front profiles. Counterpropagative fronts
connecting two different molecular orientations, the α and β states,
(a) with a top glass bead perturbation, observed between crossed
polarizers, and (b) with a bottom glass bead perturbation, observed
between parallel polarizers. (c) Left and (d) right front core with sizes
e1 and e2, respectively. (e) Stationary solution of model Eq. (1) for
η = 0 and ν > 0.

y axis, that is, the molecules are anchored parallel to the
electrodes (see Fig. 2). The electrodes are connected to a
function generator that applies an alternating current voltage
with frequency ∼10 Hz–100 kHz and amplitude ∼8–20 Vpp.
The cell is illuminated with a white light placed between
polarizers P and A. In order to have better information about
the molecular orientation, the polarizers can be placed either
parallel (//) or perpendicular (⊥) to each other. The microscope
magnification used is 20× or 50×. The liquid crystal dynamics
is measured and recorded through a charge-coupled device
(CCD) camera connected to a microscope.

Fronts propagation. Using a CCD camera, we observe in the
middle of the sample a small portion of the cell. This midplane
is schematically depicted in Fig. 5(e). By direct observation,
without applying a voltage to the sample, only the electrode
bands can be detected. The top panel in Fig. 1 shows these
electrode bands characterized by darker zones. Note that there
is a black bead between two consecutive electrodes. This bead
is a glass sphere used to fix the thickness between the two glass
plates. The glass sphere creates a 3D local perturbation in the
molecules orientation around it. Applying a voltage with an
amplitude of 20 Vpp with a frequency, f = 1 kHz, the system
exhibits two asymmetric fronts which propagate on both sides
of the glass sphere, following the y axis (cf. Fig. 1). These
fronts connect two different molecular orientations, which
correspond to black bands observed over the electrodes and
between them. Figures 1 and 3 illustrate the front profiles. The
black curves are a consequence of the molecular orientations
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FIG. 4. (Color online) Counterpropagative fronts connecting two
different molecular orientations for two different glass bead positions:
[(a) and (b)] on an electrode and [(c) and (d)] on a gap. The electrodes
and the gap are respectively represented by {e,g}.

that do not allow the light to cross the sample. As a result
of the electrode shapes, the states that connect the fronts are
not uniform. Between the gap and the middle electrode, the
system exhibits three equilibria, which are represented by α, β,
and γ in Fig. 3(a), thanks to the use of crossed polarizers.
The fronts only connect two particular molecular orientations.

One is positioned in the center of the gap region [α state, see
Fig. 3(a)] and the other one is close to the center of the electrode
(β state). Then all possible fronts observed from a single
glass bead are illustrated in Fig. 4. Notice that at the center
of the electrodes, the system presents a peculiar molecular
orientation γ state. These states account for a molecular
orientation with a certain preferential vertical and horizontal
direction, as illustrated in Fig. 5(d). The most stable molecular
orientation (the β state) invades the least favorable one (the α
state, cf. Fig. 1). Indeed, the states over the electrodes are more
stable than those between them. To study the front dynamics,
we recorded a video of the front propagation around the glass
sphere. We choose a region of the sample where there was
only one glass sphere and fix our reference system centered
in it. We present a sequence of snapshots at 4-s intervals,
where t = 0 s corresponds to the time where the voltage is
applied (cf. Fig. 1). The emerging fronts propagate with a
constant speed, nevertheless with different velocities. The
left front propagates slower than the right one. The dashed
lines in Fig. 1 emphasize this feature. Notice that without the
local perturbation induced by the glass sphere, it is difficult
to destabilize the first molecular orientation in favor of the
second one and so to connect them with a front. One other
possibility is to generate these fronts from the electrode tips.
The molecular orientations and the fronts are the result of the
transverse inhomonogeneous periodic electric field induced
by the in-plane switching electrodes [23]. In the bulk of the
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FIG. 5. (Color online) Front solution in an in-plane-switching cell filled with nematic liquid crystal. (a) Left and right front velocity versus
voltage amplitude at f = 1 kHz; the right and left fronts are represented by gray and black curves, respectively. Experimental snapshots on
the top of the sample, (b) without voltage, observed with parallel polarizers (P//A), and (c) with voltage, observed between crossed polarizers
(P ⊥ A), grayscale image. Schematic molecules orientation in the liquid crystal sample with voltage in the bulk (d) and at the midplane '

(e). The different states that connect the fronts are emphasized in thicker symbols (red) in the bottom panels. • Glass ball causing a local
perturbation. Solid lines account for the different walls between domains in panel (e).
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sample, the molecules are oriented accordingly to the electric
field. The electric field generates walls separating different
molecular orientations, particularly walls over and between
the electrodes (cf. Fig. 5).

