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Traveling pulse on a periodic background in parametrically driven systems
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Macroscopic systems with dissipation and time-modulated injection of energy, parametrically driven systems,
can self-organize into localized states and/or patterns. We investigate a pulse that travels over a one-dimensional
pattern in parametrically driven systems. Based on a minimal prototype model, we show that the pulses emerge
through a subcritical Andronov-Hopf bifurcation of the underlying pattern. We describe a simple physical system,
a magnetic wire forced with a transverse oscillatory magnetic field, which displays these traveling pulses.
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Physical systems kept out of thermodynamic equilibrium
exhibit pattern formation [1]. This morphogenesis, or transi-
tion from a uniform state to a pattern when a control parameter
is varied, is understood in terms of a spontaneous symmetry
breaking instability of the uniform state (see [1,2], and
references therein). Far from the aforementioned transition, the
stationary patterns can become unstable, which typically in-
duces rich dynamical behaviors. For example, Andronov-Hopf
instabilities originate vacillating-breathing states [3], while
the stationary parity-breaking bifurcation induces global [4]
or localized drift patterns [5]. These dynamical behaviors
can coexist in a large range of parameters [3,6,7]. From a
theoretical point of view, Coullet and Iooss [8] classified the
generic instabilities of static periodic patterns in one spatial
dimension, and described them with amplitude equations for
the critical modes. This theory was generalized [9,10] to
explain experimental observations, such as topological defects
and localized drifting domains.

Let us consider the specific case of parametrically driven
systems, that is, systems in which the injection of energy or
momentum is time modulated [11]. For a forcing frequency
close to twice their natural frequency, parametric systems are
known to show a subharmonic resonance [11]. This instability
in extended systems is characterized by the formation of
subharmonic spatially periodic patterns, such as the well-
known Faraday waves of vibrated fluids [12]. At the onset
of subharmonic resonance, the dynamical evolution of the
amplitude of oscillations can be described by the para-
metrically driven, damped nonlinear Schrödinger equation
(PDNLS). This prototype model has been used to study self-
organization in several physical systems, such as a vertically
oscillating layer of water [13,14], ferromagnetic media driven
by an oscillatory magnetic field [15–17], parametrically driven
nonlinear oscillators [18], localized structures in nonlinear
lattices [19], light pulses in optical fibers [20], optical
parametric oscillators [21], and spintronic devices [22], to
mention a few. Despite the success of the prototype PDNLS
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model, it fails to predict localized states with damped spatial
oscillations of parametrically forced ferromagnets and coupled
oscillators [17,18]. To recover the dynamical properties of the
original system, the PDNLS equation must be amended by
taking into account higher order terms.

The instabilities of patterns in parametrically forced sys-
tems, as well as the dissipative structures and spatiotemporal
behaviors induced by these bifurcations, are not entirely
well understood. In the context of vertically driven granular
media, the emergence of secondary drift instability of standing
waves has been reported [23]. In the case of a rectangular
water container subjected to vertical vibrations, preliminary
observations show for forcing amplitudes above a critical
value, the amplitude of Faraday waves becomes modulated
by a nonpropagative localized structure [cf. Fig. 1(a)] [24].
Traveling pulses on stationary periodic structures have been
observed in directional solidification [25]. Theoretically, this
type of dynamical behavior has been described in a unified
manner by considering the coupling of counterpropagative
wave envelopes [10].

The aim of this Rapid Communication is to theoretically
and numerically investigate traveling pulses immersed in a
one-dimensional pattern in parametrically driven systems.
The pulses over patterns are characterized by a localized
increment of the amplitude of the spatially periodic back-
ground. Figures 1(b) and 1(c) show this type of solution for a
parametrically driven ferromagnetic wire. Using an adequate
amplitude equation, we show that pulses appear as results
of a subcritical Andronov-Hopf bifurcation of the underlying
pattern. This minimal approach allows us to predict this
dynamical behavior in different physical systems. We show
that a magnetic wire forced with a transverse oscillatory
magnetic field, displays these traveling pulses.

