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Nonequilibrium localized states under the influence of translational coupling are studied experimentally and
theoretically. We show that localized structures are deformed and advected in the direction of the coupling, thus
undergoing different instabilities. Experimentally, localized structures are obtained in a light valve with optical
feedback. By introducing a tilt of one mirror in the feedback loop, localized structures acquire a translational
coupling. To understand the phenomenon in a universal framework we consider a prototypical model of localized
states with translational coupling in one and two spatial dimensions. The model allows us to analytically
characterize the propagation speed and the deformation exhibited by the localized state profiles as well as
to figure out different mechanisms of destabilization of these dissipative structures. The results are in good
qualitative agreement with the experimental and numerical observations.
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I. INTRODUCTION

Nonequilibrium systems, that is, systems with injection
and dissipation of energy, are characterized by exhibiting a
spontaneous self-structuration in response to the optimization
of energy transport [1–3]. Emerging particle-type solutions
in macroscopic dissipative systems, also known as localized
states or localized structures (LSs), have been observed in
different physical contexts such as domains in magnetic
materials, chiral bubbles in liquid crystals, current filaments
in gas discharge, spots in chemical reactions, localized states
in fluid surface waves, oscillons in granular media, isolated
states in thermal convection, solitary waves in nonlinear optics,
and surface solitons in magnetic fluids (see the reviews in
Refs. [4–6] and references therein). These observations give
evidence of the universality of these dissipative localized
states. Although such states are spatially extended, they
exhibit properties typically related to particles. Indeed, one can
characterize them as a family of continuous parameters such as
position, amplitude, and width. This is the type of description
and strategy used in physical theories such as quantum
mechanics and particle physics. Localized states emerging in
extended dissipative systems are composed of a large number
of constituents that behave coherently. Solitons, such as those
reported in fluid dynamics, nonlinear optics, and Hamiltonian
systems [7,8], are the paradigmatic example of a macroscopic
localized state. These solitons arise from a robust balance
between dispersion and nonlinearity. The generalization of
this concept to dissipative and out of equilibrium systems has
led to several studies in the past few decades, in particular
to the definition of localized structures intended as patterns
appearing in a restricted region of space [2,3].

An adequate theoretical description of dissipative localized
states has been established in one-dimensional spatial systems
based on spatial trajectories connecting a steady state with
itself. Then localized states arise as homoclinic orbits from
the viewpoint of dynamical systems theory (see the review
in Ref. [9] and references therein). Localized patterns can

be understood as homoclinic orbits in the Poincaré section
of the corresponding spatial-reversible dynamical system
[9–13]. They can also be understood as a consequence of
the front interaction with oscillatory tails [14,15]. There is
another type of stabilization mechanism that generates LSs
without oscillatory tails based on nonvariational effects [16],
where front interaction is led by the nonvariational terms [17].

One of the great interests in studying these LSs is their
potential use as information storage units, in other words,
optical bits [18]. Thus it is relevant to develop control and
manipulation methods of localized states. Different methods
have been proposed to achieve such control, for example,
by applying spatial forcing [19–22]. Another possibility is
to induce gradients to the localized state, for example, through
the use of a phase or amplitude gradient, which produces
drift on dissipative localized structures [23], as well as on
cavity solitons [24], or by tilting a vertically driven channel
with water generating motion in a hydrodynamic soliton [25].
Alternatively, one can generate motion of the localized state by
introducing a delay in the feedback that induces spontaneous
motion of cavity solitons [26]. In contrast, we have recently
shown that localized states propagate under translational
coupling (TC) and that advection introduces different effects
such as the deformation of the structure profile and optical
vortex emission, i.e., optical phase singularities appear in the
wake of the drifting structure [27].

The aim of this study is to characterize qualitatively
the effects of TC on the dynamics of LSs. We focus on
the deformation and instabilities undergone by the drifting
structures. By TC we mean the dynamics of the physical
quantities that describe the system at position �r at a given time
t depend on the physical quantities at the position �r + �L at the
same time t , where �L is the parameter that characterizes the
TC. Theoretically, based on a prototypical model of localized
states modified with TC, we show that translational-type
coupling modifies these states, which become deformed and
propagative, also exhibiting different instabilities. Note that
here we do not consider drift instabilities, which emerge
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through marginal modes from the spontaneous symmetry
breaking of an x → −x invariant structure in an x → −x

invariant system. Indeed, TC cannot induce a drift instability
since it breaks the required symmetry.

These theoretical results are compared with those obtained
in a liquid crystal light-valve experiment with a mirror tilt in the
feedback loop. We characterize analytically and numerically
the dynamical behaviors, finding a good qualitative agreement
with the experimental observations.

The paper is organized as follows. A description of the
experimental setup and the procedures used in the characteriza-
tion of the localized structure dynamics under TC are presented
in Sec. II A. In Sec. II B numerical simulations of the full model
for the light valve with TC are analyzed. A linear stability
analysis of the model is presented in Sec. II C. In Sec. III we
introduce a one-dimensional prototype model, which allows
us to highlight the universal nature of the studied phenomenon
and permits us to characterize the different mechanisms
leading to the destabilization of dissipative localized states
under the influence of TC. In Sec. V we extend the model
to two space dimensions. Finally, a summary is presented in
Sec. VI.

