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An analytical mechanism that support localized
spatio-temporal chaos is provided. We consider
a simple model—the Nagumo Kuramoto model—
which contains the crucial ingredients for observing
localized spatio-temporal chaos, namely, the spatio-
temporal chaotic pattern and its coexistence with a
uniform state. This model allows us to unveil the front
dynamics and to show that it can be described by
a chaotic motor corresponding to the deterministic
counterpart of a Brownian motor. Front interaction
is identified as the mechanism at the origin of the
localized spatio-temporal chaotic structures.

1. Introduction
Macroscopic systems under the injection and dissipation
of energy and momenta are characterized by exhibiting
self-structuring phenomena [1–3]. In most of these systems,
it has been observed the emergence of localized states
[4–6], which, although being spatially extended, exhibit
properties associated with particle-like states, such
as position, width and charges. In one-dimensional
extended systems, localized states can be described as
spatial trajectories that connect one steady state with
itself, which means they are homoclinic orbits from the
point of view of dynamical systems [7]. Consequently,
one could imagine localized states of different types
supported by different equilibrium states, for example,
a uniform state over a pattern [8,9], a pattern over a
pattern [10], an oscillatory state over a uniform one [11]
or a wave over a uniform state [12] or an oscillatory
state [13], to mention a few. For localized oscillatory
states, dissipative breathers, it has been shown that if one
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increases the intensity of the forcing, the amplitude of the breather undergoes a double-period
route to chaos, hence realizing a low-dimensional localized chaotic state [11].

Recently, we have reported localized states characterized by spatio-temporal chaotic dynamics
developing over a uniform state [14]. We have termed these states as chaoticons. Furthermore, we
have provided evidence of spatio-temporal chaotic localized structures in a liquid crystal light
valve (LCLV) experiment with optical feedback.

The purpose of this paper is to investigate and establish the analytical mechanism of localized
spatio-temporal chaotic states in one-dimensional extended systems. The Nagumo Kuramoto
model is considered, which contains the essential ingredients for observing localized spatio-
temporal chaos: coexistence of spatio-temporal chaotic patterns with a uniform state. The main
advantage of this model is that one can control the characteristic intensity of the spatio-temporal
chaos. This model allows us to unveil the front dynamics, which is characterized by a chaotic
motor, and the front interaction mechanism as the origin of the localized spatio-temporal chaotic
structures.

2. Experimental observation of chaoticons in liquid crystal light valve with
optical feedback

An LCLV experiment is composed of a nematic liquid crystal (LC) film sandwiched in between
a glass and a photoconductive plate over which a dielectric mirror is deposited (for details, see
e.g. the review by Residori [15]). The LC film has a planar aligned nematic director n parallel
to the walls, with a thickness d = 15 µm. The nematic LC is LC-654, produced by NIOPIK,
with a dielectric anisotropy �ε≡ ε‖ − ε⊥ = 10.7 and optical birefringence, �n ≡ n‖ − n⊥ = 0.2,
where ε‖ and ε⊥ are the dielectric permittivities ‖ and ⊥ to n, respectively, and n‖, n⊥ are the
extraordinary (‖ to n) and ordinary (⊥ to n) refractive indices. Transparent electrodes over the
glass plates permit the application of an electrical voltage across the LC layer, which allows
applying a reference voltage V0 without feedback. The photoconductor behaves like a variable
resistance, decreasing for increasing illumination. The feedback is obtained by sending back onto
the photoconductor the light which has passed through the LC layer and has been reflected by
the dielectric mirror [15]. This light beam experiences a phase shift which depends on the LC
reorientation and, on its turn, modulates the effective voltage that locally applies to the LC layer.
The optical free propagation length in the feedback loop is fixed to L = −4.0 cm.