Unified description of traveling pulses. Let us describe
the envelope of the oscillations of a parametric system by
a complex order parameter, A(t,z), that obeys the following
amended parametrically driven damped nonlinear Schrödinger
equation (APDNLS),

∂tA = −i(νA + |A|2A + ∂zzA) − μA + γ Ā + iδĀ(∂zA)2,

(1)
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FIG. 1. (Color online) Pulses over a periodic background or
pattern in parametrically driven systems. (a) Experimental snapshot
of a nonpropagative hydrodynamic pulse supported by Faraday
waves [24]. Numerical simulation of a magnetic wire forced with
a transverse oscillatory magnetic field, Eq. (2), with H0 = h0 = 2,
β = 4.8, α = 0.02, and ν = 4. (b) Spatiotemporal diagram of a
slowly traveling magnetic pulse and (c) instantaneous profile of the
magnetic pulse at time t = 0.

where t and z are the temporal and spatial coordinates.
The coefficient ν accounts for the detuning between half
of the forcing frequency and the response frequency, while
the parameters μ and γ account for the dissipation and the
parametric injection, respectively. For δ = 0, Eq. (1) is the
usual PDNLS model, used to describe the parametrically
driven systems for small injection and dissipation of energy—
quasireversible limit [26]. Hence, parameters and operators
of the above equation scale as ν ∼ μ ∼ γ ∼ |A|2 ∼ ∂zz ∼ ∂t .
The term proportional to δ in this limit is a higher order
correction. Notice that the instabilities of the quiescent state
A = 0 are not modified by the amending term iδĀ(∂zA)2,
because it is nonlinear.

Numerical simulations of the APDNLS equation (1) exhibit
spatially periodic patterns for a given forcing amplitude and
positive detuning. When γ is increased, the model displays
traveling pulses over the pattern state. Figure 2 illustrates a
single left-traveling pulse, and multiple pulses. Due to the x →
−x invariance, the same solutions with a right-traveling pulse
exist. All numerical simulations of the above equation have
been performed with a space discretization of finite differences
centered schemes of sixth order, and a fifth order controlled
step size Runge-Kutta scheme [27] for temporal evolution.

Multiple pulses can move in the same direction or counter-
propagate. In the latter case, the result of the collisions depends
on the parameters: the first possibility is that one of the pulses
is destroyed after the collision, while in the second case they
reemerge from collisions with their particlelike characteristics
unchanged [see Fig. 2(c)]. The speed of traveling pulses
decreases with the amplitude of the forcing γ following a
square-root power law (see Fig. 3). For small injections of
energy γ < γc, traveling pulses are not stable, and the pulselike

FIG. 2. (Color online) Pulse solutions obtained with different
initial conditions. The top profiles of the variable Re(A) are taken
from the dashed line of the respective spatiotemporal diagram.
(a) Solitary left-traveling pulses over spatially periodic patterns.
(b) Two left-traveling pulses. (c) Collision of two counterpropagative
pulses. Parameters are γ = 0.5, μ = 0.4, ν = 4.5, and δ = 2. The
simulations use N = 500 points with a spatial step size dx = 0.1185.

initial conditions decay to a pattern with a characteristic
time �t ∼ (γc − γ )−1/2 (cf. inset of Fig. 3). Then, these two
features allow us to conjecture that the traveling pulses appear
through a saddle-node bifurcation mechanism. Likewise,
increasing the parameter γ > γc, the pattern that supports the
pulses becomes unstable for γ ≥ 	c, and multiple pulselike
structures emerge spontaneously and invade the system.

FIG. 3. Speed of the traveling pulses as a function of forcing
parameter γ . Points are obtained from numerical simulations of
Eq. (1) with ν = 4.5, δ = 2.0, and μ = 0.4. The solid line V (γ ) =
[−a2 −

√
a2

2 − 4a1(a3 − γ )]/(2a1) fits the speed of the pulse with
a1 = 0.9124, a2 = −7.588, and a3 = 16.26. The inset shows the
typical time in which a pulse decays into a pattern state for
γ < γc. The solid curve �t(γ ) = 2b1/[−b2 −

√
b2

2 − 4b1(b3 − γ )]
fits the decaying times with b1 = −14.227, b2 = 0.007 650 4, and
b3 = 0.484 76.
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FIG. 4. (Color online) Andronov-Hopf bifurcation of patterns
state of amplitude equation (1). (a) Stationary pattern for γ = 0.48,
μ = 0.4, ν = 4.5, δ = 2, and dx = 0.1185. The real and imaginary
parts of the amplitude A(x,t) are represented by a continuous and
dashed curve, respectively. (b) Eigenvalues of the pattern represented
in the complex plane.