II. LOCALIZED STRUCTURE DYNAMICS IN A LIGHT
VALVE UNDER TRANSLATIONAL COUPLING

A. Experimental setup and observations

To study the effect of nonlocal coupling of the translational
type on LSs, we consider a liquid crystal light valve (LCLV)
inserted in an optical feedback loop [28]. The LCLV consists of
a thin film of nematic liquid crystals, 15 μm thick, interposed
between a glass plate and a photoconductive material over
which a dielectric mirror is deposited. The confining surfaces
of the cell are treated for a planar anchoring of the liquid
crystal molecules (with the nematic director �n parallel to
the walls) [29]. Transparent electrodes deposited over the
cell walls allow us to apply an external voltage V0 across
the liquid crystal layer, which is illuminated by an expanded
He-Ne laser beam, λ = 632.8 nm, linearly polarized along the
vertical direction. Molecules tend to orient along the direction
of the applied electric field, which in turn changes locally,
and dynamically, by following the illumination distribution
present on the photoconductive wall of the cell. When liquid
crystal molecules reorient, because of their birefringence, they
induce a change of the refractive index [30]. Thus the LCLV
acts as a Kerr medium, providing for the reflected beam a
phase variation ϕ = kdn2Iw proportional to the intensity Iw

of the beam incoming on its photoconductive side. Here d is
the thickness of the nematic layer, k = 2π/λ is the optical
wave number, and n2 is the equivalent nonlinear coefficient
of the LC. Once it passes through the liquid crystal, the
beam is reflected back by the dielectric mirror on the rear
side of the valve and sent in the feedback loop. An optical
fiber bundle is used to close the loop and redirect the beam
back to the photoconductive side of the LCLV. The nematic
director is oriented at 45◦ and the polarizing cube splitter
introduces polarization interference between the ordinary
and extraordinary waves, a condition ensuring the bistability
between differently orientated states of the liquid crystal [31].
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FIG. 1. (Color online) Experimental setup: FB, optical fiber
bundle; L1 and L2, lenses; PC, polarizing cube splitter; a partially
reflecting mirror deflects part of the beam to the CCD camera for
detection; P, polarizer; λ/2, half-wave plate controls the polarization
and intensity of the reference beam (see details in Ref. [27]).

To generate the nonlocal TC we introduce a mirror tilt in
the optical feedback loop. That generates an image on the rear
side of the LCLV with a displacement �L. For example, for
a mirror tilt of exactly 45◦ there is no local effect of drift:
�L = �0. Changes to this angle in either direction generate a
TC. A schematic diagram of the experiment is displayed in
Fig. 1. A reference beam is used to realize a Mach-Zehnder-
type interferometer, which allows visualizing the optical phase.
More details on the interferometer and phase features can be
found in Ref. [27].

Previous studies of translational effects in the LCLV
experiment have evidenced secondary instabilities of patterns
[32,33] such as transitions from hexagons to stripes and
from squares to zigzag [34]. More recently, it has been
shown that drifting LSs can be guided by using a spatial
light modulator [35]. Recently we reported in Ref. [27]
the drift-induced asymmetrical deformation of LSs and the
associated emission of vortices. When a translational effect
is introduced in the experiment by tilting the mirror at the
entrance of the feedback loop, localized states start to drift
along the direction of the mirror displacement. The motion of
a single LS is shown in Fig. 2, where successive experimental
snapshots with interference fringe patterns are displayed with
a time separation of 1.07 s. Here the drifting direction x is
marked by an arrow. After the initial transient acceleration
induced by the mirror tilt, the LS acquires a constant speed,
as indicated by the dotted line. During the first stages of the
advection, the structure loses its round shape and undergoes an
asymmetrical deformation developing a large tail in its wake.
The fourth panel of Fig. 2 shows a profile of a moving structure
without fringes. The symmetry breaking is accompanied by the
emission of pairs of optical vortices, appearing as dislocations
in the interference pattern [27].

The inclination of the mirror induces the breakdown of
reflection symmetry, favoring one direction, which we have
denoted x. Then LSs are deformed and propagate in this
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FIG. 2. Successive experimental snapshots (with a time separa-
tion of 1.07 s) showing an optical LS drifting along the x direction;
the advection occurs after tilting the mirror M at the entrance of the
feedback loop.

direction, as illustrated in Fig. 3. The TC induces a hump in
the rear zone of the LS [see Figs. 3(a) and 3(b)]. It is important
to note that increasing the displacement L increases the height
of the hump. As we shall see later, the formation of the hump
is a consequence of the translational nonlinear coupling of this
system.