For a fixed voltage V0, by increasing the laser intensity the system exhibits a bistability
between a spatio-temporal complex pattern and a homogeneous state [14]. Close this coexistence
region, one expects to observe a localized spatio-temporal states [7,9]. Figure 1a illustrates an
experimentally observed chaoticon state. The left panel is the spatio-temporal evolution of the
light intensity, represented through an iso-surface. The top right panel show a localized structure
at a given instant time, whereas the bottom right panel is a spatio-temporal diagram of a given
linear section, which illustrates an intricate localized state. When we increase or decrease the laser
intensity the localized structure becomes unstable giving rise to a front propagation between a
uniform state and a complex spatio-temporal one. Figure 1b shows the observed front propagation
dynamics. Depending on the region of parameters one of the two states becomes more favourable
and invades the other one, and inversely. The deep understanding of fronts developing from a
spatio-temporal chaotic state over an uniform one, and the consequent generation of dynamically
interlaced localized structures, are open problems. In the next section, we face this complex
problem by means of a simple dynamical model.

3. The Nagumo–Kuramoto model
As we have mentioned before, the main ingredient for the appearance of chaoticon states
is the coexistence of a spatio-temporal chaotic pattern with a uniform state. Figure 2a illustrates
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Figure 1. Experimental observations of localized patterns with permanent dynamic and front propagation in the LCLV with
optical feedback. (a) Example of localized structure with permanent dynamics (chaoticon). The left panel is a spatio-temporal
iso-surface diagram of the light intensity in arbitrary units, the top right panel is a surface plot of the light intensity at given
time, and the button right panel is a spatio-temporal diagram of a linear section of the light intensity. The input intensity is
I = 2.5 mW cm−2. (b) Front propagation between a spatio-temporal complex and uniform state. The left panel is a spatio-
temporal iso-surface diagram of the light intensity in arbitrary units, the top right panel is a surface plot of the light intensity at
given time, and the button right panel is a spatio-temporal diagram of a linear section of the light intensity. The input intensity
is I = 2.7 mW cm−2. (Online version in colour.)
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Figure 2. (a) Bifurcation diagram of the LCLV experiment, the stars show the average intensity reaching at the camera as the
laser intensity is changed. The insets correspond to snapshots of the experiment in each of the three representative zones.
(b) Bifurcation diagram of the Nagumo–Kuramoto (3.1), when the forcing term is zero (β = 0), showing bistability between
the equilibrium states u0 = 0 and u1 = 1 in an interval enclosed by two transcritical bifurcations, at αc = 0 and αc = 1,
respectively. (Online version in colour.)

the bifurcation diagram observed in the LCLV experiment. The average intensity in the feedback
loop is plotted against the input laser intensity. For low intensity, the spatial state is a
homogeneous one, whereas for increasing input intensity an extended spatio-temporal chaotic
state develops, which corresponds to an higher average feedback intensity. In an intermediate
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range of intensities, there is a coexistence region where both states can be present. In this region,
chaotic localized structures are observed (see the inset of figure 2a).

A simple model that contains this type of coexistence and that, at the same time, can be
controlled is the Nagumo–Kuramoto model

∂tu = u(α − u)(u − 1) + ∂xxu + βu cos(kx)[1 + γψ(x, t)], (3.1)

where u(x, t) is a scalar field that describes a bistable forced system, β is the amplitude of
the forcing, k the spatial wavenumber, γ the amplitude of the spatio-temporal chaotic source
described by the field ψ(x, t) and α rules the relative stability between the trivial stable equilibria
of this system, u0 = 0 and u1 = 1 (0<α < 1). Figure 2b shows the bifurcation diagram of the
unforced Nagumo–Kuramoto model (β = 0) as a function of the parameter α. Note that for α = 0, 1
the system exhibits transcritical bifurcations and when α ≡ αM = 1

2 , both states are energetically
equivalent, that is, the system is at the Maxwell point [2]. The parameter β, accounting for
the intensity of the spatio-temporal forcing, is composed by two parts: a spatial forcing with
wavenumber k, and a spatio-temporal chaotic term proportional to γ , generated by the auxiliary
spatio-temporal chaotic field ψ(x, t). This field satisfies the following equation:

∂tψ = −ψ∂xψ + ε∂xxψ − ∂xxxxψ , (3.2)

which corresponds to the well-studied Kuramoto–Sivashinsky model [2,3]. This equation is a
prototype model for spatio-temporal chaos [16].

