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Spin-transfer-driven nano-oscillators are equivalent to parametric resonators
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The equivalence between different physical systems permits us to transfer knowledge between them and to
characterize the universal nature of their dynamics. We demonstrate that a nanopillar driven by a spin-transfer
torque is equivalent to a rotating magnetic plate, which permits us to consider the nanopillar as a macroscopic
system under a time-modulated injection of energy, that is, a simple parametric resonator. This equivalence
allows us to characterize the phases diagram and to predict magnetic states and dynamical behaviors, such as
solitons, stationary textures, and oscillatory localized states, among others. Numerical simulations confirm these
predictions.
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I. INTRODUCTION

Current-driven magnetization dynamics have attracted
much attention in recent years because of both the rich
phenomenology that emerges and the promising applications
in memory technology [1]. A remarkable example occurs when
a direct spin-polarized current applies a torque to nanoscale
ferromagnets, an effect known as spin-transfer torque [2,3].
This effect has been confirmed experimentally [4–9], and, in
particular, the observation of magnetization reversal caused by
spin-transfer torques was reported in Refs. [6,7,10,11]. Spin-
transfer effects are usually studied in the metallic multilayer
nanopillar, or spin-valve, depicted in Fig. 1(a), where two
magnetic films (light layers), the free and the fixed, are
separated by a nonmagnetic spacer (darker layer). In such a
nanopillar, an electric current J applied through the spin-valve
transfers spin angular momentum from the film with fixed
magnetization to the free ferromagnetic layer.

When the direct current overcomes a critical value, the
spin-transfer torque destabilizes the state in which both
magnetizations point parallel, and the free magnetization
switches or precesses in the microwave-frequency domain.
Most scientific efforts have focused on this regime, in which
the free magnetization behaves as a self-oscillator with
negative damping [12]. Another interesting case is when
there is an external field that disfavors the parallel state and
the spin-polarized current favors it; under this regime, it is
expected that the system will generate complex dynamics as a
result of both opposing effects.

The aim of this article is to show that nanopillars under
the effect of a spin-polarized direct electric current exhibit
the same dynamics present in systems with a time-modulated
injection of energy, known as parametric systems [13].
Parametric systems oscillate at half of the forcing frequency,
a phenomenon known as parametric resonance. Examples
of parametric systems include a layer of water oscillating
vertically [14], localized structures in nonlinear lattices [15],
light pulses in optical fibers [16], optical parametric oscilla-
tors [17], and easy-plane ferromagnetic materials exposed to
an oscillatory magnetic field [18].
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To understand the parametric nature of the spin-transfer-
driven nanopillars, we put in evidence that this system is
equivalent to a simple rotating magnetic plate subjected to
a constant magnetic field applied in the rotation direction
[see Fig. 1(b)], where the electric current intensity on the
nanopillar corresponds to the angular velocity in the equivalent
rotational system. We analytically show that the magnetization
dynamic of a nanopillar under the effect of a spin-transfer
torque is well described by the parametrically driven, damped
nonlinear Schrödinger equation (PDNLS). This equation is
the paradigmatic model of parametric systems with small
injection and dissipation of energy [19]. Based on this model
we predict that the spin-transfer torque generates equilibria,
solitons, oscillons, patterns, propagative walls between sym-
metric periodic structures, and complex behaviors, among
others. Numerical simulations of the Landau-Lifshitz-Gilbert
equation confirm these theoretical predictions.

The manuscript is organized as follows. In the next section
we present the nanopillar and the equation of motion of an
homogeneous free magnetization. In Sec. III, we analyze the
relation between the nanopillar and parametric systems. In
Sec. IV we explore the inhomogeneous dynamics predicted
by the parametric nature of the spin-transfer torque effect at
dominant order. Finally, in Sec. V, we give the conclusions
and remarks.

II. MACROSPIN DYNAMICS OF THE FREE LAYER

Consider a nanopillar device, with fixed layer magnetiza-
tion M0 along the positive x axis as depicted by Fig. 1; this
ferromagnet has a large magnetocrystalline anisotropy or it is
thicker than the free layer, and therefore it acts as a polarizer
for the electric current. Let us assume that the free layer is
a single-domain magnet, that is, the magnetization rotates
uniformly m(r,t) = m(t).