B. Numerical simulations of the LCLV model
with translational coupling

To confirm the experimental observations we have per-
formed numerical simulations of the full model for the LCLV
with displaced optical feedback. The model consists in an
equation for the average tilt angle θ (�r,t) of the LC molecules
[31]

2

π
(τ∂tθ − l2∇2

⊥θ + θ ) = 1 −
√

VFT

�V0 + αIw(x + L,y)
, (1)

where τ = 30 ms and l = 30 μm are the LC response time and
electrical coherence length, respectively; ∇2

⊥ is the transverse
Laplacian; VFT is the Fréedericksz transition voltage; � is the
transfer function of the equivalent electric circuit of the LCLV;
V0 is the applied voltage; α is a coefficient accounting for the
response of the photoconductor, L is the translation of the
feedback beam, which we will call a displacement parameter;
and Iw is the intensity on the photoconductor, which has the
form

Iw(θ (�r,t)) = Iin

4

∣∣eiδ∇2
⊥/2k

(
e−iβ cos2θ − 1

)∣∣2
, (2)
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FIG. 3. (Color online) (a) Experimental snapshots of a propagat-
ing LS; the dashed line in the right panel shows the location from
where the corresponding one-dimensional profile is extracted. This
is shown in (b).
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FIG. 4. (Color online) Numerical intensity profiles of a drifting
localized structure obtaining from model (1): (a) L = 126 μm and
(b) L = 182 μm; the corresponding one-dimensional profiles along
the advection direction x are shown on the left.

with δ the free propagation length, k = 2π/λ the optical
wave number, and β cos2θ the phase shift acquired by the
light when passing through the LC layer; β = 4π�nd/λ,
�n = 0.2 is the LC birefringence, and d is the thickness
the LC layer. The electric field at the exit of the LC layer is
Ein(e−iβ cos2θ − 1), where Ein is the input field and Iin = |Ein|2.
Numerical integrations of Eq. (1) are made under periodic
boundary conditions and by using a pseudospectral method,
for which the spatial derivatives and the diffraction operator
are solved in Fourier space, whereas the temporal evolution
is calculated with an adaptive Runge-Kutta algorithm. In the
bistable regime a single LS is generated by applying a Gaussian
pulse inducing a local perturbation and then a translation L of
the feedback intensity Iw is introduced.

Figure 4 shows a set of numerical results for the parameters
δ = −16 cm, αIin = 1.2, and V0 = 12.9 V, giving LSs with
a diameter of D = 450 μm. The range of L for which the
advection regime exists is in between 30 and 250 μm. The
respective numerical intensity profiles show how the initially
axisymmetric LS [L = 0, Fig. 4(a)] is deformed during the
advection. For relatively small translations [L = 126 μm,
Fig. 4(b)], the profile is slightly deformed, with wavelets
visible behind the structure. For larger drifts [L = 182 μm,
Fig. 4(c)], the deformation becomes more important, with the
amplitude of the principal and secondary maxima increasing
and a large wake developing behind the structure. Linear
intensity profiles along the drift direction are displayed at the
left column of Fig. 4.

In addition, we have numerically calculated the speed vd

of LSs as a function of the displacement L. The results
are plotted in Fig. 5, where we see that the speed exhibits
a linear behavior as a function of the displacement. This
behavior is in qualitative agreement with the experimental
observations. In the experiment it is difficult to precisely
measure the displacement and speed of the LSs because of
the mirror tilt procedure that introduces an initial uncertainty
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FIG. 5. Numerically calculated localized structure advection
velocity vd vs the translation L; δ = −16 cm.

on both quantities. The linear behavior of vd versus L could
nevertheless be verified qualitatively by measuring after the
early stages of the process the slope of the spatiotemporal
plots associated with the LS dynamics.

C. Linear stability analysis of the LCLV model

In order to develop a qualitative insight into the TC induced
advection regime, we perform a linear stability analysis of
the LCLV model [Eqs. (1) and (2)] for L �= 0. If θ0 is a
homogeneous stationary solution, we take the ansatz θ =
θ0 + εθ1, with θ1 the perturbation satisfying ∂tθ1 = σ tθ1, and
∇2

⊥θ1 = −q2θ1, ε � 1, and q the wave number describing the
spatially periodic perturbation. By substituting the perturbed
solution into Eqs. (1) and (2) and by taking, without loss of
generality, the displacement in the x direction, we obtain the
dispersion relation [36]

σ = −q2 − 1 − χeiqxLcos(�q2 + ϕ0/2), (3)

where

χ = −π

4

αIinβA
√

�VFT sin 2θ0

(�V0 + αIinA2)3/2
,

with β = 2k(ne − no)d, where ne and no are, respectively, the
extraordinary and ordinary refractive indices of the liquid crys-
tal, A = √

(1/2)(1 − cos ϕ0), ϕ0 = β cos2 θ0, � = −δ/2kl2,
t → τ t , x → lx, y → ly, and q2 = q2

x + q2
y .

Both Re(σ ) and Im(σ ) have an oscillatory behavior as a
function of q. The mode associated with the maximum of
Re(σ ) > 0 defines a critical wave number qc, whereas the
mode corresponding to the maximum of Im(σ ) defines a
critical frequency �c. In this analysis, one could consider
qualitatively that a LS is a small perturbation propagating at
the phase velocity of the linear dispersion relation. The phase
velocity can then be constructed as v = �c/qc and calculated
as a function of the displacement L. The result is plotted
in Fig. 6, showing a linear behavior of v on a long range
of L. While a direct comparison with the LS propagation
speed (Fig. 5) cannot be made, Fig. 6 provides a qualitative
basis to evaluate the behavior of the velocity at which a small
perturbation of the homogeneous state would propagate under
the effect of translational coupling.