The existence, stability properties, and dynamical evolution
of traveling pulses immersed in patterns is closely related to
the amending term of Eq. (1). Indeed, in the limit δ → 0, the
APDNLS model, Eq. (1), only exhibits stationary spatially
periodic patterns for positive detuning and small amplitude
forcing γ , and vacillating-breathing patterns for higher values
of γ . Hence, traveling pulses have not been observed in
the limit of the parametrically driven nonlinear Schrödinger
equation. It is worth noting that in the region where patterns
exist, the gradients on the amplitude |∂zA| ∼ q|A| are not small
(where q is the pattern wave number), and then the terms like
iĀ(∂zA)2, i|A|2∂zzA, iA2∂zzĀ, and iA|∂zA|2 become relevant
in the dynamics of Eq. (1). However, we have observed pulse
solutions only when the amending term iĀ(∂zA)2 is included.

Formation mechanism of traveling pulses. At leading order,
the pattern that supports the pulses reads A ≈ T (t,z)eiqz +
c.c., where q = √

ν and the slowly varying amplitude of the
pattern satisfies ∂tT = (γ − μ)T − (δν − 3)2T |T |4/(2μ) +
(2ν/μ)∂zzT . Notice that for δ → 0 we recover the amplitude
equation of patterns in parametric systems [26,28]. One of
the effects of the nonlinear gradient term in the APDNLS
equation (1) is to introduce a critical point at ν ≡ 3/δ for
which the quintic order saturation vanishes, changing the type
of bifurcation. The dynamics of T (t,z) is of relaxation type,
that is, the amplitude evolves minimizing a functional. Conse-
quently, permanent behaviors such as oscillatory patterns and
traveling pulses are prohibited, and it is necessary to use the
full model, Eq. (1), to understand the formation of traveling
pulses.

The analytical stability analysis of the spatially periodic
pattern states from Eq. (1) is a tricky task. However, its
numerical study is easily accessible. Figure 4 shows the typical
stationary pattern solution and its corresponding eigenvalues.
When the γ parameter is increased, two complex conjugate
eigenvalues cross the imaginary axis, as illustrated in Fig. 4(b).
This instability corresponds to an Andronov-Hopf bifurcation.
Hence, the critical modes of this instability are of the type

FIG. 5. (Color online) Bifurcation diagram of APDNLS equa-
tion (1). In zone I the state A = 0 is the only equilibrium. Zone
V is Arnold’s tongue; inside this region the trivial state A = 0 is
unstable. The pattern states are observed in zones II, III, and V. The
squares denote the transition from stationary patterns to oscillatory
patterns. Traveling pulses are observed in zone III.

of left- and right-traveling waves, which can be written in
the form Ac,±(t,z) = B±(T ,Z)ei(ωt±kz)fq(±z), where k is a
real constant, fq is a complex-valued q-periodic function, and
B±(T ,Z) is a slowly varying envelope in time T and space Z.
When the spatially periodic pattern [B±(T ,Z) = 0] is unstable,
multiple pulselike structures emerge spontaneously and invade
the system, which is equivalent to having an inhomogeneous
profile in B±(T ,Z). Uniform profiles in B±(T ,Z) are not
numerically observed. It is important to note that this parity-
breaking discontinuous or subcriticalsecondary bifurcation is
numerically found for ν > 3/δ. Figure 5 shows the phase
diagram of APDNLS equation (1). In zone I only the quiescent
state A = 0 is observed for positive detuning. If one increases
the forcing parameter γ , the system exhibits the emergence of
patterns, zone II, through a supercritical bifurcation at γ = μ.
These spatially periodic patterns correspond to subharmonic
waves in original parametrically driven systems. The pattern
states are observed in zones II, III and V. Furthermore,
for sufficiently large values of γ and ν, patterns become
oscillatory, zone IV, through a subcritical Andronov-Hopf
bifurcation. In this zone the system exhibits traveling waves.
As a result of the subcritical Andronov-Hopf bifurcation, trav-
eling pulses are observed in the region of coexistence between
stationary and oscillatory patterns, zone III. Decreasing δ, both
regions of oscillatory patterns with broken x → −x symmetry,
and traveling pulses move to larger detuning. Therefore,
in quasireversible limit, δ = 0, those areas vanish from the
bifurcation diagram.

