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Experimental observation of front propagation in a negatively diffractive
inhomogeneous Kerr cavity
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A focusing Kerr Fabry-Pérot cavity operating in a negative diffraction regime exhibits transverse propagating
fronts connecting two different nematic liquid crystal molecule average orientations. Under an inhomogeneous
spatial pumping beam, these fronts stop to propagate and lead to the formation of a stable localized structure. The
trajectory of the front position is derived from the mean-field model. Its hyperbolic tangent analytical expression
perfectly fits the experimental data.
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Introduction. The formation of dissipative structures far
from equilibrium has motivated many studies since the
pioneering work of Turing [1] and Prigogine and Lefever [2].
It concerns almost all fields in natural science such as biology,
chemistry, ecology, physics, fluid mechanics, and optics. In
particular, the formation of localized structures (LSs) and
localized patterns that belong to this class of structures has
been a subject of intense research (see reviews on this issue
[3,4] and references therein). They consist of localized peaks
in one or more spatial dimensions. When they are sufficiently
separated from each other, localized peaks are independent
and randomly distributed in space. The prerequisite condition
for spatial confinement leading to the formation of LSs is the
occurrence of subcritical modulational or Turing instability
where a coexistence between a homogeneous background
and a self-organized periodic structure occurs [5–9]. Several
experiments have been realized with the aim of a future
application as pixel bits in optical memories [10–16]. This
issue has been widely discussed and is by now fairly well
understood.

In another line of research it is known that many systems
could operate in the negative (or anomalous [17]) diffraction
regime. The periodic modulation of the refraction index allows
one to invert the sign of the diffraction coefficient [18] in
atomic Bose-Einstein condensates [19] and in dissipative non-
linear photonic crystal resonators [20–25]. Another example of
negative diffraction systems is the near self-imaging resonators
[26] and more recently left-handed materials [27–32]. The case
of zero diffraction has also been investigated [33].

In this Rapid Communication we consider a focusing
driven Kerr Fabry-Pérot cavity. We show experimentally the
occurrence of stable localized structures in a modulationally
stable regime, i.e., in a regime far from any modulational or
Turing instability [1,2]. We attribute the stabilization of these
solutions to the combined action of negative diffraction and an
inhomogeneous pumping laser beam. It has been shown that
the laser cavity can also be considered as an inhomogeneous
cavity [34,35]. In the short time evolution, fronts connecting
two different nematic liquid crystal molecule average orien-
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tations counterpropagate. The final optical permanent state is
composed of two bounded fronts forming a stable LS. The
hyperbolic tangent trajectory of the front core under Gaussian
forcing is predicted from a Lugiato-Lefever (LL) model
[36] that perfectly fits the experimental data. Since optical
cavities are a basic configuration in nonlinear systems and
since localized structure formation [3,4] and front propagation
[5,37] are ubiquitous phenomena in nonlinear science, our
observations are liable to be relevant to other fields of research
such as photonics crystals or left-handed materials.

Experimental setup. The experiments have been carried
out using a nonlinear Kerr slice medium inserted in an
optical Fabry-Pérot resonator. The Kerr focusing medium is a
50-μm-thick layer of E7 nematic liquid crystal homeotrop-
ically anchored. Two plane mirrors M1 and M2 define the
physical cavity. An intracavity 4f lens arrangement (L1 and
L2 in Fig. 1) images in M′

2 the real mirror M2. Consequently,
the equivalent optical cavity is delimited by M1 and M′

2 (see
Fig. 1). Its optical length d may be tuned from positive
to negative values (positive in Fig. 1). Thus, for negative
optical cavity path (d < 0), a beam propagating along this path
experiences negative diffraction. Together with the positive
Kerr index, the experimental setup is then equivalent to a Kerr
cavity that would have a positive optical distance but negative
Kerr index (the ηa product sign in Ref. [36] that defines the
type of transverse instabilities remains the same). However,
the physical mechanisms of negative refraction and negative
diffraction are different. Thus, this intracavity geometrical lens
arrangement allows for achieving an equivalent left-handed
Kerr material in the visible range. It also allows one to
continuously tune the diffraction from positive to negative.