Figure 5, which illustrates the speed vd of LS propagation
as a function of L, shows a linear behavior for small dis-
placements. However, for large L the LSs undergo secondary
instabilities. The derivation of these instabilities from model
(1) is a complex task. A simple nonlocal model is proposed in
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FIG. 6. (Color online) Phase velocity v at which a small pertur-
bation of the homogeneous state would propagate under the effect of
translational coupling versus the spatial displacement L.

the following section, which, as we will see, allows us to catch
the essential phenomenon of the LS destabilization as well as
to calculate analytically the propagation speed.

III. SIMPLE MODEL DESCRIBING TRANSLATIONAL
COUPLING IN ONE-DIMENSIONAL SYSTEMS

Numerical simulations using the phenomenological model
(1) show quite good agreement with the experimental observa-
tions. However, this is an extremely complex model to realize
analytical studies that can help us understand the dynamics of
LS under the TC. In order to reveal the existence conditions,
stability properties, and dynamical evolution of the localized
states under the effect of TC, we consider the generalized
Swift-Hohenberg model with TC

∂tu(x,t) = η + εu(x + L,t) − u3(x + L,t)

− ν∂xxu(x,t) − ∂xxxxu(x,t), (4)

where u(x,t) is a scalar field corresponding to the order pa-
rameter, evaluated at position x and time t , ε is the bifurcation
parameter, η accounts for the asymmetry between the two
stable homogeneous states, ν is related to nearest-neighbor
coupling [when it is negative (positive) it quantifies the
diffusion (antidiffusion) coefficient], and L is the displacement
that rules the TC. The generalized Swift-Hohenberg model is
here chosen not only because it is the prototypical model for the
emergence of stationary patterns and localized structures [2,3]
but also because a generalized version including nonvariational
terms (Lifshitz normal form) was previously derived for the
LCLV system [31]. For the sake of clarity, we consider
here the simplest scalar version, which allows us to account
for localized structures and translational coupling: It is the
minimal scalar model displaying localized structures and it
has been derived in different contexts such as fluids, chemical
reactions, population dynamics, biological models of neurons,
and optical systems [2,3,37]. One of the main ingredients
exhibited by the model is the possible coexistence of a pattern
and a uniform state, which allows the existence of stable
localized structures. This is indeed the case for the LCLV
experiment, which shows multistability, a spatial instability
giving rise to patterns, localized structures, and homogeneous
states.

In the case of L = η = 0, the Eq. (4) corresponds to the
Swift-Hohenberg model [3]. It was introduced to explain
the emergence of patterns in one-dimensional nonequilibrium
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systems, which was proposed in the context of Rayleigh-
Bénard convection [38]. It is worth noting that for L = 0, the
above model is local, that is, the immediate temporal evolution
of the field u(x,t) is determined by itself and its immediate
spatial surroundings. In the case η �= 0 the model (4) is called
the generalized Swift-Hohenberg equation. Originally, this
model was proposed to explain the appearance of LSs in
optical bistability [39]. Subsequently, this model has become
the prototypical model to describe the emergence of patterns
and localized dissipative states. Here we consider L �= 0.
Translational coupling in the LCLV has simultaneously linear
and nonlinear effects; for this reason, we have considered the
prototypical model (4) with linear and nonlinear TC. The
TC favors one direction; consequently, it breaks the reflec-
tion (rotational) symmetry of the original one-dimensional
(two-dimensional) Swift-Hohenberg equation.

It is well known that for certain values of the parameters,
the generalized Swift-Hohenberg equation exhibits localized
states [39]. Figure 7 shows the parameter space where the
smallest (one-cell) propagative LS is stable in the generalized
Swift-Hohenberg equation with TC (L = 0.8). It is noteworthy
that the motionless localized states for the generalized Swift-
Hohenberg equation (L = 0) exist in a very similar area in the

(b)

(a)

FIG. 7. (Color online) Bifurcation diagram in the {ε,η} space
(ν = 1) of the Swift-Hohenberg equation (a) without (L = 0.0) and
(b) with TC (L = 0.8). The γ (or γ ′) curve separates the region of
coexistence of uniform states. Below this curve there is only one
steady state, which we have denoted by u0. Above the γ (γ ′) curve
the system exhibits three uniform states, two stable and one unstable.
The � (or �′) curve accounts for the spatial instability of the state u0.
In the shaded region ABCD (A′B ′C ′D′) the smallest (one-cell)
localized structure supported on the lower homogeneous state is stable
(and propagates). For L = 0.8, in the region C ′D′F ′ the localized
state moves in the direction opposite to the TC.
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FIG. 8. (Color online) The LSs observed in the Swift-Hohenberg
model with translational coupling by ε = 0.17, η = −0.04, and
ν = 1.00: (a) L = 0 and (b) L = 0.8. (c) Spatiotemporal evolution
of the LS with L = 0.8.

parameter space shown in Fig. 7 [40]. Despite the simplicity
of the Swift-Hohenberg equation, analytical expressions of
localized states are unknown.

