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Homeotropic nematic liquid crystal cells with a
photosensitive wall and negative dielectric anisotropy
exhibit, under the influence of local illumination,
stable vortexes with swirling arms that are trapped
at the illuminated area. Close to the Fréedericksz
transition an amplitude equation is derived, which
allows us to understand the origin of the induced
vortex and the competition between the illuminating
profile and the elastic anisotropy generating the
swirling of the arms.

1. Introduction
Motivated by the unexpected intricate structures of
radio echoes from the bottom of the Antarctic ice
sheet, Nye & Berry [1] conducted ultrasound pulse
experiments on a rough surface, allowing them to
establish the emergence of singularities in wave trains,
optical vortexes. These are singular points where the
electromagnetic field goes to zero and around which
the phase forms an n-armed spiral profile, with n the
topological charge (see [2–4] and references therein). In
low-order Gauss–Laguerre beams, a single optical vortex
corresponds to a phase singularity on the beam axis
[5]. Optical vortexes have been introduced on symmetry
grounds as the topological defects arising above the
laser transition [6] and, in this context, identified as
phase singularities appearing and disappearing in pairs
of opposite charge. Reported in several experiments,
such as photorefractive cavities [7] and lasers [8,9], phase
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Figure 1. (a) Umbilical defect exhibiting swirling arms with superposed molecular organization (i); for comparison the
molecular organization of a defect with straight cross arms is shown in (ii). (b) Set-up for the optical induction of a matter
vortex induction: a circularly polarized beam is incident on the photoconductive side of the LC light valve; the voltage VBias
is such that only the illuminated region undergoes the Fréedericksz transition; when reorienting, the LC molecules follow the
circular pattern associated with the electric field and create the matter vortex; this, in turn, induces an optical vortex at the
exit of the sample. (c) Schematic of the spin-orbital angular momentum transfer through the optically induced defect: an RHP
(LHP) circularly polarized beam is converted into an LHP (RHP) beam with a phase singularity of topological charge−2 (+2);
experimental interferograms are shown beside the respective panels. (Online version in colour.)

singularities are currently receiving a lot of attention in view of their applications, e.g. light–
matter angular momentum exchange [10], optical tweezers [11–13], quantum computation [14],
astronomical imaging [15] and data transmission [16].

Optical vortexes have mainly been generated with spiral phase plates [17] or diffractive
elements [18]. Recently, the introduction of q-plates, planar elements with a pre-set azimuthal
orientation in nematic liquid crystals (LCs), has opened up promising new avenues [19], as
well as exploiting the umbilical defects in nematic textures [20]. This approach provides both
tunability and high efficiency, although the LC alignment can cause some beam deformation
and a consequent degradation of the generated optical vortexes [21]. Recently, by exploiting
reorientational nonlinearities in the nematic LC layer of a light valve, we have accomplished the
optically addressed self-induction of vortex beams that are self-aligned with the impinging light
beam [22]. The spontaneous nature of the induction process guarantees that the generated defect
is aligned with the incoming light beam.

In this framework, optical vortexes derive directly from the induced umbilical defects in the
LC texture. Indeed, the umbilical defect is one that naturally possesses a vortex-like morphology,
making it attractive for spontaneously enabling the matter template to impress a helical structure
on an incoming light wavefront. Based on this vortex induction process, we have demonstrated
the realization of programmable lattices of optical vortexes with an arbitrary distribution in space
[23]. An intriguing property of the induced matter vortexes is their stationary swirling arms
(cf. figure 1a). These arms are related to the phase jumps of the vortex, or the nullclines (zero-
growth isoclines) showed by crossed polarizers, used to characterize the texture of umbilical
defects. From the theoretical point of view, this type of behaviour is not usually expected
from its universal description, complex Ginzburg–Landau equation (CGLE), where the arms are
characterized by a cross with straight lines [2].
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The aim of this paper is to establish the origin of the swirling arms of the matter vortex
trapped by light in a homeotropic nematic LC cell with a photosensitive wall and negative
dielectric anisotropy. Based on bifurcation theory, close to the Fréedericksz transition [24], a
forced Ginzburg–Landau equation is derived. This equation allows us to understand the origin
of the induced vortex, particularly the competition between the forcing generated by the light
beam and the elastic medium anisotropy, which generates the swirling of the vortex arms.
Numerical simulations of the amplitude equation and experimental observations show quite
good agreement.