The experimental cavity finesse is 11.6 [15]. The cavity is
pumped with a beam delivered by a single-mode frequency-
doubled Nd3+:YVO4 laser (λ0 = 532 nm) that is shaped by
means of two cylindrical telescopes. The resulting beam size
(∼ 200 × 2800 μm2) gives a cylindrical transverse shape such
that only one spot can develop in one of the two directions. The
system may then be considered as one dimensional. The beam
propagating in the forward direction is monitored at the output
of M2 mirror. In addition to d, two control parameters are easily
accessible in the experiments, namely, the maximum input
intensity I0 of the incident laser beam and the cavity detuning
via the linear phase shift ϕ of one cavity round-trip. As the
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FIG. 1. (Color online) Inhomogeneous Kerr cavity with negative
diffraction. (a) Experimental setup. (b) Schematic representation of
the physical cavity and the equivalent cavity: OI is the optical isolator;
BS is the beam splitter; LC is the liquid crystal slice; D1 and D2 are
photodetectors; L1 and L2 are lenses of focal length f ; p and s are
the polarized components of the pump (solid line) and probe (dashed
line) beams, respectively; and M1 and M2 are the real cavity mirrors
but the optical Fabry-Pérot cavity is delimited by M1 and M′

2 mirrors
and its length is d .

dynamical regimes are highly dependent on the value of ϕ, the
optical cavity length is actively stabilized using a very weak
probe beam orthogonally polarized to the main beam [15].

Our cavity inserting a Kerr focusing nonlinearity is tuned
such that (i) it operates in the bistable regime (ϕ < 0),
where the states correspond to different nematic liquid crystal
molecule average orientations, and (ii) it experiences negative
diffraction (d < 0). The remaining control parameter here is
the injected optical power. For low power [t < 0 in Fig. 2(c)]
(corresponding to the lower branch of the cavity transfer
function bistability cycle), the transmitted intensity profile
mimics the input Gaussian transverse beam shape. As the input
power is suddenly increased to the upper bistability response
branch (t = 0 s), the central part of the transmitted intensity
profile suddenly jumps after some latency time [t ≈ 37 s in
Fig. 2(c)] to a higher value and invades the surroundings
towards the external regions where the field is less intense
before stopping its propagation. Finally, the fronts lock to give
a localized light state [Fig. 2(e)]. Changing the waist w of the
Gaussian forcing or its intensity within the bistability region
allows one to tune the distance between the bounded fronts
and thus the localized state extension.

A transverse cut of the transmitted intensity profile is
depicted in Fig. 2(a), obtained in the initial and the final
observation period. This figure emphasizes the coexistence of
different states in the same region of parameters. In addition,
one state emerges from the other because of the inherent
fluctuations of the system. Figure 2(c) shows this phenomenon
starting at t ≈ 37 s. From this instant, the system exhibits two
counterpropagating fronts, which will become asymptotically
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FIG. 2. Front propagation in the negative diffractive inhomoge-
neous Kerr cavity. (a) and (b) Transverse cross section of the initial
(final) average localized structure shown by the dashed black (solid
gray) line. (c) and (d) Spatiotemporal response to a step function of the
input intensity from the lower to the upper branch of the bistable cycle.
(e) and (f) Experimental and numerical cross section of the localized
state. Light region account for high intensity of the light. (a), (c),
and (e) Experiments with I0 = 433 W cm−2, d = −5 mm, ϕ = −0.6
rad, wx = 1400 μm, wy = 100 μm, R1 = 81.8%, and R2 = 81.4%.
(b) and (d) Numerical simulation of the LL model with E0 = 1.9,
� = 3.0, α = 0.001, wx = 1400 μm, wy = 100 μm, and ε = 0.4.

motionless [see Fig. 2(c)]. The motionless front is observed
at the location x0(expt) ∼= ±0.17w. At this location, the input
intensity is only 3% lower than at the center of the input beam.
Thus, we observe experimentally the coexistence between
two inhomogeneous states; the noise induces a pair of fronts
between these states, which initially counterpropagate until
asymptotically they stop.

