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Abstract. Employing nematic liquid crystals in a homeotropic cell with a
photosensitive wall, dissipative vortex pairs are selectively induced by external
illumination and the interaction law is characterized for pairs of opposite
topological charges. Contrary to the phenomenological fit with a force inversely
proportional to the distance, the data provide evidence that nonlinear mobility
effects must be taken into account. The observations lead to a reconciliation of
experiments with theory.
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Out of equilibrium systems exhibit instabilities leading to spontaneous symmetry breaking and
pattern formation [1]. Owing to fluctuations, different organizations may emerge in distinct
regions of the same sample; hence, spatial structures are usually characterized by domains,
separated by interfaces, such as grain boundaries, defects or dislocations [2]. Among others,
defects in rotationally invariant systems, i.e. vortices, attract a great deal of attention because
of their universal character, as they are solutions of the complex Ginzburg–Landau equation
(CGLE) that describes such different systems as fluids, superfluids, superconductors, liquid
crystals, magnetic media and optical dielectrics [3]. Vortices occur in complex fields and can
be identified as topological defects, that is, point-like singularities which locally break the
symmetry [4]. They exhibit zero intensity at the singular point with a phase spiraling around
it: the topological charge is assigned by counting the number of spiral arms in the phase
distribution, while the sign is given by the sense of the spiral rotation. In optics, the latter
procedure is equivalent to counting the number of extra or missing fringes in the dislocation
of an interference pattern [5].

Optical vortices have recently generated substantial interest in their applications, from
optical tweezers [6, 7], to quantum computation [8], enhanced astronomical imaging [9] and
high-contrast coronagraph for exoplanet detection [10]. The implementation of suitable defects
in soft matter is considered as one of the most efficient ways of generating vortices via exchange
of angular momentum between light and matter [11, 12]. In liquid crystals, vortices can be
generated by applying electric or magnetic fields [13] and appear as self-assembling topological
defects, well described by the CGLE [14]. Their behavior is ruled by a dissipative dynamics and
is characterized by a coarsening process [15]. If this dynamics could be controlled, defects
in liquid crystal textures could be employed, for instance, in light manipulation [16] or to
fabricate self-assembled metamaterials [17], photonic crystals and bio-sensors via colloidal
structures [18].

In general, vortices lack an analytical expression and are described by a Padé
approximation [2, 3]. As for the interaction law between dissipative vortex pairs, a discrepancy
between the theoretical and the phenomenological description remains open. Indeed, the
phenomenological description is based on a constant vortex mobility, leading to a force
inversely proportional to the distance, in contrast with the theory that accounts for a nonlinear
mobility. The first experimental results of Nagaya et al [19] were interlocutory and were in
contrast with the effective dynamics derived from the Frank energy formalism in nematics [13].
Later, the dynamics of dislocations was addressed in nematic electro-convection [20], but the
pinning effects over the underlying stripe pattern considerably altered the interaction law [2].

New Journal of Physics 15 (2013) 013028 (http://www.njp.org/)

http://www.njp.org/


3

Re(A)

VFT
V

0

Im(A)

CCD
OBJ

SLML
1 L

2

BSBlue Laser

White Light

P

F

---

V0(a)

-
-

+
+
+
+++
+
++++
+++
+
++
++
++
++++++++
++++++
++
++

ITO ITO

d

BSO

GLASS

(b)

(c)

LCLV

control
light

P

Figure 1. (a) A homeotropic light valve, LCLV; Bi12SiO20 (BSO) is used as the
photosensitive wall; (b) the degenerate pitchfork bifurcation describing the liquid
crystal reorientation; VFT is the Fréedericksz transition voltage and V0 the applied
voltage; (c) the experimental setup: the LCLV is addressed with a control light
beam shaped by a spatial light modulator (SLM); the imaging system consists of
an objective lens OBJ, a neutral density filter F, crossed polarizers P and a CCD
camera for recording.

Subsequent studies of annihilation dynamics of umbilical defects in nematics have shown power
law behavior for the vortex pair separation [21], which is compatible with a phenomenological
fit based on a constant mobility. However, these observations are in contradiction with the
nonlinear mobility theoretically envisaged [3]. In fact, xy-models and those stemming from
the Frank free energy formalism used for deriving the power law behavior ignore the mobility
dependence on speed; the latter gives rise to observable differences at the start of the interaction,
with the power law recovered only for large times.