For β = 0, equation (3.1) describes a simple extended bistable system, the Nagumo model [17].
This model was exhaustively studied in the context of population dynamics. In this limit, this
model exhibits front propagation between the equilibria [17]. In the case that one considers the
spatial forcing, β �= 0 and γ = 0, this term leads the uniform state u1 to become a spatially periodic
one. Note that the forcing term turns into zero for small amplitude of u and then the equilibrium
u0 is unperturbed. Hence, this model has coexistence between a pattern and a uniform state. This
type of system is characterized by exhibiting pinning phenomena of the fronts, localized patterns
and homoclinic snaking bifurcation diagrams [2,4–6,9].

The inclusion of the term proportional to γ in equation (3.1), which couples the latter equation
with equation (3.2), causes the pattern state to exhibit chaotic spatio-temporal behaviours.
Moreover, the above model, equation (3.1), presents a coexistence region similar to that displayed
by the LCLV experiment. Therefore, one expects the Nagumo–Kuramoto model to show chaoticon
states. Figure 3a displays a few examples of chaoticon states observed in the LCLV experiment,
whereas figure 3b shows two examples of the one-dimensional localized spatio-temporal
chaotic states exhibited by the Nagumo–Kuramoto model. In figure 3c, it is plotted the front
interaction ansatz.

All numerical simulations were conducted by using a scheme of finite differences for the space
(with up to four neighbours) and a fourth-order Runge–Kutta for time evolution. Specular and
periodic boundary conditions were considered in the Nagumo–Kuramoto model equation (3.1)
and the Kuramoto–Sivashinsky model equation (3.2), respectively. The simulation length-size was
fixed to 512 points with a space discretization dx = 0.6 and a time-step dt = 0.01 of time evolution.

Each localized structure can be understood as a bound state of two front solutions [7]. In
the following section, in order to understand the origin of localized structures exhibited by the
Nagumo–Kuramoto model, we study the front dynamics of this model.

(a) Front dynamics
The Nagumo–Kuramoto model equation (3.1) admits a motionless front solution that connects u0
with u1 equilibrium, when γ = β = 0 and α= αM. The front has the analytical expression

u±(x − δ) = 1
2

± 1
2

tanh

(√
2

4
(x − δ)

)
, (3.3)
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Figure 3. (a) Family of localized chaotic structures in the LCLV experiment; intensity surface plots at fixed times. (b) Examples of
localized chaotic structures in theNagumo–Kuramotomodel, equation (3.1)withε = −3,β = 0.085,α = −0.14, k = 0.147
and γ = 0.12; upper panels: one-dimensional profiles at fixed times; bottom panels: spatio-temporal diagrams with the time
series recorded at a time interval T = 120. (c) Representation of the front interaction ansatz, equation (3.7) forW = 0; δ± are
the two front positions,� the separation between the two interacting fronts. (Online version in colour.)

where u+ (u−) accounts for a monotonous front solution that connects u0 with u1 (u1 with u0) and
δ stands for the position of the front, i.e. the position where the spatial variation of the front is
maximum. This particle like solution is parametrized by a symmetry group characterized by the
front position δ. Note that the only characteristic length of this solution is the width or core of
the front κ = 2

√
2, which corresponds to the region where the front has relevant spatial variations

close to the front position. To understand the effects of the forcing term and the change of α from
the Maxwell point on the front dynamics, we consider β ∼ γ � 1, α̃≡ α − 1

2 and the following
ansatz:

u(x, t) = u+(x − δ(t)) + W(x, t), (3.4)

where the position of the front was promoted to a function of time and W is a small correction
function (W � 1) that account, respectively, for the front dynamics and adjustments of the front
solution. Figure 4a shows the profile of the front at a given time, when the spatio-temporal forcing
is considered. Introducing the above ansatz in equation (3.1) and linearizing in W, we get

−LW = u′
+δ̇ + α̃u+(u+ − 1) + βu+ cos(kx) + γβu+ cos(kx)ψ(x, t),

where L≡ 3u+ − 3u2+ − 1
2 + ∂xx and u′+ stands for spatial derivative. Note that u′+ satisfies

Lu′+ = 0 and introducing the inner product (f |g) = ∫∞
−∞ f ∗(x)g(x) dx the linear operator L is a

Sturm–Liouville self-adjoint operator. Hence, to solve the above linear equation, we can apply
the solvability condition [2]

δ̇(u′
+|u′

+) + α̃(u2
+|u′

+) − α̃(u+|u′
+) + β(u+ cos(kx)|u′

+) + γβ(u+ cos(kx)ψ(x, t)|u′
+) = 0.