2. Experimental observation of the optically induced matter vortex
The set-up for vortex induction is sketched in figure 1b. The liquid crystal light valve (LCLV) is
prepared by interposing a d = 15 µm layer of nematic LC (MLC6608 from Merck) in between two
parallel planar interfaces, a glass plate and a slab of the transparent photoconductor Bi12SiO20
(BSO), 25 × 25 mm2, thickness 1 mm. The interior surfaces are treated to obtain the homeotropic
anchoring of the LC, that is, with the nematic director orthogonal to the confining walls (cf.
figure 1b). The outer surface of the photoconductor and the inner surface of the glass plate
are uniformly coated with thin transparent indium–tin–oxide (ITO) electrodes, through which
a voltage V0 is applied to the cell. The employed LC has a negative dielectric anisotropy,
εa = ε‖ − ε⊥ < 0, with ε‖ and ε⊥ the dielectric susceptibility for low-frequency electric fields
parallel and orthogonal, respectively, to the molecular director [24].

When a bias VBias is applied to the LCLV beyond the Fréedericskz transition voltage VFT,
the molecules tend to reorient perpendicularly to the (low-frequency) electric field because of
the negative εa; hence, since E = (Vs/d)ẑ (with Vs the voltage at the LC–BSO interface) is applied
along the longitudinal z-direction and the 2π azimuthal degeneracy imposes rotational invariance
around it, the LC molecules can arbitrarily align themselves in any direction, spontaneously
forming spatial domains separated by umbilical defects or vortexes [24]. In the conducted
experiment, we kept VBias � VFT, in order to avoid spontaneous reorientation while bringing the
molecules close to the transition point. When a light beam is incident onto the photosensitive
wall of the LCLV, due to the photo-generated charges there is a slight increase in the voltage
that effectively drops across the LC region underneath: the Fréedericksz threshold is locally
overcome and the molecules start reorienting following the intensity gradients associated with the
Gaussian beam profile of the incoming beam. Then, the light on the matter induces, through the
photosensitive wall, a vortex with positive topological charge (using the convention of the right-
hand rule). Figure 1a illustrates the typically observed vortex when one uses crossed polarizers.
The black cross appearing in these conditions is the signature of an umbilical defect, which can
be produced by two different types of deformations of the nematic texture, corresponding to ±1
charge, or winding numbers, of the defect [24].

To prove the optical induction of the matter vortex, and the subsequent transfer from spin
to orbital angular momentum, which is mediated by the light–matter interaction, a circularly
polarized laser beam of wavelength λ= 632 nm, power P = 0.55 mW is focused to a diameter of
395 µm on the photoconductive side of the LCLV. The input beam polarization is taken either
right-handed circular or left-handed circular. Typical snapshots of the output beams observed
in the two cases are illustrated in figure 2c, where the interferograms, made with a spherical
reference wave, show the helical structure of the output wavefront. The bias voltage of the LCLV
was fixed to V0 = 24 V RMS at frequency 100 Hz. The spin-to-orbital angular momentum transfer
is consistent with a +1 q-plate; therefore, the matter vortex is a +1 defect [19].

A characteristic feature of the observed vortex is that its arms are bent and thus swirling
around the defect core. Experimental snapshots showing the matter defect with clockwise
and anticlockwise swirling arms are displayed in figure 2a(i) and (ii), respectively. In order
to discriminate the sign of the defect, we carried out spatially resolved polarimetry [25].
Using quarter-wave plates, we analysed the local birefringence and reconstructed the director
distribution around the defect (figure 2b). The obtained polarimetric profile allowed us to infer
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Figure 2. Matter vortex: (a) intensity profiles recorded underwhite light illumination and crossed polarizers showing clockwise
(i) and anticlockwise (ii) swirling arms; (b) spatially resolvedpolarimetry in the case of a defectwith anticlockwise swirling arms.
(Online version in colour.)

that the defect is indeed umbilical and of winding number +1. Note that the reconstructed phase
is 2θ , with θ the LC tilt in the transverse plane; therefore, the 4π phase jump around the singularity
indicates a 2π change of the LC tilt angle θ . In addition, this type of method allows us to observe
the bending of the arms of the vortex (cf. figure 2b).