In this paper, we provide the first experimental validation of the logarithmic correction to
the vortex speed, demonstrating that nonlinear mobility effects must be taken into account when
vortex separations are large, that is, in the early stages of the interaction. These observations lead
to a reconciliation of experiments with the theoretical prediction [3]. To investigate the vortex
dynamics, we employ nematic liquid crystals (NLCs) in a cell with a photoconductive wall, also
known as a liquid crystal light valve (LCLV). The liquid crystals are homeotropically aligned;
that is, the nematic director En is orthogonal to the confining boundaries, whereas local variations
of the voltage across the NLC layer are achieved by a suitable selective illumination of the cell,
inducing vortex pairs. The interaction between pairs of oppositely charged vortices—usually
called umbilical defects in the context of NLC—is measured and compared against theory in
order to determine its governing law(s). The results support the need for a correction introduced
by a nonlinear, logarithmic mobility via a phase renormalization [22, 23].

1. The experimental setup

Our setup is sketched in figure 1. As illustrated in figure 1(a), a layer of NLCs (MLC6608
from Merck) was sandwiched between the two parallel interfaces defining an LCLV, i.e.
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Figure 2. A vortex gas: (a) experimental snapshot recorded under white-light
illumination for the cell in between crossed polarizers and for uniform laser
illumination of the photosensitive wall; (b) numerical simulations of equation (4)
for parameters corresponding to the experimental conditions.

a homeotropic cell of thickness d = 15 µm formed by a glass plate and a slab of the transparent
photoconductor Bi12SiO20 (BSO). The latter was a 25 × 25 mm2 square crystal of thickness
1 mm. The outer surface of the photoconductor and the inner surface of the glass plate were
uniformly coated with thin transparent indium–tin oxide film electrodes in order to apply an
external voltage V0 across the cell. The employed NLC is characterized by a negative dielectric
anisotropy, i.e. εa = ε‖ − ε⊥ < 0, with ε‖ and ε⊥ the dielectric susceptibilities for low-frequency
electric fields parallel and orthogonal to the long axis of the NLC molecules, respectively. By
means of a suitable surface treatment prior to the cell assembly, the average orientation of the
molecules was arranged with their long axes (i.e. director) orthogonal to the confining walls
(i.e. homeotropic alignment). When a (low-frequency) bias V0 is applied to the LCLV, due to
the negative εa the NLC molecules tend to reorient perpendicularly to the electric field lines;
hence, the 2p azimuthal degeneracy around the field direction imposes rotational invariance and
the molecules can arbitrarily align in any direction, giving rise to the spontaneous formation of
spatial domains separated by point-like defects or vortices [13]. The corresponding degenerate
pitchfork bifurcation is illustrated in figure 1(b), where A is the amplitude of the complex field
that describes the molecular reorientation.

The light valve allows control of the director tilt both electrically, via the applied voltage
V0, and optically, thanks to photo-induced changes of the BSO conductivity [24]. A laser beam
of wavelength λ = 474 nm was expanded and collimated to a diameter of 1 cm, with an intensity
incident on the LCLV of about 3 mW cm−2. As shown in figure 1(c), before impinging on the
LCLV, the beam was amplitude modulated by a computer-controlled spatial light modulator
(SLM), the latter essentially consisting of a liquid crystal display (1 inch diagonal size) with
a resolution of 1024 × 768 pixels and an 8-bit intensity dynamics. A lens could image the
programmed SLM mask onto the BSO side of the LCLV, allowing the selective illumination of
regions where light-induced reorientation could take place and vortices could emerge. Vortices
were detected/imaged by placing the LCLV between crossed polarizers and using a CCD
camera to record images under white-light illumination. As the bias V0 was increased beyond
the Fréedericskz threshold (VFT = 3.2 V in our sample), the NLC molecules started to reorient
and vortices abruptly appeared; such a creation process was followed by a coarsening process
with the mutual annihilation of vortices with opposite topological charges.