Using expression (3.3), and after straightforward calculations, we obtain the kinematic front
equation

δ̇ = −∂U
∂δ

− γβ(u+ cos(kx)ψ(x, t)|u′
+), (3.5)

with the effective potential

U(δ) ≡ − α̃
2
δ − β

3π
2

csch(
√

2kπ )
√

2 + 4k2 cos
(

kδ + arctan
(

1

k
√

2

))
. (3.6)

Equation (3.5) gives a description of the front dynamics as a particle type solution. Indeed,
the front dynamics can be seen as an overdamped particle trapped into a ratchet potential and
urged to move by a chaotic motor, the term proportional to γ . In other words, the position of the
front can be interpreted as an overdamped particle in a ratchet potential forcing with a chaotic
force. Therefore, the dynamical behaviour of the front position is the deterministic counterpart
of a Brownian motor [18]. Figure 4 illustrates the ratchet potential and different trajectories with
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Figure 4. Front propagation between a spatio-temporal chaotic state and a uniform one and pinning/depinning transition
for the Nagumo–Kuramoto model, equation (3.1), ε = −3, β = 0.085, α= −0.14 and k = 0.147. (a) Front profile u(x) at
a given time t. (b) Spatio-temporal diagram showing the evolution of the front profile in the depinning region (γ = 0.18).
The pattern endowedwith permanent dynamics invades the system. (c) Front dynamics in the two regimes : pinning (thick line
γ = 0.12) and depinning (γ = 0.18). The inset shows the permanent dynamics at shorter time scale. (d) The ratchet potential,
expression (3.6), and representation of pinning and depinning trajectories of panel (c). (Online version in colour.)

dissimilar values of the intensity of the chaotic forcing. When the intensity of the spatio-temporal
forcing γ is small enough, the front position is pinning around a potential minimum and exhibits
chaotic oscillations (cf. figure 4c,d). In opposition, when γ is increased, the front position starts to
move in order to minimize the ratchet potential and simultaneously joins with chaotic motions.
Figure 4 shows the chaotic front propagation that is characterized by intermittent leaps. Therefore,
depending on the value of the intensity of the spatio-temporal forcing γ , the front experiences a
pinning/depinning transition. In brief, the dynamics of the position of the front is described by
a chaotic motor.

(b) Chaoticon as interaction of fronts
To study the existence, stability properties, dynamical evolution and bifurcation diagram of the
spatio-temporal localized structures, we can consider this state as a bound state of two fronts [7,9].
Indeed, these localized states can be understood as solutions composed of two fundamental
states, the front solutions. It is worthy to note that localized states are not always considered
as bound states of two fronts. However, in some limit of the parameters, these states can be
satisfactorily described as bound states. A paradigmatic example of this property is the pulse
solutions observed in the cubic quintic Ginzburg–Landau equation [12]. This pulse solution can
be understood as a bound state of two fronts in the perturbed dissipative limit of the Ginzburg–
Landau equation [19]. In general, close to the Maxwell point, the localized structures can be well
described in terms of front interaction.
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Let us consider—close to the Maxwell point and for small spatio-temporal forcing, β ∼ γ ∼
α̃� 1—the following ansatz for the front interaction

u(x, t) = [u+(x − δ+(t)) + u−(x − δ−(t)) − u1] + W(x, t), (3.7)

where W(x, t) is a small correction function (W � 1). This ansatz is composed by two fronts
positioned at δ+(t) and δ−(t), respectively, with δ+(t)< δ−(t) and a reference constant state u1.
Figure 3c illustrates the above ansatz when W = 0. Note that the position (δ) and the width (�) of
this localized state are given by

δ(t) ≡ δ+(t) + δ−(t)
2

and �̂(t) ≡ δ−(t) − δ+(t).