To study Eq. (4) numerically, we have considered a Runge-
Kutta scheme of order 4 for the temporal integration and
finite differences to compute spatial derivatives over a grid
of equally spaced points {xk} n

k=1. Since L is a continuous
parameter, in order to study bifurcations one needs to evaluate
the field u at an arbitrary point y = x + L, not necessarily
in the grid. To do so, we have interpolated the value of
u(y,t) from the nearest five points in the grid by considering
a fourth-order polynomial. Numerical simulations of Swift-
Hohenberg equation with TC (L �= 0) reveal that the localized
states persist in this model. Figure 8 shows the smallest LS
in model (4) with translational coupling for L = 0 [Fig. 8(a)]
and L = 0.8 [Fig. 8(b)]. We observe that LSs are deformed
and propagate in the direction favored by TC, as illustrated in
Fig. 8(c). The deformation of localized states is consistent with
experimental observations [cf. Fig. 3(b)], i.e., the rear damped
oscillations are amplified in the presence of TC. Note that when
the bifurcation parameter ε is large enough, the localized state
moves backwards for L positive. This occurs more markedly
when the TC only affects the linear term; in this case LSs
also display an opposite behavior in their deformation. More
precisely, the damped oscillations in front, not in the rear, of
the localized state are amplified. The above analysis allow us to
conclude that in the parameter region studied experimentally,
the nonlinear TC terms are essential to explain the observed
behavior.

A. Analytical determination of the speed of localized structures

It is straightforward to prove that if u(x,t) is a solution
to Eq. (4), then u(−x,t) is a solution to the same equation
with L → −L. Now let us consider any propagative solution
u(x,t) = f (x − c(L)t), where c(L) is the velocity of propaga-
tion. From the above symmetry property it follows directly that
c(−L) = −c(L). Hence, if the speed of such propagative state
admits a Taylor expansion around L = 0, it can only contain
odd terms. We will now deduce the value of the first term of
such an expansion for a localized state (the same strategy is
also valid in more spatial dimensions).

For L = 0 any localized state uLS is static, thus for small L

(L � 1/
√

ν) we can consider the effect of TC as a perturbation
over such a state. In this limit we can use the approximation
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u(x + L,t) ≈ u(x,t) + L∂xu(x,t) + O(L2). Equation (4) be-
comes (the nonlinear convective Swift-Hohenberg equation)

∂tu = η + εu(x,t) − u3 − ν∂xxu − ∂xxxxu

+L(ε − 3u(x,t)2)∂xu. (5)

To compute the velocity of the LS, we consider the ansatz

u(x,t) ≡ uLS(x − x0(t)) + W (x,x0), (6)

where uLS(x) is any LS of the generalized Swift-Hohenberg
equation (L = 0), x0 stands for its position, corresponding to
the position of its maximum, and W is a correction function
of O(L) that accounts for the deformations suffered by the
solution. To account for the drift effect of TC, we have
promoted the continuous parameter x0 to a function of time.
In the limit L tending to zero, x0 becomes a constant and W

converges to zero. Introducing the above ansatz in Eq. (5) and
linearizing in W we obtain

LW = ẋ0∂xuLS + L(ε − 3uLS)∂xuLS, (7)

where L is a linear operator given by

L = ε − 3u2
LS − ν∂xx − ∂xxxx.

Introducing the inner product

〈f (x)|g(x)〉 =
∫ ∞

−∞
f (x)g(x)dx, (8)

the linear operator L is self-adjoint. In order to have a solution
for the linear equation (7), we apply the solvability condition
or Fredholm alternative [2]. Thus we obtain the following
relationship for the speed of a LS:

ẋ0 = L

(
3

〈
u2

LS

∣∣(∂xuLS)2
〉

〈∂xuLS|∂xuLS〉 − ε

)
+ O(L3). (9)

Therefore, in this approximation, we find that the speed
of propagation of the LS is linear with L. Expression (9)
helps us understand the role of linear and nonlinear TC.
Since the first and second terms on the right-hand side are

Space

Ti
m

e

x

u(x,t)
1.5

-1.5

FIG. 9. (Color online) The LS moving in the direction oppo-
site to the displacement, obtained for the Swift-Hohenberg model
with translational coupling. Here ε = 0.85, η = −0.2, ν = 1.00,
and L = 0.8.
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FIG. 10. (Color online) Numerical evaluation of the speed of
the smallest localized state in the Swift-Hohenberg model with TC,
as a function of L/D, where D = 10.798 is the characteristic size
of the LS at L = 0. Except for L we fix all parameters: ε = 0.6,
η = −0.04, and ν = 1.00. The solid curve was obtained with a
spatial discretization step dx = 0.2. The dashed curve is the linear
theoretical prediction, whose coefficient was numerically evaluated
for dx = 0.1.

the result of nonlinear and linear TC, respectively, for small
ε LSs propagate along the direction of displacement and for
large enough ε they do it in the opposite direction. Figure 9
shows a LS moving in the direction opposite to displacement
(ε = 0.85). Such backwards propagating states are observed
in the D′C ′F ′ region shown in Fig. 7(b).

