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The existence, stability properties, and dynamical evolution of localized spatiotemporal chaos are

studied. We provide evidence of spatiotemporal chaotic localized structures in a liquid crystal light valve

experiment with optical feedback. The observations are supported by numerical simulations of the Lifshitz

model describing the system. This model exhibits coexistence between a uniform state and a spatio-

temporal chaotic pattern, which emerge as the necessary ingredients to obtain localized spatiotemporal

chaos. In addition, we have derived a simplified model that allows us to unveil the front interaction

mechanism at the origin of the localized spatiotemporal chaotic structures.
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Out of equilibrium macroscopic systems are character-
ized by exhibiting self-structuring phenomena [1–3]. In the
course of recent decades, much effort has been devoted to
study pattern formation in diverse branches of natural
sciences (see, e.g., Refs. [4–6] and references therein). In
most of the systems it has been observed the emergence of
localized states [7–12], which, although being spatially
extended, exhibit properties associated with particlelike
states, such as position and width. In one-dimensional
spatial systems, localized states can be described as spatial
trajectories that connect one steady state with itself, which
means they are homoclinic orbits from the point of view
of dynamical systems [13]. Particular types of localized
states are localized patterns, which correspond to patterns
extended only over a small portion of a spatial system
[1,3]. A geometrical interpretation of the existence, stabil-
ity properties, and bifurcation diagram of localized pat-
terns in one-dimensional extended systems has been
proposed in Refs. [14,15]. Recently, the existence of local-
ized patterns based on front interaction was developed
[16]. Consequently, one could imagine localized states of
different types supported by different states, for example, a
pattern over a pattern [17], an oscillatory state over a
uniform one [18], or a wave over a uniform state [19]. In
the case of a localized oscillatory state, it has been shown
that if one increases the amplitude of the forcing, the
amplitude of the breather undergoes a double-period route
to chaos, hence realizing a low dimensional localized
chaotic state [18]. A similar route has been observed for
discrete breathers in anisotropic Josephson junction lad-
ders [20]. Chaotic localized states have also been reported
in models of heterogeneous catalytic reaction in porous
particles [21], whereas localized chaotic domains were
observed in surface wave experiments as a result of the
curvature of the container walls [22]. Notwithstanding, the
above scenario is incomplete, as one would expect to find
situations where it is possible to obtain localized states

characterized by spatiotemporal chaotic dynamics devel-
oping over a uniform state. To our knowledge, there is, to
date, no observation or theory of this type of localized
state.
The purpose of this Letter is to provide evidence of the

existence, stability properties, and dynamical evolution of
localized spatiotemporal chaos. Experimentally, this type
of localized state are observed in a liquid crystal light valve
(LCLV) experiment with feedback loop. Figure 1 shows an
example of the observed spatiotemporal chaotic localized
state and its respective spatiotemporal evolution. Close to
the nascent of bistability and spatial bifurcation, the
Lifshitz point [3], a generalization of the variational
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FIG. 1 (color online). Chaoticon structure observed in the
LCLV experiment. (a) Temporal evolution of the light
intensity isosurface; the camera acquisition rate is 30 fps.
(b) Instantaneous snapshot. (c) Plot of the light intensity at a
given time.

PRL 110, 104101 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

8 MARCH 2013

0031-9007=13=110(10)=104101(5) 104101-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.110.104101


Swift-Hohenberg equation—the Lifshitz normal form—
describes this system [23]. For a certain region of parame-
ters, this model exhibits coexistence between a uniform
state and a chaotic spatiotemporal pattern, which are the
necessary ingredients to have spatiotemporal chaotic
localized states, that we term chaoticons. When increasing
the size of the localized structures, a transition from the
stationary to the spatiotemporal chaotic states is observed,
consistent with the fact that, as one increases the size of
localized states, additional modes are incorporated in the
dynamics. In order to reveal the livelihood mechanism of
these states, we also buildup a phenomenological prototype
bistable model forced with a spatiotemporal chaotic
source. This allows us to analytically characterize the
pinning front interaction between a uniform and a spatio-
temporal chaotic state.