Theoretical description. In the mean-field limit, the dy-
namics of the single longitudinal mode of the bistable system
that consists of a Fabry-Pérot cavity filled with a liquid
crystal Kerr-like medium and driven by a coherent plane-wave
steady state can be described by the simple partial differential
equation (the LL model [36])

∂E

∂t
= Ein(x) − (1 + i�)E + i|E|2E − i|α|∂

2E

∂x2
, (1)

which includes the effect of diffraction, which is proportional
to α. Here E is the normalized slowly varying envelope of
the electric field, � is the detuning parameter, and Ein is
the input field assumed to be real, positive, and spatially
inhomogeneous. The negative diffraction coefficient is |α|.
Note that the above model has been derived for a cavity filled
with left-handed material operating in the negative diffraction
regime [29].

At the onset of optical bistability, there is a second-order
critical point where the output versus input characteristics has
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an infinite slope. The critical detuning at the onset of optical
bistability is � = �c ≡ √

3. In order to study the dynamics
of the front connecting the two homogeneous steady states,
we explore the vicinity of the critical point associated with
bistability. For this purpose, we introduce a small parameter
that measures the distance from the critical point ζ � 1 and
we express the cavity detuning in the form � = �c(1 + ζ 2σ ),
where σ is a quantity of order one. Then we decompose
the envelope of the electric field into its real and imaginary
parts E = x1 + ix2 and we introduce new space and time
scales as (x,t) � [ζ 2t/σ,31/4ζx/(|α|√σ )]. Let (X1,X2,Yin) =
(x1,x2,Ein) − (3/4,

√
3/4,1)Ec

in, with Ec
in = 2

√
2/33/4, be the

deviations of the real and imaginary cavity fields and of the
injected field with respect to the values of these quantities at
the critical point. Our aim is to seek solutions of Eq. (1) in the
neighborhood of the critical point associated with the optical
bistability. To this end, we expand the cavity field and the
injected field as (X1,X2,Yin) = ζ [(u0,v0,y0) + ζ (u1,v1,y1) +
ζ 2(u2,v2,y2) + · · · ]. Inserting this expansion into the LL
model and using the above scalings, we then obtain a hierarchy
of linear problems for the unknown functions. At the first order
in ζ , we find Y0 = 0 and u0 = −w0. At the second we have
Y1 = 3σ/4. Finally, at the third order, the solvability condition
yields

∂u

∂t
= η + u − u3 + ∂2u

∂x2
, (2)

where u(x,t) = √
3/2σu0 is a scalar field that accounts for

the real part of the envelope E and η = 4y2σ/3 controls
the relative stability between the equilibria. Note that y2 is
proportional to the pumping Ein. Hence, if the pumping is
inhomogeneous then the parameter η is also inhomogeneous.
For a Gaussian pumping, we consider

η(x) ≡ η̃ + η0e
−(x/w)2

, (3)

where η0 accounts for the strength of the spatial pumping beam
and w is the width of the Gaussian. For η(x) = 0 both states
are symmetric corresponding to the Maxwell point, where a
front between these states is motionless.