3. Amplitude equation close to the Fréedericksz transition
In order to elucidate the mechanism of creation and pinning of matter vortexes, we derive an
amplitude equation in the vicinity of the Fréedericksz transition, a limit where analytical results
are accessible as nematic LC molecules are weakly tilted from the longitudinal axis ẑ and backflow
effects can safely be neglected. Illuminating the LCLV with a Gaussian beam induces a voltage
drop with a bell-shaped profile across the LC layer, higher in the centre of the illuminated area.
To determine the shape of the voltage drop within the sample, one can consider the sample
as consisting of two infinitely extended planar parallel plates separated by a distance d. The
upper plate, located at z = d, is lit by a Gaussian beam. By introducing cylindrical coordinates,
the voltage V(r, θ , z) satisfies the Laplace equation

∂zzV + ε⊥
ε‖

∇2
⊥V = 0,

where ∇2
⊥ stands for the transverse Laplacian operator in polar coordinates. The voltage satisfies

the boundary conditions in the respective plates V(r, θ , z = d) = V0 + αI(r) and V(r, θ , z = 0) = 0,
with V0 the voltage across the LC layer in the absence of light, (r, θ ) the polar coordinates in
the plane where the origin of the coordinate system corresponds to the centre of the beam and
θ = 0 accounts for the x-axis (figure 1b), I(r) stands for the intensity of the Gaussian beam, and
I(r) = I0 e−r2/ω2

, with I0 the peak intensity and ω the beam waist. By using the Fourier transform
in polar coordinates and solving the above equation with the corresponding boundary conditions,
after straightforward calculations one obtains

V(z, r) = 1
2π

∫∞

−∞
dk e−ik·r⊥ sinh

(√
ε⊥/ε‖ kz

)
sinh(

√
ε⊥/ε‖ kd)

(∫∞

0
dr∗

⊥ eik·r∗
⊥

[
V0 + αI

(
r∗
⊥
ω

)])
.

This expression is an exact analytical solution; however it is too intricate to infer results from it.
For the sake of simplicity, we consider the limit of a Gaussian beam sufficiently flattened (ω→ ∞).
In this limit, the above expression, at the dominant order, takes the form

V(z, r) ≈ z
d

[
V0 + αI

( r
ω

)]
.

The first and second terms on the right-hand side account for the externally applied bias and
the voltage drop induced by the Gaussian beam impinging on the sample, respectively. Figure 3a
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Figure 3. (a) Vertical cross section showing a schematic of the electric field (arrows) and voltage drop (isolines) across the
LC layer when a laser beam illuminates the sample from above; (b) corresponding top view of the LC director orientation; the
illuminating laser beam is impinging at the centre of the sample. (Online version in colour.)

illustrates the voltage drop inside the LCLV in a vertical cross-sectional view. Then, the electric
field E(r, θ , z) inside the LCLV takes the form

E = −VV = Ezẑ + Err̂ = −1
d

[
V0 + αI

( r
ω

)]
ẑ − zα

dω
dI(r/ω)

dr
r̂,

with ẑ and r̂ the unit vectors in cylindrical coordinates (figure 3a). Note that the electric field
contains an axisymmetrical structure. This structure will be responsible for inducing a matter
vortex (cf. figure 3). The presence of an inhomogeneous electric field strongly modifies the
dynamics of the LC director n. The dynamical equation for the molecular director n reads [26]

γ ∂tn = K3[∇2n − n(n · ∇2n)] + (K3 − K1)[n(n · V)(V · n) − V(n · V)]

+ 2(K2 − K3)[(n · V × n)(n(n · V × n) − V × n) + n × V(n · V × n)]

+ εa(n · E)[E − n(n · E)],

where γ is the relaxation time and {K1, K2, K3} are the nematic LC elastic constants [24,26]. The
dynamical behaviour of the director is of relaxation type and is characterized by preserving
its norm. The homeotropic state, n = ẑ, undergoes a stationary instability for critical values
of the voltage V0 ≡ VFT =

√
−K3π2/εa, which corresponds to the Fréedericksz transition of the

LC [24,26]. Close to this transition point, and by considering the inhomogeneous electric field
E(r, θ , z), at the dominant order one can use the following ansatz for the amplitude of the critical
mode:

n(r, θ , z) ≈

⎛
⎜⎜⎜⎜⎜⎜⎝

u(r, θ , t) sin
(πz

d

)
w(r, θ , t) sin

(πz
d

)

