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The pattern formation in a magnetic wire forced by a time dependent magnetic field is studied.

This system is described in the continuum limit by the Landau-Lifshitz-Gilbert equation. The

spatio-temporal magnetization field exhibits two-soliton bound state solutions. Close to the

parametric resonance instability, an amplitude equation allows us to understand and characterize

these localized states. VC 2012 American Institute of Physics. [doi:10.1063/1.3672872]

Solitons in magnetism have been intensely studied in

the past decades due to trheir potential technological applica-

tions. The state of the art for conservative and for dissipative

systems can be found in Refs. 1 and 2. Here, we deal with a

dissipative system. Such systems can have spatially local-

ized, stable, and dynamic excitations. Such a dynamic struc-

ture, appearing in a restricted spatial region and

asymptotically connecting time-independent states in the rest

of the space, are called solitons.3 Recently, experimental

results of dissipative solitons in magnetic systems have been

obtained.4,5 In addition to ordinary single soliton solutions,

we find other localized states in the form of bound solitons,

called two-soliton solutions. Such dissipative states have

been theoretically obtained in generic parametrically driven

systems6 and experimentally observed in hydrodynamic7 or

electro-mechanical systems,8 just to mention a few.

First, we report upon the numerical observation of para-

metrically excited two-soliton states in an easy-plane ferro-

magnetic wire subject to a combined, constant, and

oscillatory applied magnetic field. It is well-known that,

close to the parametric resonance, the dynamics of this sys-

tem can be qualitatively described by a (parametrically

driven, damped) nonlinear Schrödinger equation.2 This equa-

tion allows us, in a second step, to understand and further

characterize these two-soliton states. In particular, we show

numerically that this equation indeed has two-soliton solu-

tions in a phase space region similar to what we have found

by the direct numerical procedure in the first part. In addi-

tion, we derive, from the nonlinear Schrödinger equation, ap-

proximate analytical expressions for the bound two-soliton

states and provide the range of parameters where these local-

ized structures exist.

We consider the continuum dynamics of the magnetiza-

tion, m ¼ mðz; tÞ, of an anisotropic wire. Throughout this

manuscript we use dimensionless quantities having scaled

the magnetization (and magnetic fields) by the saturation

magnetization, Ms, the time, t, by 1=jcjMs, where c is the

gyromagnetic factor associated with the electron spin, jcejl0,

and the space coordinate, z, by the exchange length,

lex ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J=l0M2

s

p
, where J is the effective exchange coupling

constant. Taking, e.g., material values,9 Ms � 800 kA/m or

l0Ms � 1T, and jcj � 2:21� 105 m A�1 s�1, the dimension-

less time scale corresponds to �6 ps as a physical scale. The

present technology is able to follow experiments at the fem-

tosecond scale. Indeed, Beaurepaire et al.10 were the first to

observe the spin dynamics at a time-scale below the picosec-

ond scale in nickel particles.

The dynamical evolution of the magnetization can be

modeled by the Landau-Lifshitz-Gilbert equation,3

@tm� km� @tm ¼ �m� C: (1)

The effective torque field, C ¼ @2
z m� b m � ẑð ÞẑþH, con-

tains the Laplacian term that accounts for the coupling of the

magnetization with the first neighbors; bð>0Þ is the easy-

plane anisotropy constant, k stands for the Gilbert damping

constant, and H is the external magnetic field. We consider

an external magnetic field that comprises a constant and an

oscillatory part, which are both perpendicular to the wire

axis, H ¼ H0 þ h0 cos Xtð Þx̂.

Let us briefly review some previous results. A simple

homogeneous solution of model (1) is m ¼ x̂, which

becomes unstable against homogeneous oscillations at

h2
0c ¼ ð4X0Þ2½�2 þ ðkq=2Þ2�=b2, if the system is forced at

the frequency, Xc ¼ 2ðX0 þ �Þ, with X0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H0ðH0 þ bÞ

p
,

q ¼ 2H0 þ b, and � being the detuning parameter.3 This

instability is a parametric resonance and the relationship for

h0c defines the first Arnold tongue. In addition, the system

admits single soliton solutions,2 with the localized structures

exhibiting a single bump. These solitons appear below the

Arnold tongue and for the negative detuning values.