⎫⎪⎬
⎪⎭ (3.8)

For the sake of simplicity, we renormalize the width of the localized structure in units of the
core front, �(t) = �̂(t)/κ . It must be pointed out that the above ansatz, equation (3.7), is invariant
under the change u+ ↔ u−. Introducing this ansatz into (3.1), linearizing in W and neglecting any
product of W with the perturbative parameters (γ , β, and α), after straightforward calculations
we obtain

L±W = −3(u∓ − 1)(1 − u±)[(u∓ − 1) + u±]

− α[u± + (u∓ − 1)][(u± − 1) + (u∓ − 1)]

− β[u± + (u∓ − 1)] cos(kx)(1 + γψ) + δ̇∓u′
∓ + δ̇±u′

± (3.9)

with

L± = [−3u± + 3u2
± + 1

2 − ∂xx] − 3(u∓ − 1)[−1 + 2u± + (u∓ − 1)].

This operator can be written as L± =L(±) + LI, where

L(±) ≡ [−3u± + 3u2
± + 1

2 − ∂xx]

is the same operator that characterizes the dynamics of a front u± (cf. §3a) and

LI ≡ −3(u∓ − 1)[−1 + 2u± + (u∓ − 1)].

As a consequence of the invariance u+ ↔ u−, the linear equation for W can be written in two
similar ways, this is the origin of ± sign in equation (3.9). In order to compute the front dynamics
of one of the two fronts, it is useful to consider one of the respective signs.

Analogously to the procedure adopted in the section on front dynamics (cf. §3a), in order
to solve linear equation (3.9), we have to apply the solvability condition. Indeed, to apply the
solvability condition, we must characterize the kernel of the adjoint operator of L±. Thus, we
consider the same inner product of the previous section, where L± is self-adjoint. Owing to
L(±)u′± = 0, one has to calculate the kernel of LI in order to characterize the kernel of L±. In
spite that LIu′± �= 0, if we assume that the distance between the two fronts is large enough
(|δ+ − δ−| � 1, diluted fronts), then LIu′± ≈ exp(−κ(δ− − δ+)), where κ = 2

√
2 is the core of the

front. This operator LI accounts for the interaction of one front with the other. More precisely,
this operator accounts for the asymptotic value of u± − u1 around the other front u∓, which
is exponentially small [exp(−κ(δ− − δ+))]. Note that any term of the form (u′±|(u± − 1)n>1) is
exponentially small in the limit of diluted fronts.

Applying the solvability conditions in equation (3.9), we obtain the following two equations:

0 = [(3 + 2α)(u±u∓|u′
±) − 3(u∓u2

±|u′
±) − α(u∓|u′

±) + β(u∓ cos(kx)|u′
±)

+ βγ (u∓ cos(kx)ψ |u′
±) + δ̇∓(u′

∓|u′
±)] + [(u2

±|u±)(3 + α) − 3(1 + α)(u±|u′
±)

+ α(1|u′
±) + β(u± cos(kx)|u′

±) + βγ (u± cos(kx)ψ |u′
±) − β(cos(kx)|u′

±)

− βγ (cos(kx)ψ |u′
±) + δ̇±(u′

±|u′
±)].
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To simplify the above expressions and to grasp the front interaction, we consider the diluted
limit, i.e. we contemplate that the distance between the fronts is large enough in comparison to
the core of the front (�� κ = 2

√
2). It is important to note that in the above expressions we have

two kinds of integrals, interaction terms [(f (u±)|g(u∓)] and non-interaction terms [(f (u±)|g(u±)]. The
non-interaction terms can be calculated analytically and the interaction terms can be calculated at
the dominant order, that is, we consider only the exponential interaction, which is a consequence
of the effect of the tail of one front over the other front. In order to accomplish this calculations,
we split the integral in two regions

(f (u+)|u′
−) =

∫∞

−∞
f (u+)u′

− =
∫ δ
−∞

f (u+)ǔ′
− +

∫∞

δ

f (ǔ+)u′
− = I + II.