1 − (u2 + w2)
2

sin2
(πz

d

)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Introducing the above ansatz in the director equation, integrating in the z coordinate over one
period, and defining the complex amplitude A ≡ u + iw, after straightforward calculations one
obtains

γ ∂tA =μA − aA|A|2 + K∇2
⊥A + δ∂η,ηĀ + b

Er(z)
z

Ez eiθ , (3.1)

which is the amplitude equation for self-stabilization of the matter vortex [23]. Here μ≡ −K3k2 −
εaE2

z(r, z) is the bifurcation parameter (note that μ is a spatially dependent parameter), k ≡ π/d,
a ≡ −(K3k2/4 + 3εaE2

z/4)> 0 is a parameter of order one that accounts for the nonlinear saturation,
b ≡ εa2d/π , ∂η ≡ ∂x + i∂y, K ≡ (K1 + K2)/2 and δ ≡ (K1 − K2)/(K1 + K2) accounts for the elastic
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Figure 4. Vortex solution of the anisotropic and forced amplitude equation (3.1) with positive anisotropy (δ > 0) and (a,b)
θ0 = 0, (c,d) θ0 = π/4, and (e,f ) θ0 = π/2. The top and bottom panels represent, respectively, the nullcline fieldψ (r, θ ),
and the phase of the amplitude A. Simulations realized withμ= −0.5 + 1.69 e−r2/σ 2

, σ = 18, δ = 0.7 and b(Er/z)Ez =
0.00169r e−r2/σ 2

.

anisotropy. Note that Er(z)/z = −(α/dω) dI(r/ω)/dr does not depend on the z coordinate. In order
to elucidate the swirling arms, we consider an extra parameter in the external forcing, changing
Ez eiθ for Ez ei(θ+θ0).

The last term on the right-hand side is an external forcing generated by the inhomogeneous
radial electric field, which in turn is induced by the inhomogeneous profile of the light beam.
This forcing term is responsible for inducing a matter vortex with positive charge in the centre
position where the applied Gaussian beam is peaked, which is at the origin of the self-stabilization
mechanism for the vortex induction.

In order to characterize the dynamics of the arms of the vortex and to allow a direct comparison
with the observations obtained by using crossed polarizers, let us introduce the nullcline field
ψ(r, θ ) ≡ Re(A) Im(A). This auxiliary field becomes zero when the real or imaginary part of A
vanishes. Then, the arms and position of the vortex are represented, respectively, by the zero and
the intersection of the zero nullcline curves. Figure 4 shows the nullcline field and the phase field
obtained by using the above Ginzburg–Landau equation with anisotropic forcing, equation (3.1).
Note that the vortexes shown in the left and centre panels are similar to those observed
experimentally (figure 1). The anisotropic term (the term proportional to δ) is responsible for
moving and slightly rotating the matter vortex, as we will see later.

4. Positive vortex with swirling arms
Neglecting anisotropy δ = 0 (K1 = K2 = K3) and spatial variations of the voltage (Er = 0), the above
model reduces to the well-known CGLE with real coefficients. This model has gathered a great
interest by describing various physical systems such as fluids, superfluids, superconductors, LCs,
magnetic media and optical cavities, to mention a few [2]. The main properties of the CGLE are
reported in a review [27]. The CGLE admits stable dissipative vortex solutions with topological
charge (winding number) ±1 [2]. To characterize these stationary solutions, let us consider the
polar representation and polar coordinates A = Rv(r) ei(mθ+ϕ0), where m = ±1 is the topological
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Figure 5. Dynamical evolution of the vortexes observed in the forced amplitude equation (3.1) without anisotropy (δ = 0)
starting from the unstable state, A= 0, with an initial noise. The temporal evolution is from (a) to (d). The magnitude of the
amplitude |A| is displayed in greyscale. The steady state, which corresponds to a single vortex trapped in the centre, is shown
in (d). Simulations realized withμ= −0.5 + 1.69 e−r2/σ 2

,σ = 18, δ = 0.7 and b(Er/z)Ez = 0.00169r e−r2/σ 2
.

charge, and ϕ0 is a continuous parameter that accounts for the phase invariance of the CGLE. The
magnitude Rv(r) satisfies

μ0Rv − R3
v − m2

r2 Rv + 1
r

dRv
dr

+ d2Rv
d2r

= 0, (4.1)

where μ≡ −K3k2 − εaE2
z , measured in the middle of the sample. The defect solution of this model

was first observed numerically in [28] and does not have an analytical expression. However, the
vortex has the asymptotic behaviour

Rv(r) −→
⎧⎨
⎩r, r −→ 0,

√
μ0

(
1 − 2 e−2r

√
μ0/2

)
, r −→ ∞.