Hereafter, we work with the following adimensionalization:
The magnetization of the free layer M → Msm and the
external field Ha → Msha are normalized by the saturation
magnetization Ms ; moreover, the time t → γMst is written in
terms of the gyromagnetic constant γ and Ms . For instance,
in a cobalt layer of 3 nm thickness, Ms � 1.4×106 A/m, and
the characteristic time scale is (γMs)−1 � 3.2 ps [20].
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FIG. 1. (Color online) Equivalent physical systems. (a)
Schematic representation of the spin-transfer torque nano-oscillator
setup. The light (blue) and dark (green) layers represent magnetic
and nonmagnetic metal films, respectively. J and ha are the electric
current through the spin-valve and the external magnetic field, both
effects are parallel to the easy axes of the ferromagnetic layer under
study. Mo stands for the magnetization of the fixed layer. (b) Rotating
magnetic plate with an easy axis in the rotation direction, subjected
to a constant magnetic field, h′

a.

When the free magnetization is homogeneous, the normal-
ized magnetic energy per unit of volume is [20]

E

μ0M2
s

= −m · ha − 1

2
βxm

2
x + 1

2
βzm

2
z, (1)

and the external magnetic field ha = haex points along the
x axis (see Fig. 1). The coefficients βx and βz are combinations
of the normalized anisotropy and demagnetization constants
with respect to the appropriate axes, where βx (βz) favors
(disfavors) the free magnetization in the x axis (z axis).

The dynamic of the magnetization of the free layer is de-
scribed by the dimensionless Landau-Lifshitz-Gilbert equation
(LLG) with an extra term that accounts for the spin-transfer
torque [2,6,7,20,21],

dm
dt

= −m×heff + αm×dm
dt

+ g m×(m×ex). (2)

The first term of the right-hand side of Eq. (2) accounts for the
conservative precessions generated by the effective field,

heff ≡ − 1

μ0M2
s

δE

δm
= (ha + βxmx)ex − βzmzez. (3)

The second and third terms of Eq. (2) are the phenomeno-
logical Gilbert damping and the spin-transfer torque respec-
tively. The dimensionless prefactor g is given by [11] g ≡
P(mx)(�/2)(J/d|e|)(1/μ0M

2
s ), and P describes the electron

polarization at the interface between the magnet and the spacer,
J the current density of electrons, d the thickness of the
layer, and e < 0 the electric charge. The current density of
electrons J and the parameter g are negative when the electrons
flow from the fixed to the free layer. There are different
expressions for the polarization P(mx) in the literature
[2,22–25]. For certain types of nanopillars, a better agree-
ment with experimental observations is obtained if P(mx) is
constant, see Refs. [24,26,27] for more details.

The dynamics of LLG are characterized by the conservation
of the magnetization magnitude ‖m‖ = 1, since m and dm/dt

are perpendicular. The LLG model, Eq. (2), admits two natural
equilibria m = ±ex , which represent a free magnetization that
is parallel (+) or antiparallel (−) to the fixed magnetization
M0 [see Fig. 1(a)]. Both states correspond to extrema of the

free energy E. We will concentrate on the equilibrium m = ex ;
nevertheless due to the symmetries of the LLG equation, the
same results hold for m = −ex when replacing (g,ha) with
(−g,−ha).

III. EQUIVALENT PHYSICAL SYSTEMS

Let us consider a rotating magnetic plane with angular
velocity � = �0ex and an easy axis in the rotation direction,
subjected to a constant magnetic field applied in the rotation
direction ha

′ = (ha + �0)ex [see Fig. 1(b)].
This rotating ferromagnet can be described in both the co-

movil frame S, defined by the vectors {ex,ey,ez}, or in the iner-
tial frame S ′, defined by {e′

x,e
′
y,e

′
z}. Note that the ferromagnetic

easy axis is described by the same vector in the both frames
(e′

x = ex); nevertheless, unit vectors ey(t) = cos(�0t)e′
y +

sin(�0t)e′
z and ez(t) = − sin(�0t)e′

y + cos(�0t)e′
z rotate

together with the magnetic plate [see Fig. 1(b)].
In the co-movil system the normalized magnetic energy will be
the same of Eq. (1); however, in the inertial frame the energy
depends explicitly in time,

E′

μ0M2
s

= −m · ha
′ − 1

2
βxm

′2
x + 1

2
β ′

zz(t)m
′2
z

+ 1

2
β ′

yy(t)m′2
y + 1

2
β ′

yz(t)m
′
ym

′
z, (4)

where the time varying coefficients β ′
zz= βz[1+ cos(2�0t)]/2,

β ′
yy = βz[1 − cos(2�0t)]/2, and β ′

yz = −βz sin(2�0t) act as a
parametric forcing. Note that the frequency of the forcing is
twice the frequency of the rotations. Therefore, this system
presents a subharmonic parametric resonance [13].