We have measured the propagation speed of LSs exhibited
by the model numerically (4). Figure 10 depicts this speed
as a function of the displacement parameter L. We note that
for small displacements compared to the size of the LS the
formula (19) consistently describes the observed dynamics
(see Fig. 10). However, for larger displacements, the speed
is governed by nonlinear corrections in L (cubic, quintic,
and so forth). Then the measured speed of the localized
state systematically moves away from the theoretical linear
prediction. However, both the linear stability analysis and
numerical simulations of the LCLV model mainly present a
linear regime as a function of L (see Figs. 5 and 6). As we will
see later, the linear regime is wider in two dimensions.

Remarkably, the above analysis allows us to recognize,
by simply inspecting the direction of the LS advection with
respect to the deformation, that the TCs in the experiment are
mainly dominated by the nonlinear coupling induced by the
optical feedback.

IV. MECHANISMS OF DESTABILIZATION OF
PROPAGATIVE LOCALIZED STRUCTURES

When increasing the displacement parameter L, or by
changing the parameters {η,ε} in model (4), LSs lose stability
through different processes. In the following sections we
discuss the different mechanisms of instability undergone by
LSs. A bifurcation diagram is constructed for the smallest
localized state (Fig. 7).

A. Saddle-node bifurcation

When one begins to decrease the asymmetry parameter
η, the stable LS is modified so that the dominant peak
decreases. This dynamical behavior continues until one finds
a critical value of ηc, for which the LS vanishes converging
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t

FIG. 11. (Color online) Temporal evolution of the relative norm,
formula (11), considering the Swift-Hohenberg model with transla-
tional coupling ε = 0.2, η = −0.01, ν = 0.3, and L

√
ν = 0.458.

to the homogeneous solution. In this process the maximum
of the solution initially decays slowly and suddenly drops
quickly towards the homogeneous state. For L = 0, the process
described above occurs when one crosses the segment BD in
the parameter space shown in Fig. 7(a) [B ′D′ for L = 0.8 in
Fig. 7(b)]. Alternatively, this can be obtained by increasing L

for certain given values of {ε,η}. In order to characterize this
process, we consider the relative norm of the LS, Nrel, defined
as

Nrel(t) =
∫ ∞

−∞
[u(x,t) − u0]2dx, (10)

where u0 stands for the uniform state that supports the LS.
Figure 11 shows the temporal evolution of the relative norm
of a LS. Clearly, this graphic shows that for a long time
the localized state almost maintains its relative norm, which
decreases exponentially, and then it suddenly drops until
it vanishes: The system displays the uniform state u0 as
equilibrium. This type of behavior of the sudden disappearance
of an equilibrium is typical of a saddle-node bifurcation [41]
and is commonly referred to as ghost or ruin [42], that is, a
metastable localized state remains for a long time until it starts
to decrease and suddenly disappears. These long transients are
characterized by a residence time diverging T with a power
law 1/2 as one approaches the saddle-node bifurcation [42].
We have considered the following strategy to study these
dynamical transients exhibited by the unstable localized state.
We set all the parameters of the model (4) at a suitable point
and begin to decrease the displacement parameter L. For each
L we calculate the cumulative relative norm

A(L) =
∫ ∞

t0

Nrel(t)dt. (11)

As a result of the mean value theorem, A is proportional to
the residence time near the bifurcation. Theory shows that this
time diverges with a power law 1/2 near a critical value Lc;
then the cumulative norm A must diverge with the same law.
Figure 12 shows the cumulative norm A(L) measured near the
bifurcation (4) and the numerical fit considering groups of five
points

A = A0

(
L

Lc

− 1

)α

, (12)

where α = 0.500 03, Lc

√
ν = 0.451 220, and A0 = 153.8

considering the parameters η = −0.01, ε = 0.2, and ν = 0.3.
Therefore, the previous result confirms that this bifurcation
corresponds to a saddle node. Notice that when considering

Fit
Numeric

0.45 0.46 0.47 0.48

5

4

3

ln(A)

FIG. 12. (Color online) Cumulative area as a function of the
displacement parameter L. The dots represent the values obtained
numerically from the model (4) for ε = 0.2, η = −0.01, and ν = 0.3.
The dashed curve is obtained by using the fitting formula (12) and by
considering the first five points.

more distant points the power law changes and even ceases
to be a power law because it is only valid for a region near
the critical value Lc. Experimentally, we observe qualitatively
that the localized states disappear through this mechanism;
however, a study to provide a detailed characterization of the
process is an experimentally complex task.

B. Pattern formation instability

In contrast, by increasing the displacement parameter L or
by increasing η for small ε, we observe that the amplitude of
spatial oscillations of the rear tail of the smallest propagative
LSs (also other LSs) begin to grow, giving rise to the emergence
of patterns. Figure 13 depicts the process of the pattern
emergence from an unstable localized state. The growth of
spatial damped oscillations of the localized state is a signal that
the uniform solution that supports the LS is close to becoming
unstable. Indeed, as one can see in Fig. 7, the above process
occurs when one crosses the AB (A′B ′) curve, which runs
close and nearly parallel to the � (�′) curve.