(4.2)

By using Padé approximants, one can obtain suitable approximations for the vortexes [2]. Note
that the equation for the modulus of the amplitude (4.1) does not depend on the sign of the
topological charge. Hence, the two vortexes are indistinguishable from the point of view of the
magnitude. The nullcline field in this case takes the formψ(r, θ ) = R2

v(r) sin(2θ )/2. Thus, the vortex
arms are characterized by being straight and orthogonal, forming a cross whose centre determines
the position of the vortex. An example of this case is shown in figure 4e. In addition, the phase
jump is characterized by a straight line emerging from the position of the vortex (figure 4f ).

(a) Effects of forcing
When the Fréedericksz transition starts from the unstable state, A = 0, in the presence of noise,
or under uniform illumination, the system initially generates a large number of vortexes that
subsequently annihilate by pairs of opposite topological charge or fade towards the edges. Let us
now consider the effect of forcing, Er �= 0, occurring in the presence of a non-uniform illumination.
Such a forcing simultaneously breaks the translational symmetry and the spatial rotation and,
consequently, leads to a single positive vortex to be attracted and trapped in the central position
of the addressed area. Figure 5 shows a sequence of pictures illustrating the process described
above. Starting from three generated vortexes, a couple of them, oppositely charged, mutually
attract and annihilate (figure 5a–c), thus leaving a single positive vortex at the end (figure 5c). The
single vortex is then attracted to the centre of the illuminated area where it remains pinned. The
stationary pinned vortex is depicted in figure 5d.

Figure 4e and f shows, respectively, the nullcline field and the corresponding phase of the
induced stationary vortex. Note that negatively charged vortexes are not consistent with the
charge induced by the forcing; thus they are not a steady state. Note also that the phase jump
is always consistent with that imposed by the forcing (θ0).

 on September 22, 2014rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


8

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A372:20140019

.........................................................

(b) Effects of elastic anisotropy
We now focus on the effect of elastic anisotropy on the single positive vortex. We first ignore the
inhomogeneous forcing; hence, we take Er = 0. In this case, the amplitude of the critical mode
satisfies the anisotropic Ginzburg–Landau equation [29]

γ ∂tA =μ0A − aA|A|2 + K∇2
⊥A + δ∂η,ηĀ. (4.3)

By introducing the ansatz A(r, θ ) = R(r) ei(θ+ϕ0) in the above equation for the vortex solution with
positive topological charge, we obtain the following set of scalar equations:

0 =μ0R − aR3 + (K + δ e−2iϕ0 )

(
d2R
d2r

+ 1
r

dR
dr

− R
r2

)
(4.4)

and

0 = δ sin 2ϕ0

(
d2R
d2r

+ 1
r

dR
dr

− R
r2

)
. (4.5)

From equation (4.5), the only possibility to obtain a non-trivial solution is to consider the phase
parameter satisfying sin 2ϕ0 = 0, which gives the solutions ϕ0 = {0,π/2,π , 3π/2}. Therefore, from
the continuous family of possible phase jumps, only four possibilities survive. On the other hand,
the equation for the magnitude of the amplitude reads

0 =μ0R − aR3 + (K + δ cos 2ϕ0)

(
d2R
d2r

+ 1
r

dR
dr

− R
r2

)
. (4.6)

Owing to the periodicity of the cosine function, we only have two possibilities, cos 2ϕ0 = ±1.
Rescaling the space by the factor