The dynamics of the magnetic plane in the inertial frame S ′
is described by the Landau-Lifshitz-Gilbert equation

dm
dt

∣∣∣∣
S ′

= −m×h′
eff(t) + αm× dm

dt

∣∣∣∣
S ′

, (5)

where h′
eff = −(1/μ0M

2
0 )(δE′/δm). Let us now write the

Eq. (5) in the noninertial frame S, where the time derivative
operator in the rotating system takes the form ∂t |S ′ = ∂t |S +
�× [13], thus the dynamics of the rotating magnetic plate in
the noninertial frame S reads

dm
dt

∣∣∣∣
S

= −m×heff + αm× dm
dt

∣∣∣∣
S

−α�0m×(m×ex), (6)

where the effective field heff is the same of formula (3).
Therefore, the dynamics of the rotating magnetic plate in the
noninertial frame S, Eq. (6), is a time-independent equation,
which is equivalent to the dynamics of a nanopillar under
the effect of a spin-transfer torque generated by a uniform
electric current, Eq. (2). In this equivalence, the intensity of
the spin-transfer effect on the nanopillar g corresponds to the
angular velocity by the dissipation parameter, −α�0. Indeed,
the two physical systems depicted in Fig. 1 are equivalent. In
the next sections, we will apply the well-known understanding
on parametric systems to the nano-oscillator.
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Parametrically driven damped nonlinear
Schrödinger equation

To obtain a simple model that permits analytical cal-
culations around the parallel state, we use the following
stereographic representation [28]:

ψ(r,t) = my + imz

1 + mx

, (7)

where ψ is a complex field. This representation corresponds
to consider an equatorial plane intersecting the magnetization
unit sphere. The magnetization components are related with
the complex field by mx = (1 − |ψ |2)/(1 + |ψ |2), my = (ψ +
ψ̄)/(1 + |ψ |2), and mz = (i(ψ̄ − ψ))/(1 + |ψ |2), where ψ̄

stands for the complex conjugate of ψ . Notice that the parallel
state m = ex is mapped to the origin of the ψ plane. The LLG,
Eq. (2) or Eq. (6), takes the following form:

(i + α)
dψ

dt
= (ig − ha) ψ − βz

2
(ψ − ψ)

1 + ψ2

1 + |ψ |2

−βxψ
1 − |ψ |2
1 + |ψ |2 . (8)

This is a complex Ginzburg-Landau-type equation, which
describes the envelope of a nonlinear dissipative oscillator.

An advantage of the stereographic representation is to
guarantee the magnetization normalization and to consider
the appropriate degrees of freedom. Notice that the switching
dynamic between parallel and antiparallel state is not well
described, since the antiparallel state is represented by infin-
ity [28]. This kind of dynamics is not considered in the present
work. To grasp the dynamical behavior exhibited by the previ-
ous model, let us consider that the complex amplitude is small
and that the parameters α,βz/2 are also small. Introducing
the renormalized amplitude A(r,t) = ψ(r,t)eiπ/4√2βx + βz,
after straightforward calculations, Eq. (8) is approximated at
dominant order by

dA

dt
= −iνA − i|A|2A − μA + γ Ā, (9)

where μ ≡ −g − αν, ν ≡ −ha − (βx + βz/2), and γ ≡ βz/2.
Thus under the above assumptions the nanopillar resonator is
described by Eq. (9), which is known as the PDNLS equation
without space. This model has been used to describe parametric
resonators [13].