To elucidate this mechanism, let us denote by u0 the
homogeneous state towards which the LS converges at infinity;
it satisfies the relation

0 = η + εu0 − u3
0.

0.8

-0.7
Space

Time

FIG. 13. (Color online) Spatiotemporal diagram showing the
evolution of an unstable localized structure that generates the
appearance of patterns in the model (4); ε = 0.18, η = −0.04,
ν = 1.00, and L = 1.2.
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To study the stability of u0, we introduce the following ansatz
u = u0 + veλ(k)t+ikx in Eq. (4), where v is a small complex
number and the real part of λ(k) stands for the growth rate of
the harmonic mode with wave number k. After straightforward
calculations we obtain the relation

λ = (
ε − 3u2

0

)
eiLk + νk2 − k4. (13)

Then, if the real part of λ is positive (negative), the solution
u0 is unstable (stable). Thus the instability curve might be
obtained by determining the maxima of λ as a function of
k [kc(L,ε,ν,η)] and then by imposing that the real part of
λ is equal to zero at these points. This procedure creates
a relationship between kc (critical wave number), L, and
the other parameters (ε,ν,η), which represents the instability
curve. Because of the complexity of analytical expressions for
u0, we introduce the auxiliary parameters

χ ≡ (
ε − 3u2

0

)/
ν2, ψ ≡ Lk, (14)

the first representing the control parameter and the second
accounting for the length of the translational coupling.

After straightforward calculations we obtain the transcen-
dental relationship

χ

2
[ψ sin(ψ) + 4 cos(ψ)]2 = −ψ sin(ψ) − 2 cos(ψ), (15)

which is plotted in Fig. 14. The solid curve represents the
relationship (15) solved for Lc. The top (bottom) of this curve
represents the region of parameter space where the uniform
state u0 is unstable (stable). To develop an approximate
analytical expression for the instability curve, we can first
consider the limits χ → −∞ and χ → −1/4. The latter case
corresponds to the limit L → 0. In both limits one can obtain
simple analytical expressions. From these expressions and by
using the Padé approximant method [43], we can interpolate
the transcendental equation (15) and obtain

ψ = c1z + c2z
2 + c3z

3

1 + d1z + d2z2 + d3z3
, (16)

where z = √−(1/4 + χ ), c1 = 2.83, c2 = 7.02, c3 = 8.60,
d1 = 2.48, d2 = 4.20, and d3 = 4.20. Thus the critical wave

-4               -2                 0                2                4

2

1

0

Unstable region

Stable region

FIG. 14. (Color online) Spatial instability curve for the uniform
state u0, L versus 2 ln(z), with z ≡ [−(1/4 + χ )]1/2. The solid and
dashed curves represent, respectively, the transcendental relation (15)
and a Padé approximation (16).

number has the expression

kc = 1
2

√
ν[1 +

√
1 + (1 + 4z2)ψ sin ψ].

One noteworthy advantage of the Padé approximant method is
that it provides simple expressions with which one can perform
analytical calculations. In Fig. 14 the dashed line shows the
results obtained by using the formula based on the Padé
approximant method (16). The relative difference between the
areas below the curves obtained using formulas (15) and (16) is
10−5%. Therefore, we conclude that the Padé method allows
us to have a correct and manipulable approximation for the
instability curve, except near its maximum, where it slightly
underestimates the value of Lc. It is easy to prove analytically
that this maximum occurs exactly at L = L∗

c

√
ν ≡ π/2 and

also χ = χ∗ ≡ −4/π and kc = k∗
c ≡ 1. For any value of L

above L∗
c , the homogeneous state is spatially unstable and

no LS can be stable. Numerical simulations show that when
one crosses the instability curve AB or A′B ′ (see Fig. 7), the
localized state becomes unstable and from it a pattern solution
is engendered, as illustrated in Fig. 13.

C. Front emission

For a fixed displacement parameter L, positive and large
ε, and negative η, we observed a different mechanism of
destabilization of the dissipative LSs. The localized state is
destabilized through the emission of two counterpropagative
fronts. Because of the TC, while the forward front propagates
at a speed close to zero, the rear front propagates in the
opposite direction and with a higher speed. Figure 15 shows
the space-time diagram of this process. The above process
occurs when one crosses the AE (A′E′) curve in the space of
parameters illustrated in Fig. 7. These fronts appear because
the upper homogeneous state is more stable than the lower one.
Thus, through the emission of a couple of fronts, the system
arrives at the most stable state.

Front dynamics in the LCLV experiment has been pre-
viously characterized both for homogenous liquid crystal
reorientation [44,45] and in the pinning-depinning regime
under spatially periodic forcing [46,47].