To characterize the front shapes, we have represented the
two fronts at t = 5 s, with parallel polarizers, P//A [see
Fig. 3(b)]. Considering the anchoring conditions and the form
of electric field inside the sample, one can infer that the
molecules are oriented following mainly the x axis or the y
axis. A schematic representation of the molecular orientation
with or without tension is shown in Fig. 5. Notice that the fronts
do not have the same core sizes (cf. Fig. 3). The core of the front
is defined as the transition region between the two asymptotic
states. The central location of the front core realizes the front
position. The left front, which propagates slower that the right
one, has a core size, e1, smaller than the front core on the right
side, e2. A simple explanation of the origin of the asymmetry
between the front cores is as follows: Each core separates
different molecular orientations, whereby in the left front the
directors rotate clockwise and in the right front they rotate
counterclockwise [cf. Fig. 5(e)]. Therefore, as a result of the
anisotropic properties of the nematic liquid crystal (i.e., elastic
constants [19–22]), they, unlike front cores, generate molecular
configurations with different twisting energy. Moreover, it is
also expected that the director rotation is coupled with the
velocity field to generate an asymmetric backflow [19–22].
These effects are responsible for the dissimilar propagation
speeds.

Figure 5(a) shows the front speeds versus the voltage for
a fix value of the frequency, f = 1 kHz. Experimentally, we
observed qualitatively four different regions. In the region of
low voltage, corresponding at V0 ! 8 Vpp, the tension is not
enough to induce the molecular reorientations, i.e., the system
does not exhibit other orientations than those induced by the
anchoring conditions. Hence, in this region we do not observe
fronts. For V0 ≃ 8 Vpp (region II), we have observed the
emergence of fronts. Each front separates different molecular
orientation states. The counterpropagative fronts spread with
almost the same speed (vfront < 5 µm/s). The left front is
slightly faster than the right one. In region III, between V0 ≃
9 Vpp and V0 ≃ 12.5 Vpp, we observe a significant increment
of the front speed values. The right front propagates faster than
the left one. In the region IV, for V0 " 12.5 Vpp, the system
exhibits a stationary behavior for counterpropagative fronts.
The right and left front speed are constant [vfront(right) ≈
13.5 µm/s and vfront(left) ≈ 9.5 µm/s].

Phenomenological description. To study asymmetric coun-
terpropagating one-dimensional fronts that connects the α and
β states, let us introduce the following bistable model under
the influence of a nonlinear gradient:

∂t u = η + u − u3 + ∂yyu + νu∂yu, (1)

where u(y,t) is the order parameter [24], which accounts for
the front separating the different molecular configurations,
and {η, ν} are parameters which respectively control the
relative stability of the states and the asymmetry effects.
Note that changing the sign of ν is equivalent to doing the
transformation y → −y, so we set ν > 0 without loss of
generality. The above model describes an extended imperfect
pitchfork bifurcation [2,3], under the influence of a Burgers

drift, which is proportional to ν. This term can be taken
into account for the asymmetric elastic deformations and
the backflow induced to connect the different molecular
configurations.

At the Maxwell’s point and without Burgers drift, η =
ν = 0, this model has an unstable homogeneous state u = 0
and two stable homogeneous ones, u± = ±1. This model has
motionless fronts of the form u!(y) ≡ ± tanh[(y − y0)/c!],
with c! =

√
2. The solution u←(y,y0) [u→(y,y0)] represents

a front connecting the states u− [u+] with u+ [u−] when the
y coordinate is incremented. We call these solutions the left
and right fronts. The parameter y0 denotes the front position.
Note that the core sizes are denoted as c!. In order to take into
account the effect of the Burgers drift, we use the motionless
front as an ansatz in Eq. (1) which is an analytical solution for

c! = ∓ν

2
+

√(
ν

2

)2

+ 2. (2)

Notice that c← < c→. Hence, the left front core is thinner
than the right front one. Figure 3(d) shows these fronts, which
show a qualitative agreement with the experimentally observed
fronts. When one considers that the asymptotic states have
different energies, η > 0 (η < 0), the asymmetric fronts moves
at different constant speeds, such that the most favorable state,
u+ (u−), invades the less favorable one u− (u+). To obtain
analytically the front speed, we consider that {η,v} are small
and use the ansatz u(x,t) = u![y − y

!
0 (t)] + w(y,t), where

the front position y
!
0 (t) now evolves in time and w(y,t) stands

for a small correction. Introducing the above ansatz in Eq. (1),
linearizing in w, and applying a solvability condition, after
straightforward calculations, we obtain

dy
!
0

dt
≃ ∓ 3√

2
η + 3

8
ην. (3)

The first term on the right-hand side accounts for the energy
difference between the states. The last term accounts for the
effect of Burgers drift, which clearly shows that the right front
(left front) is faster than the left front (right front) for η >
0 (η < 0). Hence, the front with wider core is always faster.
Numerically, we have a good agreement with the previous
analytical result.

In conclusion, we have studied the counterpropagation of
asymmetrical fronts connecting different molecular orienta-
tions in an in-plane-switching cell filled with nematic liquid
crystal without a flow. Experimentally, we have characterized
the profile and the speed of these fronts. The fronts generated
by the glass bead had different elastic deformations at the front
cores. These deformations are responsible for the asymmetry
in the shape and the speed of the fronts. Theoretically,
we have proposed a phenomenological equation, a bistable
model under the influence of a nonlinear gradient, to describe
the asymmetric counterpropagating fronts without flow. An-
alytically, we have characterized the shape and the speed
of the fronts, which qualitatively describes the observed
dynamics.
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