The coefficient γ is the intensity of the forcing in usual
parametric systems. For instance, it is proportional to the
amplitude of the oscillation in vibrated media or the intensity
of time-dependent external fields. In the case of the nanopillar
γ = βz/2 is not a control parameter. In the context of the
PDNLS amplitude equation γ breaks the phase invariance,
i.e., A � Aeiφ0 . A change of variables of the form A =
Beiωt (rotating frame) permits us to restore the explicit
time-dependent forcing,

dB

dt
= −i(ν + ω)B − i|B|2B − μB + γ e−2iωt B̄. (10)

Moreover, in this representation the parametric nature of
the PDNLS equation is evident. The parameter μ > 0 accounts
for dissipation in parametric systems and it models radiation,
viscosity, and friction, depending on the particular physical

g

ha

gc
(g,h )a c

62 4

FIG. 2. (Color online) Bifurcation diagram of the parallel state
m = ex , in the dark zone m = ex , is stable. The elliptical-like light
zone delimited by g2 + [ha − (βx + βz/2)]2 = β2

z /4 is known as
Arnold’s tongue. In this region there are four equilibria and the
parallel state is unstable. On the left of Arnold’s tongue and above
the segmented curve g = −βz/2 there are six equilibria.

context. In our case, this dissipation is the combination of
the Gilbert damping and the spin-polarized current. Finally,
the detuning ν accounts for the deviation from a half of the
forcing frequency. In the case of the nanopillar, ν is controlled
by the external field.

To obtain Eq. (9) we have assumed that α,βz/2 � 1 and
that the amplitude is a slowly varying amplitude (|A| � 1),
that is, we have the scaling |A|2 ∼ ν ∼ μ ∼ γ ∼ ∂t � 1.
Notwithstanding, the model, Eq. (9), is qualitatively valid
outside this limit.

The parallel state A = 0 is always a solution of Eq. (9).
Decomposing the amplitude into its real and imaginary parts
A(t) = u(t) + iv(t) and linearizing around them, we have

d

dt

(
u

v

)
=

[
γ − μ ν

−ν −(γ + μ)

](
u

v

)
. (11)

Imposing a solution of the form (u,v) ∼ eλ±t (u0,v0), we
obtain the growth rate relation λ± = −μ ±

√
γ 2 − ν2. The

stability condition, which corresponds to Ree(λ±) < 0 is
shown in dark areas in Fig. 2. The elliptical-like light zone
of Fig. 2 is known as Arnold’s tongue in the context of
parametric systems, and it accounts for the destabilization of
the parallel state for μ2 + ν2 = γ 2. The exact curve of the
Arnold’s tongue in terms of the original parameters can be
obtain from the LLG equation without neglecting α, that is,
g2 + [ha − (βx + βz/2)]2 = β2

z /4. Inside the Arnold’s tongue
this model has also the equilibria

A± = ±
(

1 − i

√
γ − μ

γ + μ

)√
γ + μ

2γ
(
√

γ 2 − μ2 − ν). (12)

In this region there are four equilibria (see Fig. 2); they are
the parallel state A = 0 (equivalently m = ex), the antiparallel
state (m = −ex) and A±. Crossing the curve of the Arnold’s
tongue for positive detuning

√
γ 2 − μ2 = ν > 0, the A± states

and A = 0 collide together through a pitchfork bifurcation. For
greater values of the detuning parameter ν, only the parallel
and antiparallel states exist.
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For negative detuning and γ > μ (above the dashed curve
in Fig. 2), and outside Arnold’s tongue

√
γ 2 − μ2 < |ν|, the

A± states exist and are stable. Since the A = 0 equilibrium
is also stable in this region, it is necessary to have other two
states A′

± that separate them in the phases space which have
the form

A′
± = ±

(
1 + i

√
γ − μ

γ + μ

) √
γ + μ

2γ
(−

√
γ 2 − μ2 − ν). (13)

In this region (the darkened area in Fig. 2), there are six equi-
libria. Thus the PDNLS equation describes the homogeneous
stationary solutions which have been studied the context of the
nano-oscillator [20,29].

When g ≤ −αν the coefficient that rules the dissipation
becomes negative, and the magnetization oscillates and moves
away from the parallel state. This instability is known as the
Andronov-Hopf bifurcation [30]. When it does not saturate
the magnetization switches to the antiparallel state or reaches
another stationary equilibrium. Precessions or self-oscillations
emerge when this instability saturates. In the past, this regime
has been extensively studied experimentally and theoretically
in the context of the spin-transfer torque resonator [8,10,12].
This instability does not occur in usual parametric systems
since the dissipation coefficient is always positive μ > 0.