Figure 2(a) displays a typical snapshot acquired just above the Fréedericskz transition
(V0 = 6 V rms at 200 Hz): the photoconductor was uniformly illuminated by the laser beam
(intensity 2.7 mW cm−2) and a homogeneous vortex gas was obtained. Each vortex is readily
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Figure 3. Vortex-pair interaction: (a) experimental snapshots at four successive
instant times; (b) numerical simulations; top: intensity field, bottom: phase (gray
levels) and nematic director distribution (lines).

identified by the crossing of four black arms, corresponding to a 2π phase shift of the light
passing through crossed polarizers; the sign of each charge is determined by rotating one
of the polarizers and monitoring the azimuthal motion of the black arms around the defect.
Figure 2(b) shows a vortex gas obtained by numerical simulations of the model equation (4)
described below. By plotting [sin(2θ)]2, where θ is the director tilt, we obtain qualitatively the
same picture as the experimental ones. Figure 3(a) shows enlarged images of two neighboring
vortices, with their interaction in time illustrated by four successive snapshots. The vortices
annihilated before the snapshot in the last panel of figure 3(a). Figure 3(b) shows numerical
simulations, with two interacting vortices displayed in four successive instants. Figure 3(b)
displays the light intensity (top row), phase and director field (bottom).

2. Theoretical description

In order to describe the vortex nucleation and evolution, we derive a simple model in the vicinity
of the Fréedericksz transition, a limit where analytical results are accessible as NLC molecules
are weakly tilted from the longitudinal ẑ-axis and backflow can be neglected. The dynamical
equation for the molecular director En reads [13, 25]

γ ∂t En = K3[∇2
En − En(En · ∇

2
En)] + (K3 − K1)[En(En · E∇)( E∇ · En) − E∇( E∇ · En)]

+(K2 − K3)[2(En · E∇ × En)(En(En · E∇ × En) − E∇ × En) + En × E∇(En · E∇ × En)]

+εa(En · EE)[ EE − En(En · EE)], (1)

where γ is the rotational viscosity and {K1, K2, K3} are the NLC elastic constants. The
homeotropic state, En = ẑ, undergoes a stationary instability for critical values of the electric
field, EE = Eẑ, which match the Fréedericksz threshold

|EFT| =

√
−K3π 2/d2εa. (2)
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Correspondingly, the NLC layer exhibits a transition for the critical voltage VFT =
√

−K3π 2/εa.
Close to the transition point we can introduce the ansatz

En ≈

 u(r⊥, t) sin(π z/d)

w(r⊥, t) sin(π z/d)

1 −
1
2(u

2 + w2) sin2(π z/d)

 ,

where z and r⊥ are the longitudinal and transverse coordinates, respectively, and the elastic
constants are assumed to be of the same order (K1 ∼ K2 ∼ K3). After straightforward
calculations, by using the complex field

A(ρ⊥, t) = (u + iw)/
√

4d2γ /π 2(2K1 − 3K3), (3)

and scaling the space as r⊥ = ρ⊥

√
2/(K1 + K2), we obtain

∂t A = µA − |A|
2 A + ∇

2
⊥

A, (4)

where µ ≡ (−εa E2
c − K3π

2/d2)/γ , with Ec the effective electric field across the NLC layer.
The above model admits stable vortex solutions with topological charge ±1 [2]. Figures 2 and 3
illustrate the observed vortex solutions.

The analysis of the vortex interaction law is complicated because the energy associated
with each vortex diverges logarithmically with the size of the system [25]. Thereby, the
interaction between distant vortices has an infinite mobility [3]. When considering the role
of propagation in the phase equation, we can renormalize the mobility by assuming that the
vortices move in a quasi-stationary fashion, i.e. that the phase disturbance one of them undergoes
due to the presence of another (or others) shifts infinitesimally; then, again, we can take the
phase perturbation in the new vortex position and continuously generate the interaction. This
procedure yields the vortex-pair interaction law [3]

ṙ M(ṙ) = v log
(v0

v

)
=

q

r
, (5)

which holds valid for both large and small vortex separation. Here r is the vortex separation,
v ≡ ṙ its time derivative, q the product of the topological charges (q = ±1) and v0 the order of
the vortex collision speed. Note that the pair interaction law (5) is not valid when the vortices
are merging. The expression M(ṙ) ≡ log(v0/v) accounts for vortex mobility. At low speed
(v/v0 � 1), that is, for large vortex separation, the mobility leads to a dynamical correction of
the interaction law, whereas at large speed, that is, for small separation, it can be approximated
by a constant. In the limit of constant mobility, equation (5) can be integrated, yielding the
analytical expression

r(t) = r0

√
1 − t/tcol, (6)

with tcol = −r 2
0/2q the collision time and r0 = r(0). This provides the phenomenological

description for which the interaction law is characterized by a force inversely proportional to
the vortex separation.