Experimental evidence of chaoticons.—We consider a
LCLV experiment, which is composed of a nematic liquid
crystal (LC) film sandwiched in between a glass and a
photoconductive plate over which a dielectric mirror is
deposited (for details see, e.g., the review [24]). The LC
film has a planar aligned nematic director ~n parallel to the
walls, with a thickness d ¼ 15 �m. The liquid crystal is a
mixture of cyano-biphenyls (nematic LC-654, produced by
NIOPIK), with a dielectric anisotropy �" � "k � "? ¼
10:7 and optical birefringence, �n � nk � n? ¼ 0:2,
where "k and "? are the dielectric permittivities k and ?
to ~n, respectively, and nk and are n? are the extraordinary

(k to ~n) and ordinary (? to ~n) refractive index, respec-
tively. Transparent electrodes over the glass plates permit
the application of an electrical voltage across the LC layer,
which allows applying a reference voltage V0 without
feedback. The photoconductor behaves like a variable
resistance, decreasing for increasing illumination. The
feedback is obtained by sending back onto the photocon-
ductor the light which has passed through the LC layer and
has been reflected by the dielectric mirror [24]. This light
beam experiences a phase shift which depends on the
liquid crystal reorientation and, on its turn, modulates
the effective voltage that locally applies to the LC layer.
The optical free propagation length in the feedback loop is
fixed to L ¼ �4:0 cm. This parameter, together with the
laser wavelength �, controls the characteristic size of the
optical patterns [24].

For a fixed voltage V0, by increasing the laser intensity
the system presents a bistability between a spatiotemporal
complex pattern and a homogeneous state. In order to
carefully identify the bistability region, an acousto-optic
modulator is placed on the optical path of the input beam
and allows changing the intensity of the light impinging
onto the LCLV. Figure 2 illustrates the experimental bifur-
cation diagram obtained by decreasing the laser intensity
Iin with respect to a reference value I0 ¼ 1:6 mW=cm2 at a
fixed voltage V0 ¼ 8:12 V rms. In the coexistence region,
by making a local perturbation with a low power external

beam, by using a digital light processing projector, we can
induce localized structures of different size from the uni-
form state. Once created, the localized structures remain
stable when removing the external beam. By changing the
position of the initial perturbation, the localized structure
can be spatially addressed and generated in any space
position over the photoconductor area. The central inset
of Fig. 2 shows an example of induced structures. As a first
observation, we note that localized structures that are trans-
versally small (formed by 1 or 2 elementary cells, each cell
being one of the peaks composing the structure) are
stationary. When the localized structures become larger
(composed at least by 5 or 6 elementary cells), they exhibit
a complex spatiotemporal behavior, realizing a chaoticon
structure as the one in the example shown in Fig 1.
Theoretical description.—In order to establish a theo-

retical basis supporting the observations, we resort to
the one-dimensional Lifshitz normal form that describes
the LCLV system close to the point of nascent bistability
and spatial bifurcation [23]

@tu ¼ ��þ�u� u3 þ �@xxu� @xxxxu

þ bu@xxuþ cð@xuÞ2; (1)

where uðx; tÞ is a scalar field proportional to the average tilt
angle of the liquid crystal molecules, � is the bifurcation
parameter, � accounts for the asymmetry between homo-
geneous states, c is the nonlinear advection coefficient, and
f�; bg are, respectively, the linear and nonlinear diffusion
coefficients. The relation of these parameters with the
physical parameters is given in Ref. [25]. Equation (1)
has also been derived in the context of biological systems,
optical cavities and chemical reactions [26], which
emphasizes its universal nature. For b ¼ c ¼ � ¼ 0 it
corresponds to the well-known Swift-Hohenberg (SH)
model [3,5], whose dynamics is characterized by the
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FIG. 2 (color online). Bifurcation diagram of states observed
in the LCLV experiment; the average pattern intensity is plotted
versus the input laser intensity Iin; the upper and lower branches
correspond to the spatiotemporal chaotic pattern and uniform
state, respectively. Insets display example pictures of observa-
tions in the respective regions. The shaded area represents the
coexistence region. An enlarged view of the chaoticon is shown
in the upper central inset.
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minimization of a functional energy. Contrarily, Eq. (1)
is of nonvariational type; therefore, one expects that
model (1) exhibits permanent dynamics as oscillations,
propagations and spatiotemporal chaos. For negative dif-
fusion (� < 0), the SH equation exhibits stationary patterns
in a wide range of parameters [3,5]. Contrarily, when
increasing c, Eq. (1) exhibits permanent dynamical
behaviors of the patterns, with a route from stationary to
spatiotemporal chaotic patterns [27]. Furthermore, the spa-
tiotemporal chaotic patterns have a coexistence region with
the uniform state, as illustrated in Fig. 3.