√
1 ± δ, the above equation becomes equation (4.1). Therefore,

the isotropic positive vortex has the solution

A = Rv

(
r√

1 ± δ

)
ei(θ+π/4∓π/4+nπ), (4.7)

with n = 0, ±1, ±2, . . .. Consequently, the anisotropic vortex solution with positive charge
corresponds to a simple scaling of the isotropic vortex solution, notwithstanding, with a finite
number of possible phase jumps (ϕ0 = {0,π/2,π , 3π/2}), in opposition, with the isotropic system,
which has an infinite number of solutions parametrized by the continuous parameter ϕ0. Of the
four solutions found, those with a smaller core are stable and the others are unstable. It can be
inferred from energy calculations, or through numerical simulations, that for positive (negative)
anisotropy the stable solutions are ϕ0 = {π/2, 3π/2} (ϕ0 = {0,π}). It is worth noting that it is known,
from the variational approach to the Frank free energy, that the elastic anisotropy allows a discrete
number of four possible phase jumps for umbilical defects [30,31]. These conditions are recovered
by the above solutions.

(c) Simultaneous effect of anisotropy and forcing
We now consider simultaneously the effects of the elastic anisotropy, which is intrinsic to the
medium properties, and the spatial forcing that is induced by the light. While the forcing induces
a vortex that is pinned at the centre of the light beam and tries to impose the phase jump in
θ0, the elastic anisotropy imposes a phase jump that must be consistent with the four above-
mentioned ϕ0. Because the anisotropy is proportional to the spatial derivatives, we expect it
to be more relevant near the core of the vortex. Therefore, one expects that the anisotropy is
imposing the phase jump in the region close to the vortex core and the spatial forcing imposes the
phase jump in the outer regions of the vortex. Figure 4 illustrates stationary vortexes for positive
anisotropy (ϕ0 = {π/2, 3π/2} are privileged) with different θ0. In the left, centre and right panels
are considered θ0 = 0, θ0 = π/4 and θ0 = π/2, respectively. As a result of adjusting the respective
angles of the phase jump, the vortex solution exhibits a phase gradient, which induces a small
force responsible for slightly displacing the vortex from its centre.
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Figure 6. Bending process of the arms of a single positive vortex obtained from the forced amplitude equation (3.1) for positive
elastic anisotropy. The time evolution corresponds to (a) to (f ). The nullcline field ψ is displayed in greyscale. During its
evolution, the vortex develops a swirling of the arms around its core. The final configuration is shown in (f ). Simulations realized
withμ= −0.5 + 1.69 e−r2/σ 2

,σ = 18, δ= 0.7, and b(Er/z)Ez = 0.00169r e−r2/σ 2
; the time shown is scaled by γ .

Therefore, the origin of the bent arms of the vortexes is simply the result of the competition
between two effects: the anisotropy, imposing a phase jump angle in the core of the vortex,
and the spatial forcing, imposing another phase jump angle in the outside regions. Figure 6
shows the evolution of a positive vortex initially consistent with the spatial forcing and its later
temporal evolution resulting from the anisotropy. Clearly, a process of bending of the arms of the
vortex is originated from the core. These numerical findings are consistent with the experimental
observations.

5. Conclusion and comment
By using a nematic LC in a homeotropic light-valve geometry, we experimentally demonstrated a
robust phenomenon of controlled vortex induction, which is, at the same time, spontaneous, self-
stabilizing and positionally stable. After its induction, the vortex develops a swirling of the arms,
which remain stationary and stable. Close to the Fréedericksz transition, an amplitude equation
is derived, which allows us to understand the origin of the induced vortex and the competition
between the forcing induced by the light and the elastic anisotropy that generates the swirling
arms of the vortex. More precisely, the spatial forcing induces a single charge vortex, then the
anisotropy imposes a phase jump in the region close to the vortex core and the spatial forcing
imposes a phase jump in the outer regions. Numerical simulations of the amplitude equation
show a fairly good agreement with the experimental observations.

Vortexes with swirling arms are usually observed in vortex interactions [32]. They have also
been observed in LCs with an active surface [33] and in singular birefringent patterns generated
by non-singular light beams [34]. All these observations can be understood as the result of the
combination of the elastic anisotropy and an external forcing given, for instance, by another
vortex, or by the boundary conditions, or an external field. The anisotropy and the external forcing
try to impose the phase jump in different directions, generating a vortex with swirling arms.
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By means of appropriate illumination profiles, one could induce vortexes of opposite charges
in the same LC sample with a photosensitive wall. The interaction of oppositely charged vortexes
exhibits a complex dynamics [2,32]. The characterization of the interaction of vortexes with
swirling arms is a work in progress.
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