3. Verification of the vortex-pair interaction law

By employing the SLM, we could selectively create areas above the critical voltage VFT,
where we were able to isolate pairs of oppositely charged vortices, as visible in figure 3(a).
In order to study their interaction, we removed the polarizer and improved the contrast between

New Journal of Physics 15 (2013) 013028 (http://www.njp.org/)

http://www.njp.org/


7

0 0.5 1t/t
COL

t
COL

=33.3

0

0.5

1

r/
r 0

r
0
=50

t
COL

=25.5r
0
=40

t
COL

=18.0r
0
=30

t
COL

=10.8r
0
=20

t
COL

=4.3r
0
=10

(a) (b)

0 10 20 30 40 50
t (s)

20

60

100

140

r 
(µ

m
)

Figure 4. Vortex separation versus time. (a) Measurements: the thick (red) solid
line connects the experimental points; the (black) dashed line is a best fit with
r = r0

√
1 − t/tcol, r0 = 160.7 µm and tcol = 53.68 s. (b) Numerical simulations

for various r0, tcol; the dotted line is the curve r = r0
√

1 − t/tcol.

20

60

100

140

180

r 
(µ

m
)

v x 10-2  (µm/s)

-4

0

4

8

re
la

tiv
e 

er
ro

r 
(%

)(a) (b)

10.40.2 0.6 0.8
-8

const. mobility

nonlinear mobility

v x 10-2  (µm/s)
10.40.2 0.6 0.8

Figure 5. (a) Vortex separation r versus speed v (in the logarithmic scale).
Circles: experimental data; the experimental error is contained in their
respective radius; dashed (red) line: best fit with constant mobility rv = q/M0,
q/M0 = 0.3744 µm2 s−1; solid (black) line: best fit with nonlinear mobility
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the corresponding relative error.

illuminating beam and vortex core, the latter appearing as a well contrasted spot over a
homogeneous background. Defining a grayscale threshold to identify a vortex, we employed
particle-tracker software to locate vortices and their trajectories during their interaction,
yielding data on vortex separation versus time, r(t), and speed, v(t). Figure 4(a) plots the
measured evolution of r(t). For comparison, figure 4(b) graphs the numerically simulated
vortex separation for various initial values r0 and, correspondingly, different collision times
tcol. The scaling r(t) ∼ t1/2, predicted for a constant mobility, holds quite well at long times
(small separations) but gives rise to appreciable deviations at short times (large separations).
Note that in the experimental graph (figure 4(a)) the data are not plotted for separations shorter
than 20 µm, because for such distances the vortices nearly coalesce, with their gap becoming
comparable to the core size.

In order to emphasize the effect of mobility, figure 5(a) plots vortex separation r versus
speed v and compares the data against two interpolating functions, namely for a constant
mobility rv = q/M0, q/M0 = 0.3744 µm2 s−1 and a nonlinear mobility

rv = q/[M1log(v0/v)], (7)
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unperturbed pair.

q/M1 = 7.2354 µm2 s−1 and v0 = 1.1909 m s−1, respectively. The best fits are obtained with
a least-square procedure. The two fits overlap only at intermediate values of speed; however,
both at large and small speeds the effect of a non-constant mobility becomes significant.
More precisely, the constant mobility and the nonlinear mobility fits coincide when v =

v0 exp(−M0/M1), which occurs for v = 0.48 × 10−2 µm s−1. Here, v0 is not a ‘physical’ speed
but represents, instead, the weight of the logarithmic correction. It also takes into account
other renormalization phenomena, such as the backflow and the deformation of the vortex
core, that are, at first order, neglected in the theory. Figure 5(b) plots the relative error for
the case of constant and renormalized mobility, emphasizing the increased accuracy from the
latter. The relative error is clearly much larger when using a constant mobility fit than for the
nonlinear mobility fit. Precisely, the total (integrated) error power is 4.18 times greater for
the constant mobility fit. Note that, while to zero order a constant mobility is a reasonable
approximation, consistent with previous observations [3, 19, 20], the role of a logarithmic
mobility is fundamental from a theoretical point of view, as it renormalizes the effects of an
infinite mobility.