In the integration interval of the first integral I, x = δ− is not present. Thus, we can approximate
u′− by its asymptotic expression far from the core of the front around to the other front

−√
2 e−√

2�(t)/4/8 (denoted by ǔ′−). We use the same type of asymptotic approximation for the
second integral II and all the interaction terms. After straightforward calculations, the set of
equations for the centre of mass δ and the size of the localized structure � are [20]

δ̇ = − 3β

4
√

2
C3(�) sin(kδ + φ3(�)) − 3βγ

4
√

2
(ψ[u+ + u− − 1] cos(kx)|u′

+ + u′
−) (3.10)

and

�̇=
(

15
32

√
2 + 9

4

)
e−√

2�/4 − α̃

√
2

4
+ 3

8
βG3(δ) sin

(
4k�√

2
+ θ3(δ)

)

+ 3
8
βγ ((u− + u+ − 1)ψ cos(kx)|u′

+ − u′
−), (3.11)

where

C3 =
√

C2
1 sin2

(
4k�√

2
+ φ1

)
+ C2

2 sin2
(

4k�√
2

+ φ2

)
,

φ3 = arctan

(
C2 sin(4k�/

√
2 + φ2)

C1 sin(4k�/
√

2 + φ1)

)
,

C2 =
√

(A+ + A−)2 + (B+ − B−)2, φ2 = arctan
(

B+ − B−
A+ + A−

)
,

C1 =
√

(12kπ csch(
√

2kπ ) + A+ + A−)2 + (4
√

2k2π csch(
√

2kπ ) − B− − B+)2

φ1 = arctan

(
2kπ csch(

√
2kπ ) + A+ + A−

B− + B−4
√

2kπ csch(
√

2kπ )

)
,

G3 =
√

G2
1 sin2(kδ + θ1) + G2

2 sin2(kδ + θ2), θ3 = arctan
(

G2 sin(4kδ + θ2)
G1 sin(4kδ + θ1)

)
,

G2 =
√

(A+ + A−)2 + (4
√

2k2π csch(
√

2kπ ) − B+ − B−)2,

θ2 = arctan
( −(A+ + A−)

4
√

2k2π csch(
√

2kπ ) − B+ − B−

)
,

G1 =
√

(−4kπ csch(
√

2kπ ) − A+ + A−)2 + (B+ − B−)2,

θ1 = arctan
(

B+ − B−
−4kπ csch(

√
2kπ ) − A+ + A−

)
,
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D
•

d
•

d
D

(a) (b)

Figure5. Phaseportraits of (a) the size of the localized structure� and (b) the centre ofmassδwhenβ = 1,γ = 0,α= 4.7,
k = 6.62, C3 = 1.5 and G3 = 1.5. The filled and empty circles are stable and unstable equilibria, respectively. The insets in (a)
are numerical plots of the predicted localized solutions. (Online version in colour.)

A± =
√

2
∫∞

−∞
(±1 − tanh(z)) sech2(z ∓�) cos(2

√
2kz) dz

and B± =
√

2
∫∞

−∞
(±1 − tanh(z)) sech2(z ∓�) sin(2

√
2kz) dz.

Equation (3.10) describes the dynamics of the position of the localized states, which
corresponds to a kinematic equation composed by two forces: a periodic force, due to the spatial
forcing, and a chaotic force accounting for the chaotic forcing, which are proportional to β and
γ , respectively. Note that the expression (ψ(x, t)[u+ + u− − 1] cos(kx)|u′+ + u′−) accounts for a
temporal chaotic force. To figure out the dynamics of the position of the localized states, we
can neglect the chaotic forcing (β � γ ). Thus, the centre of mass of the localized state satisfies
the equation of an overdamped particle under a periodic potential with a wavenumber k and a
magnitude proportional to β. Figure 5a displays the phase portrait of the size � of the localized
structures, whereas figure 5b shows the phase portraits of the centre of mass δ of the localized
states. The centres of mass will be positioned in specific positions induced by the spatial forcing,
which are emphasized by points in figure 5b. The filled (empty) points stand for stable (unstable)
centre of mass position. The inclusion of spatio-temporal forcing (γ � β) induces small aperiodic
fluctuations around the equilibria position of the centre of mass (cf. figure 3b).