0 200 400 600 800

0

Space

Ti
m

e 1.5

-1.5

FIG. 15. (Color online) Spatiotemporal diagram showing the
front emission: An unstable LS generates the emission of two coun-
terpropagative fronts in the model (4); ε = 0.9, η = 0.04, ν = 1.00,
and L = 0.76.
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V. GENERALIZATION OF THE MODEL TO
TWO-DIMENSIONAL EXTENDED SYSTEMS

The one-dimensional model (4) allows us to characterize
the universal behavior of the LS under the influence of TC.
However, experimental observations are performed in a two-
dimensional framework. In order to compare the results of the
preceding sections, we consider here a generalization of the
model in two space dimensions

∂tu(�r,t) = η + εu(�r + �L,t) − u3(�r + �L,t)

− ν∇2u − ∇4u, (17)

where �r(x,y) represents the position vector, �L stands for
the displacement vector, and ∇2 = ∂xx + ∂yy is the Laplacian
operator. Henceforth, for the sake of simplicity, we consider
�L = L0x̂ describing, without loss of generality, the translation
in a given direction. For L0 = 0, it is well known that the
above model exhibits a LS [39]. When we consider the
effect of TC (L0 �= 0), the localized state is deformed and
becomes propagative along the direction of the TC. This
deformation is characterized by an amplification of the rear
spatial oscillations, accompanied by the loss of rotational
symmetry of the solution. Indeed, the LS profile becomes
elliptical, favoring the direction of TC, which is consistent
with the experimental observations (see Fig. 3). Figure 16(a)
illustrates the LS obtained for Eq. (17), which shows good
qualitative agreement with those observed experimentally
(cf. Fig. 3) and numerically using the LCLV model (1).

By fixing the parameters to constant values and increasing
L0, we study the speed of propagation of localized states.
Figure 16(b) shows this speed as a function of the displacement
parameter L0. For small L0, we note that the speed has a
linear behavior in a wider region than in the one-dimensional
case. For large L0, the speed exhibits a nonlinear behavior,

u(x,y)

x

y (a)

(b)

0.10.050
0

0.1

0.2

0.3

V

L/D

FIG. 16. (Color online) (a) Propagative LSs obtained from the
model (17) for ε = 0.5, η = −0.05, ν = 1.00, and L0 = 1.5. Rear
oscillations are clearly amplified, breaking the rotational symmetry
present in the case L = 0. (b) Speed of LSs as a function of L/D,
where D = 12.112 is the size of the LS at L = 0. Except for L we
fix all parameters: ε = 0.005, η = −6e − 5, and ν = 0.1. The solid
curve represents numerical measurements of the velocity and the
dashed line is the linear theoretical prediction.

characterized by a significant increase of its value. In order
to study analytically the speed evolution, we can adopt the
same strategy as used in Sec. III A, that is, we consider the
ansatz

u(�r,t) ≡ uLS(�r − �r0(t)) + w(�r,�r0(t)). (18)

Introducing this ansatz in Eq. (17) and performing the same
procedure as that presented in Sec. III A, we obtain

�̇r0 · x̂ = L

(
3
〈〈u2

LS|(∂xuLS)2〉〉
〈〈∂xuLS|∂xuLS〉〉 − ε

)
, (19)

with

〈〈f |g〉〉 ≡
∫

f (x,y)g(x,y)dx dy.

From the above result we can see that the expressions for
the speed in one and two dimensions are similar. The solid
curve shown in Fig. 16(b) accounts for the above analytical
expression, which in the linear regime exhibits good agreement
with the numerical findings. This shows that in a large region
of parameters one expects to observe a linear behavior of the
speed as a function of the displacement parameter L0. The
result is consistent with the experimental observations and the
LCLV model.

VI. CONCLUSION

In past decades scientists have dedicated much attention
and effort to understanding LSs, inspired by their potential
applications. By using TC, we have presented the possibility
of manipulating the dissipative localized states, that is, moving
them in a controlled fashion. In a light-valve experiment we
have shown that under the influence of this type of coupling,
dissipative localized states begin to move with constant speed
and are deformed, developing a tail along the direction of
coupling.

We expect this type of dynamic behavior to be common to a
large class of physical systems. In fact, this is manifested in the
present study, where, motivated by the experimental observa-
tions, we have considered a prototypical and general model of
dissipative localized states with translational coupling. From
this model we have been able to capture the main physical
features of the phenomenon and to observe both numerically
and analytically the same type of dynamical behavior as in the
experiment and in the LCLV model.

In particular, we have shown that dissipative localized states
in one dimension become unstable by three mechanisms:
saddle-node bifurcation, counterpropagative front emission,
and spatial instability. In the latter two cases, the disappearance
of the localized state is accompanied by the emergence
of complex spatiotemporal structures. In two dimensions,
dissipative LSs are destabilized by mechanisms similar to
those observed in one dimension. Here the emergence of
patterns exhibits more complex spatiotemporal dynamics,
whose characterization requires further studies.

As an important outcome of the model, we have identified
a potential, and efficient, way to control or manipulate
dissipative LSs. Indeed, we show that this can be achieved
by introducing a time-dependent displacement vector L(t),
which enables one to manage and move localized states to the
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most appropriate place. A relevant question is the feasibility of
generating TC in diverse physical systems. In the framework of
mechanical systems (fluid or elastic media), magnetic media,
chemical reactions (diffusion reaction) to create, or design, a
TC might be a complex task. In contrast, in optical systems
TC is naturally present because of the nonlocal nature of
diffraction and can be easily amplified by introducing small
misalignments of the optical beams. Therefore, the study of
the effect of TC for optical systems is quite relevant, although
most experimental systems are designed to avoid such effects.
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