Finally, we checked how the interaction is modified by a third vortex. As illustrated
in figure 6(a), three vortices were induced by keeping the voltage V0 slightly below VFT

and illuminating the LCLV with two discs of laser light (intensity 4 mW cm−2). A positive
vortex is induced inside each disc, while a negative one appears in between, due to the
required reconnection of the distorted field lines of the nematic distribution. When one of
the disc constraints is released (figure 6(b)), the (negative and positive) free vortices interact
(figures 6(c)–(e)) and annihilate (figure 6(f)). Their measured distance r = r(t) versus time
is plotted in figure 6(g) and compared with their separation in the absence of external
perturbations. In order to emphasize the deviation from the power law behavior, the data for
both constrained and unconstrained dynamics were normalized to the collision time for the
unperturbed vortex pair. The deviation from the t1/2 law is significant, as the presence of the
third defect slows down the interaction considerably by introducing screening effects [26].
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4. Conclusions

Using NLCs in a light-valve geometry, we experimentally studied vortex-pair interaction. The
measurements demonstrate the importance of the propagation of the vortex phase as the latter
introduces a weakly nonlinear mobility. The theoretical prediction for a logarithmic dependence
of the mobility on the vortex speed results in good agreement with the data, thus reconciling
the theory with the experimental observations. The presence of a third vortex substantially
lowers the vortex-pair interaction speed. Besides their fundamental relevance, the findings also
pinpoint the accuracy of the optical addressing and pave the way for further developments on
the management of soft-matter vortices.

Acknowledgments

We acknowledge helpful discussions with T Nagaya. MGC, UB and SR acknowledge financial
support from the ANR international program (project number ANR-2010-INTB-402-02 (ANR-
CONICYT39)) ‘COLORS titled’. MGC acknowledges funding received from FONDECYT
project number 1120320. GA acknowledges travel funding received from the Program for
Internationalisation at University Roma Tre.

References

[1] Nicolis G and Prigogine I 1977 Self-Organization in Non Equilibrium Systems (New York: Wiley)
[2] Pismen L M 2006 Patterns and Interfaces in Dissipative Dynamics (Berlin: Springer)
[3] Pismen L M 1999 Vortices in Nonlinear Fields (Oxford: Clarendon)
[4] Coullet P, Gil L and Rocca F 1989 Opt. Commun. 73 403
[5] Arecchi F T et al 1991 Phys. Rev. Lett. 67 3749
[6] Simpson N B, Allen L and Padgett M J 1996 J. Mod. Opt. 43 2485
[7] Grier D G 2003 Nature 424 810
[8] Arnaut H H and Barbosa G A 2000 Phys. Rev. Lett. 85 286
[9] Tamburini F et al 2006 Phys. Rev. Lett. 97 163903

[10] Serabyn E, Mawet D and Burruss R 2010 Nature 464 1018
[11] Marrucci L, Manzo C and Paparo D 2006 Phys. Rev. Lett. 96 163905
[12] Barboza R, Bortolozzo U, Assanto G, Vidal-Henriquez E, Clerc M G and Residori S 2012 Phys. Rev. Lett.

109 143901
[13] de Gennes P G and Prost J 1993 The Physics of Liquid Crystals 2nd edn (Oxford: Clarendon)
[14] Frisch T et al 1994 Phys. Rev. Lett. 72 1471
[15] Pargellis A N, Green S and Yurke B 1994 Phys. Rev. E 49 4250
[16] Brasselet E and Loussert C 2011 Opt. Lett. 36 719
[17] Lavrentovich O D 2011 Proc. Natl Acad. Sci. USA 108 5143
[18] Smalyukh I I 2011 Nature 478 330
[19] Nagaya T, Hotta H and Orihara H 1991 J. Phys. Soc. Japan 60 1572
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