Parametrically driven magnetic wire. Let us consider a fer-
romagnetic wire along the z axis. In the continuous framework,
the material is described by its normalized magnetization m =
m(t,z), where {z,t} are the spatial coordinates along the wire
and the time, respectively. The evolution of the magnetization
obeys the Landau-Lifshitz-Gilbert equation [29],

∂m
∂t

=−m × heff + αm × ∂m
∂t

. (2)

The first term on the right-hand side of Eq. (2) accounts for
the conservative precessions generated by the effective field,
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heff ≡ hex − βmzez + ∂zzm, where {ex,ey,ez} denote the unit
vectors along the respective Cartesian axis and h is the intensity
of the external field h = hex . The coefficient β > 0 accounts
for the anisotropy of the wire and it penalizes the magnetization
along the z axis. Finally, the Laplacian of the magnetization
stands for the ferromagnetic exchange interaction and it favors
the homogeneous magnetic configurations.

The second term of Eq. (2) is the phenomenological Gilbert
damping. Equation (2) has two trivial equilibria, m = ±ex .
For positive external field, h > 0, m = ex is the most favored
state. The dynamics around this equilibrium is characterized
by damped oscillations with frequency ω0 = √

H0(H0 + β).
Considering a combination of a constant and a periodic
external magnetic field, h(t) = H0 + h0 cos[2(ω0 + ν)t], the
magnetic wire behaves as a parametrically driven oscillatory
medium. Therefore, in a certain range of parameters the system
must exhibit traveling pulse immersed in patterns. Figure 1
shows the profile and spatiotemporal evolution of traveling
pulses observed in the magnetic wire.

To understand the origin of these pulses, we consider the
following ansatz:

(
my

mz

)
=

√
4ω0

β
(
ω2

0 + 3H 2
0

)A(t,z)eiφ(t)

(√
H0 + β

−i
√

H0

)

+ c.c. + �W, (3)

with mx=
√

1 − m2
y − m2

z , φ(t)=ω0t + νt + π/4, the symbol

c.c. stands for complex conjugate, and �W is a small correction
vector that accounts for the higher order terms in the amplitude
A. Replacing the above ansatz in Eq. (2), linearizing in �W ,
and imposing a solvability condition, after straightforward
calculations, we obtain

∂tA =−i(νA + |A|2A + ∂ξξA) − μA + γ Ā + ic1|A|2∂ξξA

+ ic2A
2∂ξξ Ā + ic3A|∂ξA|2 + ic1Ā(∂ξA)2, (4)

where μ ≡ α(2H0 + β)/2, γ ≡ βh0/(4ω0), c1 =
dβ(4H0 − β)/2, c2 = −d(β2 + 12H0β + 16H 2

0 )/4,
c3 = −d(β2 + 4H0β + 8H 2

0 ), d = 4ω0/[βH0(2H0 +
β)(4H0 + β)], and the spatial coordinate ξ is related to
the original coordinate by ξ ≡ √

2ω0/(2H0 + β)z. In the
quasireversible limit, the last four terms in the above equation
are negligible. In this limit the forcing magnetic wire is
described by the PDNLS equation. This equation allows
one to study different localized states such as dissipative
solitons [15,30–35] and localized waves [17,36]. Both Eqs. (1)
and (4) share the same pattern instability and traveling pulses.
Hence, the magnetic wire forced with a transverse oscillatory
magnetic field can be modeled phenomenologically by the
amplitude equation (1).

In conclusion, we have studied the emergence of trav-
eling pulses immersed in one-dimensional patterns in the
context of parametric systems. As results of the subcritical
parity-breaking Andronov-Hopf bifurcation of the stationary
pattern, the system exhibits a coexistence region between
stable stationary and unstable oscillatory patterns. Within this
coexistence region, we observe traveling pulses. Depending
on the initial condition, we found a single and multiple
pulses solutions. A simple PDNLS-like model allows us to
explain the pulses dynamics as an effect of the nonlinear
gradients of the full system. This simple model also allows
us to predict traveling pulses in a magnetic wire forced with
an external transverse oscillatory magnetic field.
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