The above model (2) describes the appearance of bistability
in an inhomogeneous medium [6]. From the bifurcation point
of view, this equation accounts for an extended inhomogeneous
imperfect pitchfork bifurcation [38]. To perform analytical
developments, we first approximate the Gaussian forcing by
a parabola (first-order development close to the center of
the optical pumping where the stress is maximum), that is,
η(x) ≈ −η̃ + η0[1 − (x/w)2]. Close to the Maxwell point,
one can consider the following ansatz for the front solution:
u(x,t) = tanh{[x − x0(t)]/

√
2} + W , where x0 stands for the

front position. This position is promoted to a function of time
to account for the effects of inhomogeneity and asymmetry
among states. In addition, W accounts for small corrections.
To get the front dynamic, we introduce the above ansatz for
u in Eq. (2), linearizing in W and imposing the solvability
condition, to obtain

ẋ0 = −3
√

2

2

{
− η̃ + η0

[
1 −

(
x0

w

)2

−
(

π√
6w

)2]}
, (4)

which leads to the trajectory of the front

x0(t) = ±a tanh[b(t − t0)], (5)

where a, b, and t0 are coefficients depending on η0, η̃, and
w. The equilibrium position of the front x0∞ can be inferred
from the expression (5) for t → ∞ as x0∞ = ±w

√
1 − η̃/η0.

This equilibrium position could be obtained directly from
Eq. (2), assuming η(x0∞) = 0, which is the condition for the
motionless front (Maxwell point). Extending this last property
to the initial Gaussian forcing, we get

x0∞ = ±w

√
ln

(
η0

η̃

)
. (6)

At the leading order, Eq. (6) recovers again the previous
expression of x0∞ for the parabolic approximation of the
Gaussian profile.

Numerical simulations of the LL model (1) under parabolic
as well as Gaussian spatial forcing show perfect agreement
with the front position dynamics (5). In order to perform
more realistic numerical simulations, we have conducted
simulations in two dimensions with a asymmetric Gaussian
forcing with a cylindrical shape (wx 
 wy). That is, we
consider

Ein(x,y) = E0 exp

{
−

[(
x

wx

)2

+
(

y

wy

)2]}
. (7)

Furthermore, we have included the inherent fluctuations of the
system by adding a stochastic term (white noise) with noise
intensity ε. Numerical simulations with these ingredients show
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FIG. 3. Temporal evolution of the front position x0(t) correspond-
ing to the spatiotemporal diagrams of Fig. 2. (a) Experiment and (b)
numerical simulations of the LL model (1) using the same parameters
considered in Fig. 2. Diamonds represent the location values extracted
from the smoothed spatiotemporal diagrams. Dashed curves are the
best fit using expression (5). The experimental fit parameters are a =
308 μm, b = 0.069, and t0 = 35.2 s; the numerical fit parameters are
a = 306 μm, b = 0.017, and t0 = 107.7.
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quite good agreement, in terms of the structure profile, front
dynamics, and two-dimensional shape [see Figs. 2(b), 2(d), and
2(f)], with the experimental observations [see Figs. 2(a), 2(c),
and 2(e)]. Hence, the analytical expression (5) can be used to
figure out and to characterize the experimental front dynamics.
Figure 3 depicts the experimental and numerical temporal
evolutions of the position of the front. It clearly evidences that
the expression of Eq. (5) reproduces the dynamics of the front.
Therefore, the effect of a spatial forcing on front propagation is
to induce the front moves and stops on an asymptotic position,
satisfying a hyperbolic tangent trajectory.

Conclusion. Using a geometrical arrangement, we show
how to generate an equivalent left-handed Kerr material in
the visible range. Experimentally, we show that the nonlinear
dynamical states appearing in a focusing Kerr Fabry-Pérot
cavity submitted to negative optical feedback are propagating
fronts in an inhomogeneous medium. Theoretically, the system
is modeled, in the mean-field limit, by a single longitudinal
mode that describes an oscillatory forcing inhomogeneous
nonlinear diffracted medium, the LL model. From this model
we have derived a simple bistable model with inhomogeneous

parameters. The inhomogeneous spatial forcing coming from
the optical Gaussian pumping generates, experimentally and
theoretically, the front moves and stops on an asymptotic
position. The experimental trajectory of the front position
under that forcing follows a hyperbolic tangent law that
fully agrees with the prediction from a generic bistable
imperfect pitchfork bifurcation model. As a consequence
of the Gaussian forcing, the system exhibits a localized
state as equilibrium. This state is composed of two opposite
fronts.
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