The experimental bifurcation diagram (Fig. 2) and the
one calculated from the model (1) (Fig. 3) share the same
qualitative behavior. However, experimental observations
close to the Lifshitz point are a complex task because
fluctuations and inhomogeneities play an important role
in the observed dynamics. Therefore, experiments are car-
ried away from the Lifshitz point and the theoretical and
experimental likeness presented here has to be considered
only as a qualitative and not a quantitative one. In analogy
with the experimental observations, we expect to obtain
chaoticons in the region of coexistence between the uni-
form state and the spatiotemporal chaotic pattern. Indeed,
numerical simulations of model (1) exhibit localized
spatiotemporal states that become chaotic when the size
of the structures is large enough. Figures 4(a)–4(d) displays
spatiotemporal localized states with different cell numbers.
We use the term cells as the number of maxima on the
localized state. For each of them the respective largest
Lyapunov exponent was calculated with standard methods
as described in Refs. [28]. The exponent obtained with
both the methods was the same and it is plotted in Fig. 4(g).
Figures 4(e) and 4(f) show typical temporal evolutions of
the respective field u at two given points. The small local-
ized structures are steady states with negative largest
Lyapunov exponent. Then, starting from a critical size,
the localized states exhibit complex spatiotemporal dy-
namics and, eventually, become characterized by a positive
Lyapunov exponent. The spatiotemporal chaos observed
for these cases can be understood as a consequence of an

increased number of spatial modes participating to form
larger structures, the interaction of these modes being
responsible for the complex behaviors. Indeed, if one
continues to increase the size of the localized states,
the Lyapunov exponent increases slightly while more
modes are incorporated into the permanent dynamics.
These behaviors are consistent with the experimental
observations.
In order to shed light into the livelihood mechanism that

support the chaoticon structures and to understand their
nature as the result of front interaction [13,16], we have
built up a simplified phenomenological model in which
we insert ad hoc the minimal ingredients, namely, the
coexistence between a uniform state and a chaotic spatio-
temporal pattern with controlled amplitude. For this, we
consider the Nagumo-Kuramoto (NK) model

@tu ¼ uðu� 1Þð�� uÞ þ @xxuþ u cosðkxÞð�þ �@x�Þ;
(2)

@t� ¼ ð@x�Þ2 � @xx�� @xxxx�: (3)

For � ¼ � ¼ 0, the field uðx; tÞ satisfies the Nagumo
model, Eq. (2), used to describe front propagation in
population dynamics [29]. Here, � controls the relative
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FIG. 3 (color online). Bifurcation diagram of the Lifshitz
model, Eq. (1), � ¼ �0:09, � ¼ �1, b ¼ �3:5, c ¼ 10. The
upper and lower branches correspond to the spatiotemporal
chaotic pattern and uniform state, respectively. The insets dis-
play pattern profiles obtained in the respective regions. The
shaded area represents the coexistence region.
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FIG. 4 (color online). Spatiotemporal diagrams of localized
structures of model (1), � ¼ �0:09, � ¼ �1, b ¼ �3:5, � ¼
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Temporal evolutions of u at two given points for (e) 2 and
(f) 24 cells. (g) The largest Lyapunov exponent versus the
number of cells.
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stability between the two equilibria (u ¼ 0 and u ¼ 1),
while the term proportional to � is responsible for the
change of the uniform state, u ¼ 1, into a pattern with
wave number k and amplitude proportional to �. The other
equation, Eq. (3), describes the evolution of an indepen-
dent field �ðx; tÞ, which obeys the prototype model for
spatiotemporal chaos, the Kuramoto-Sivashinsky model
[2,3,5]. The inclusion in Eq. (2) of a term proportional to
�, which couples both equations, causes the pattern to
exhibit chaotic spatiotemporal behaviors. The above model
presents a coexistence region similar to that displayed by
the LCLV experiment and the Lifshitz model; therefore,
one expects the NK model to show chaoticon states.