On the other hand, equation (3.10) describes the dynamics of the width of the localized
state, which corresponds to a kinematic equation composed by four forces. The first one is
proportional to e−√

2�/4 and accounts for the interaction of fronts. This force is exponentially
small in the limit of dilute fronts [21]. The second term is proportional to α̃ and accounts for
the energy difference between the two uniform equilibria. This term vanishes at the Maxwell
point. The balance between the interaction of fronts and the energy difference may generate
unstable localized structures [7]. The last two terms in equation (3.10) account for a periodic
and chaotic force, respectively, corresponding to the spatial and spatio-temporal chaotic forcing
that are proportional to β and γ , respectively. In order to understand the underlying dynamics
of this equation, we first neglect the effects of the spatio-temporal forcing (γ � 1). In this limit,
equation (3.10) describes the interaction between a pattern and a homogeneous state. The force in
this limit is shown in figure 5a.

As a result of the combination of the interaction of fronts and of the spatial forcing, the system
exhibits a family of localized patterns [9] (cf. inset of figure 5a). Modifying the parameter α,
the localized states appear and disappear by a cascade of saddle-node bifurcations, giving rise
to a complex phase diagram called the homoclinic snaking bifurcation [22]. Recently, this type
of snaking bifurcation has been verified experimentally in an LCLV with a spatially modulated
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optical feedback [23]. The inclusion of a small spatio-temporal forcing leads the pattern state to
become a spatio-temporal chaotic one, then, localized patterns turn into localized spatio-temporal
chaotic states, chaoticons. Therefore, the holding mechanism of localized spatio-temporal chaotic
states is induced by the pinning generated by the spatio-temporal forcing, by means of the
nucleation barrier that blocks the motion of the fronts. This mechanism prevents that aperiodic
fluctuations cross the nucleation barrier. Then, chaoticons have a width that aperiodically
fluctuates around a value which is of the order of some wavelengths. When γ is increased the
fronts begin to propagate, as it is illustrated in figure 4, consequently chaoticons are unstable. For
small γ , as a result of the interaction law (3.10) the system exhibits a family of chaoticons with
different sizes (figure 5a). From this kinematic law, one concludes that chaoticons appear and
disappear through saddle-node bifurcations. The corresponding snaking bifurcation diagram of
chaoticons is an open problem, since from the geometrical point of view the dynamics of the
manifold associated with chaotic states is not understood yet [24].

4. Conclusion and comment
Localized states with a complex spatio-temporal dynamics are observed in physical systems
that exhibit coexistence between a chaotic spatio-temporal pattern and a uniform state. This
coexistence is the essential ingredient to observe these localized states. We have established
analytically a holding mechanism of localized spatio-temporal chaotic state in one-dimensional
extended systems. This mechanism is based on the spatio-temporal chaotic pattern that induces
a nucleation barrier to the motion of the fronts connecting the pattern with another state.
This finding is derived in the context of the Nagumo–Kuramoto model, equation (3.1), which
exhibits localized spatio-temporal chaotic states. However, the established mechanism applies
beyond the mastery of this simple model. Therefore, in any system which exhibits coexistence
of chaotic spatio-temporal patterns and other states one expects domains between these states
to exhibit pinning phenomena. In model (3.1), the pinning is induced by the spatial forcing,
notwithstanding in the LCLV experiment with optical feedback the spatio-temporal complexity
self-induces this pinning phenomenon. The advantage of model (3.1) from the theoretical point
of view is that one can control the characteristic intensity of the spatio-temporal chaos. This
model allows us to unveil the front dynamics, which is characterized by a chaotic motor, and
the front interaction mechanism at the origin of the localized spatio-temporal chaotic structures.
Experimentally, it is a complicated task to control the amplitude of the aperiodic oscillations.

In the context of discrete coupled oscillators, localized states that separate a coherent and
phase locked domain with an incoherent and desynchronized one have been observed [25].
These intriguing states, denominated chimera states, can be understood as the counterpart of
the chaoticon states in discrete systems. It is known that the effect of spatial discretization
is analogous to a spacial forcing in the continuous limit. Therefore, the discretization can be
responsible for the pinning mechanism of localized states [26].

In conclusion, we have shown that the mechanism responsible for the existence of chaoticons is
the pinning and interaction of the fronts, which is induced by a chaotic spatio-temporal structure.
Hence, we can conjecture that a system with coexistence of spatio-temporal chaos and a periodic
structure will present similar chaoticon states. Works in this direction are in progress.
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