In brief, the nanopillars driven by a spin-transfer torque
effect are equivalent to parametric systems, and then they
are well described by the paradigmatic model for parametric
systems, the PDNLS equation without space. We will see in
the next section the predictions of this model for the nanopillar
in the case of a variable magnetization.

IV. GENERALIZATION TO AN INHOMOGENEOUS
MAGNETIZATION DYNAMICS

The macrospin approximation permits us to understand sev-
eral features of the magnetization dynamics driven with spin
torque, but, even so, this approximation is not completely valid
because in general both the precession and magnetic reversion
are inhomogeneous [31]. There are several approaches to study
the nonuniform magnetization dynamics; nevertheless, we use
here a minimal model with a ferromagnetic exchange torque as
the dominant space-dependent coupling in order to understand
the emergence of a rich spatiotemporal dynamics.

In the case of an inhomogeneous magnetization m(r,t),
which corresponds to a spatial extension of the nano-oscillator,
the magnetic energy E = μ0M

2
s

∫
εdxdy of the free layer

is the integral of the following dimensionless density of
energy [20]:

ε = −m · ha − 1
2βxm

2
x + 1

2βzm
2
z + 1

2 |∇m|2, (14)

where {x,y} stands for the spatial coordinates of the free layer.
The spatial coordinates have been dimensionless r → lexr in
terms of the exchange length lex ≡ √

2A/(μ0M2
s ), where A

is the exchange coupling in the ferromagnet. The gradient
operator is defined on the plane of the film as ∇ ≡ ex∂x + ey∂y .
The βx and βz coefficients account for both the easy axis and
the demagnetization in the thin-film approximation [20]. In
this approximation, the contribution of the demagnetization
effect to the magnetic energy density is local, and the shape of

the thin film is taken into account by the Neumann boundary
condition for the magnetization.

The LLG equation and the effective field are

∂m
∂t

= −m×heff + αm×∂m
∂t

+ g m×(m×ex), (15)

heff ≡ − 1

μ0M2
s

δE

δm
= (ha + βxmx)ex − βzmzez + ∇2m.

(16)

Notice that gradients come from the ferromagnetic ex-
change energy, and then the spatial derivatives must be written
in terms of the coordinates that label the sample, even if it
rotates. Then the equation of the magnetization of the rotating
plate in its co-movil frame is Eq. (6) with an extra term for the
spatial dependence,

∂m
∂t

∣∣∣∣
S

= −m×heff + αm× ∂m
∂t

∣∣∣∣
S

−α�0m×(m×ex), (17)

where heff = (ha + βxmx)ex − βzmzez + ∇2m and the ∇ ≡
ex∂x + ey∂y operator is defined on the co-movil plane spanned
by (ex,ey). Thus the spatial dependence of m does not change
the equivalence between the nanopillar and the rotating magnet
presented in Sec. III. Using the same change of variable of
Eq. (7), the LLG Eq. (15) reads

(i + α)∂T ψ = (ig − ha)ψ − βz

2
(ψ − ψ)

1 + ψ2

1 + |ψ |2

−βxψ
1 − |ψ |2
1 + |ψ |2 + ∇2ψ − 2

ψ

1 + |ψ |2 (∇ψ)2,

(18)

which describes the envelope of coupled nonlinear oscillators.
Due to the complexity of this equation, we will consider a
simple limit, which permits us to grasp its dynamics. Using
the small amplitude that varies slowly in space A(r,t) =
ψ(r,t)eiπ/4√2βx + βz, we obtain

∂τA = −iνA − i |A|2 A − i∇2A − μA + γ Ā, (19)

which is the PDNLS model. The extra term with spatial
derivatives describes dispersion.

Parametric textures for nanopillars

The above model, Eq. (19) has been extensively used to
study the pattern formation; in particularly, this model exhibits
solitons, oscillons, periodic textures, and complex behaviors,
among others. To verify these predictions, we compare them
with the numerical solutions of Eq. (2) in two geometrical
configurations. The first is a one-dimensional free layer, that
is, a nanopillar for which m(r,t) ≈ m(x,t), and the second
is a two-dimensional nanopillar with a square cross section.
Different transversal lengths are used in simulations, all of
them displaying the same qualitative aspects of the solutions.
The simulations are conducted using a fifth-order Runge-Kutta
algorithm with a constant step size for time integration
and finite differences for spatial discretization. The spatial
differential operators are approximated with centered schemes
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of order 6 and specular (Neumann) boundary conditions are
used.