In Fig. 5 we display the chaoticon and its respective
spatiotemporal diagram obtained in the Lifshitz [Fig. 5(a)]
and in the NK model [Fig. 5(b)]. The usefulness of the NK
model is that the complex patterns are observed for small
parameters (� � 1 and � � 1) and analytical calcula-
tions, inaccessible in model (1), can be developed. Note,
however, that the model (1) is the most simple one that
describes the phenomena observed in the experiment.
Moreover, it is an universal equation describing an
instability and containing the essential ingredients for the
emergence of localized chaotic spatiotemporal states.

In the phenomenological NKmodel, Eqs. (2) and (3), we
can study the effect of the terms proportional to� and � on
the interaction of fronts between uniform states, where
the upper state becomes spatiotemporally chaotic. Close
to the Maxwell point (� � 0:5þ �), where � stands
for the detuning from the Maxwell point, the NK model

has motionless front solutions of the form u�ðxÞ ¼ 0:5�
0:5 tanhð ffiffiffi

2
p ðx� �0Þ=4Þ, where �0 is the front position.

From this solution, one can buildup a localized state
which accounts for the effect of the spatiotemporal forcing

(� and �) and has the form uðx; tÞ � ½uþðx� �þðtÞÞ þ
u�ðx� ��ðtÞÞ � 1�. By introducing the position 	 �
ð�þ þ ��Þ=2 and the width 
 � ffiffiffi

2
p ð�þ � ��Þ=4 of the

localized state, after straightforward calculations at the
dominant order, we obtain

_	 ¼ A1ðtÞ cosðk	Þ cosðk
ffiffiffi

2
p


Þ þ B1ðtÞ sinðk	Þ sinðk
ffiffiffi

2
p


Þ;
_
 ¼ �

2
þ be�
 þ A2ðtÞ cosðk	Þ cosðk

ffiffiffi

2
p


Þ
þ B2ðtÞ sinðk	Þ sinðk

ffiffiffi

2
p


Þ; (4)

where b � 9
ffiffiffi

2
p

=8. The full and lengthy expressions of the
other coefficients will be reported elsewhere. Briefly,
fA1ðtÞ; A2ðtÞ; B1ðtÞ; B2ðtÞg are formed by two parts, a con-
stant term proportional to � and a chaotic term propor-
tional to �. The first equation describes the chaoticon
position, which evolves chaotically in time around a given
space location. From the second equation, we obtain the
temporal evolution of the chaoticon width and we can
derive the front interaction law. In Fig. 6 the width varia-
tion, corresponding to the force for an overdamped system,
is plotted versus the width. Equilibrium points represent
the chaoticon structures with different number of cells,
from the smallest to the largest one.
The locking mechanism between the uniform state and

the spatiotemporal chaotic pattern is due to the spatial
periodic structure which induces a nucleation barrier in
the front dynamics. A similar mechanism is observed in
localized patterns [16,17], but the main difference is that
the chaoticon interfaces maintain a chaotic dynamics
around a given position. The dynamics described by
Eqs. (4) qualitatively agree with the dynamics displayed
by the Lifshitz model. However, in the NK model the
chaotic behavior characterizes also small localized struc-
tures, at variance with those observed in the Lifshitz model
and in the experiment.
In conclusion, spatiotemporal chaotic localized struc-

tures are reported in a LCLV experiment and numerical
simulations of the model describing the system. Even
though the comparison with the experimental observations
is qualitative, the model allows grasping the essential
ingredients of the phenomenon, namely, the coexistence
between a uniform state and a spatially complex pattern
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FIG. 5 (color online). Numerical observations of chaoticons
and respective spatiotemporal diagrams in (a) the Lifshitz model,
Eq. (1), � ¼ �0:09, � ¼ �1, b ¼ �3:87, � ¼ 0:04, c ¼ 10
and (b) the phenomenological Nagumo-Kuramoto model,
Eqs. (2) and (3), � ¼ 0:5, � ¼ 0:3, k ¼ 11, � ¼ 0:3.

FIG. 6 (color online). Fronts interaction law accounting for the
equilibrium chaoticon widths derived from Eq. (4). The closed
(empty) circles represents stable (unstable) chaoticons.
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exists. A phenomenological model, where these ingre-
dients are included, has allowed us to elucidate the front
interaction mechanism that leads to the chaoticon struc-
tures. The extension of the mechanism in two dimensions
remains an open problem.
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