1. Dissipative solitons

Analytical solutions for the dissipative soliton are known
in one dimension [18,19,32]. In two dimensions dissipative
solitons are observed, however, without analytical expressions.
From this result and using the stereographic change of variable,
we find the following analytical form for magnetic dissipative
solitons in one dimension:

mx = 2βx + βz − R(x)2

2βx + βz + R(x)2
,

(
my

mz

)
= 2R(x)

√
2βx + βz

2βx + βz + R(x)2

(
cos ϕ0

sin ϕ0

)
, (20)

with sin(2ϕ0) ≡ 2g/βz, R ≡ √
2δsech[

√
δ(x − x0)], and δ ≡

ha + βx + βz/2 +
√

(βz/2)2 − g2. The width of the soliton is
controlled by the external field. The typical sizes are about
10lex.

Figures 3(a) shows the analytical results compared with
numerical simulations of the LLG equation, which presents
a quite good agreement for small amplitude solitons, i.e., for
δ � 1. Furthermore, Fig. 3(b) illustrates the dissipative solitons
observed numerically in two dimensions. We note that these
solitons are well described by a hyperbolic secant function,
which was obtained using variational methods [33].

Dissipative solitons are observed in the region of parameter
space bounded by β2

z /2 − (|ha| − (βx + βz/2))2 = g2 and
βz/2 = |g|. This region is analytically inferred from the
amplitude Eq. (19). Figure 4 shows the respective phase
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FIG. 3. (Color online) Dissipative solitons in one- and two-
dimensional nanopillars (with a square cross section) with βx = 0.5,
βz = 1, and α = 0.05. (a) One-dimensional soliton for g = −0.4999,
ha = −0.97; the points account for the numerical integration of
the LLG equation and the line accounts for the analytical solution
given by Eq. (20). (b) Soliton in two-dimensions, g = −0.49995,
ha = −0.99; the three-dimensional plot shows the profile of the
component my , while the insets show the mx and the mz components.
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FIG. 4. (Color online) Phase diagram of LLG model, Eq. (2).
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solitons (oscillons) region, and “A-region” is the Arnold’s tongue.
The In-region accounts for inhomogeneous dynamical states far from
the parallel configuration. In the zone P, only the parallel state is
observed.

diagram of the LLG equation, and the region of dissipative
solitons is denoted by “S-region.”

Increasing the difference between injection and dissipa-
tion, γ − μ, dissipative solitons undergo an Andronov-Hopf
bifurcation, generating oscillatory localized states or breather
solitons characterized by exhibiting shoulders in the amplitude
profile [34]. Figure 5 illustrates this kind of solution. Similar
solutions have also been reported in a magnetic wire forced
by a transversal uniform and oscillatory magnetic field [35],
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FIG. 5. (Color online) Breather or oscillon solution for g =
−0.33, ha = −0.51. (a) The spatiotemporal diagram. (b) The mag-
netization components at the time for which mx reaches its minimal
position. Typical oscillation periods are about �t ≈ 16(γMs)−1,
which is about �t ≈ 51 ps for a 3-nm-thick cobalt free layer.
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FIG. 6. Dissipative structures for g = −0.37, ha = −0.75, inside
the Arnold’s tongue. [(a) and (b)] Pattern states. (c) Kink solution,
this domain wall is a slowly moving front connecting the (a) and (b)
patterns.

which corresponds to a parametric system. These oscillatory
solutions are observed in the O-region of the bifurcation
diagram shown in Fig. 4. Notice that, for spin-transfer torques
that favor the parallel state, the nanopillar can also behave as
a nano-oscillator.

2. Pattern states

Let us introduce the A-region of the bifurcation diagram
(cf. Fig. 4), which is circumscribed by the curve β2

z /2 −
[|ha| − (βx + βz/2)]2 = g2 in the Arnold’s tongue. Inside this
region the quiescent state A = 0 is unstable, giving rise to a
nonzero uniform state and stationary and oscillatory patterns.
Figures 6(a) and 6(b) show stable stationary patterns that exist
inside the Arnold’s tongue, and Fig. 6(c) shows a propagative
wall that connects the patterns. In addition, the PDNLS model
is characterized by exhibiting supercritical patterns at γ = μ

(βz/2 = |g|), growing with a power law 1/4 as a function
of the bifurcation parameter [36]. Recently, such dissipative
structures induced by spin-transfer torques in nanopillars have
been characterized numerically and theoretically [37], where
the spatial textures emerge from a spatial supercritical quintic
bifurcation. In one spatial dimension, the magnetic patterns
read at dominant order by

(
my

mz

)
≈ 2

[
4βz(g − gc)(

6βx + 3βz − 2k2
c

)2

]1/4 (
cos(kcx)

− cos(kcx)

)
, (21)

and mx ≈ 1 − (m2
y + m2

z)/2. Figure 7 shows a pattern solution.
The wavelength of the periodic structures, 2π/kc = 2π/√−ha − βx − βz, is controlled by the external field ha < 0.
In two spatial dimensions the system shows the emergence of
stripe patterns or superlattices at the onset of bifurcation [37].
The phases diagram of the textures is controlled by a single
parameter that accounts for the competition between the
external magnetic field, anisotropy, exchange, and the critical
spin-polarized current. When the anisotropy is dominant
over the external field the system exhibits striped patterns
[Fig. 7(b)]; however, when the external field drives the
dynamics, the system presents superlattice [Figs. 7(c) and 7(d)]
as stable equilibria. Indeed, external fields pointing against the
near parallel states favor the formation of more sophisticated
spatial textures. Since the electric resistance R[M0 · m] of the
nanopillar depends on the relative orientation [31] of the fixed
M0 and free m layers, and M0 · m = mx ≈ 1 − (m2

y + m2
z)/2

FIG. 7. (Color online) Patterns induced by the spin-polarized
current. (a) One-dimensional state for g = −0.49999, ha = −1.8, as
predicted by Eq. (21), my ≈ −mz. Notice that the norm conservation
implies that mx ≈ 1 − 0.5(m2

y + m2
z) oscillates with a half of the

wavelength of the other two components. (b) Bidimensional pattern
for the same parameters used in (a), and the component mz (not
shown) is the negative of my . (c) The magnetization component mx

for a superlattice pattern obtained with g = −0.4999, and ha = −6.
(d) The component my of the state of (c); the component mz ≈ −my .

the signature of the patterns is a time-independent resistance
that increases a square root of the current R = Rp + η(g −
gc)1/2 when g is negative and goes to zero. The parameter η

contains all the information of the applied field, anisotropies,
and geometry.

Notice that according to the PDNLS model, Eq. (9) and
Eq. (19), the parametric resonance occurs when ν ≈ 0 and
γ ≈ μ or, equivalently, (g,ha)c = −(βz/2,βx + βz/2). For a
3-nm-thick material with saturation magnetization similar to
cobalt [20], that is, Ms � 1.4×106 A/m, the critical current
density is Jc = J (gc) ≈ −βz×109 A/cm−2 for a constant
P(mx) ≈ 1 polarization function. Since localized states and
patterns appear for currents that are fractions of the critical cur-
rent |J | ∼ 3|Jc|/5, the smaller the βz parameters is, the smaller
the spin-polarized currents required to observe the parametric
phenomenology. Most of our results use βx = 1/2 and βz = 1;
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nevertheless, we have conducted numerical simulations for
different values of βz for βx in order to achieve the parametric
resonance at arbitrary small currents, and the predictions of
Eqs. (9) and (19) remain unchanged. The robustness of this
parametric phenomenology is a characteristic of systems near
their parametric resonance.

V. CONCLUSIONS AND REMARKS

We have shown that nanopillars under the effect of a direct
electric current are equivalent to simple rotating magnetic
plates. The latter system is characterized by displaying a
parametric instability. This equivalence permits us to transfer
the known results of the self-organization of parametric

systems to the magnetization dynamics induced by the spin-
transfer torque effect. In particular, we have shown that for
spin-polarized currents that favor the parallel state the system is
governed by the PNDLS equation, and then the magnetization
exhibits localized states and patterns both in one and two
spatial dimensions. Numerical simulations show a quite good
agreement with the analytical predictions.
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