Apart from the standard soliton solution, numerically

we found other types of localized structures by directly solv-

ing Eq. (1). In particular, the system exhibits a stable two-

soliton solution, where the localized dynamic structure

exhibits two bumps. Figure 1 shows the y component of the

magnetization field as a function of space and time in thea)Electronic mail: pleiner@mpip-mainz.mpg.de.
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stable two-soliton region. The latter is shown in red (filled

squares) in Fig. 2, which is the soliton phase diagram in the

� and h0 space. The existence range of single solitons (blue,

open circles) is larger and expands into more negative detun-

ing values. In order to build this phase diagram, we start, as

an initial condition, with two separate single solitons and

determine their final stationary state. They either decay (no

soliton), merge completely into one single soliton, or form a

bound pair of solitons with a fixed distance between them

(the two-soliton state). The existence range of these solutions

is robust against starting with different finite amplitude ini-

tial conditions. This is shown in Fig. 3, where more general

dynamic perturbations are chosen as initial conditions and

the same final states are obtained.

Due to the complexity of model (1) only fully numerical

solutions are possible. To gain more insight, in a second step

we study these localized states by an amplitude equation,

which is, mathematically, quite simpler. Close to the para-

metric instability, it can systematically be derived from the

full dynamic equations3 and generally gives a qualitatively

correct description, although often a quantitative agreement

is not obtained.11 Indeed, we show in the following text that

two-soliton solutions are also found from the amplitude

equation and we give an approximate analytical expression

for them. The amplitude equation that describes our mag-

netic system close to the parametric resonance is the para-

metrically driven and damped nonlinear Schrödinger

equation (PDDNLS).2 It is a partial differential equation for

the complex amplitude, A, for the envelope of the oscilla-

tions, mzðt; zÞ ¼ AðT; ZÞ expðiðX0 þ �ÞtÞ þ c:c:þ RðA; tÞ,
where c:c: signifies the complex conjugate and RðA; tÞ is a

small correction function in the form of a polynomial series

in A. One finds, after some lengthy calculations, the follow-

ing solvability condition:2

@TA ¼ �i�A� ijAj2A� i@2
ZA� lAþ aA�; (2)

where A� is the complex conjugate of A. It describes the dy-

namics of the envelope amplitudes in the long time and large

space scale through T 	 at and Z 	
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2X0=q

p
z, respectively.

Equation (2) is the PDDNLS equation with an effective

damping, l ¼ kq=2, and driving parameter, a ¼ h0q=ð4X0Þ.
This equation has different homogeneous states, of which

the simplest one is A ¼ 0, representing a constant magnetiza-

tion along the external field direction (m ¼ x̂). Single soli-

tons are among the non-trivial steady states of Eq. (2).2

Other solutions of the PDDNLS equation and their properties

can be found in Refs. 3 and 6. In Fig. 4(a) we show the phase

diagram containing not only single solitons, but also bound

two-soliton states, which we obtained b numerically by solv-

ing Eq. (2) when the initial conditions are two separated sin-

gle soliton solutions. The topology of this phase diagram is

similar to that obtained in Fig. 1 by using Eq. (1). As

expected, there are differences on the quantitative level.

One advantage of using the amplitude equation instead

of the full dynamic one is the possibility to derive (approxi-

mate) analytical solutions from the former. Separating the

real and the imaginary part of the amplitude, A ¼ uþ iv, we

obtain,

@Tu ¼ ða� lÞuþ �vþ @2
ZvþN v;

@Tv ¼ ��u� ðaþ lÞv� @2
Zu�N u;

(3)

where N ¼ u2 þ v2. The non-trivial steady single soliton

solutions are uS ¼ gþþsech n and vS ¼ g��sech n, where

g66 ¼ 6k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16l=a

p
and n ¼ kZ with k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � l2

p
� �.

Note that k�1 accounts for the soliton width; the stability

conditions of these solitons can be found in Refs. 2 and 12.

Due to the nonlinear nature of the underlying equations,

two single soliton solutions, some distance apart, generally

feel an effective interaction.6,7 This makes it possible that

bound soliton states exist. In order to derive an approximate

FIG. 1. (Color online) The my as a function of the space and time in a two-

soliton solution for k ¼ 0:015, H0 ¼ 3, b ¼ 20, � ¼ �0:398, and h0 ¼ 0:6.

FIG. 2. (Color online) The existence region of solitons in the h0 (field am-

plitude), and � (detuning parameter) phase diagram of Eq. (1) for k ¼ 0:015,

H0 ¼ 3, and b ¼ 20. Open (blue) circles denote single soliton solutions,

while filled (red) squares represent the bound two-soliton states.

FIG. 3. (Color online) Space-time plot of my with (a) a single soliton, and

(b) a two-soliton as the final state for h0 ¼ 0:5 and h0 ¼ 0:6, respectively.

The fixed parameters are as in Fig. 2.
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solution of these bound states we consider two, initially well

separated, single solitons, whose distance (between the re-

spective maxima) is larger than the typical soliton width.

Hence, we can write u ¼ uSðfþÞ þ uSðf�Þ þ du and

v ¼ vSðfþÞ þ vSðf�Þ þ dv for the two fields, with

Oðdu2Þ � Oðdv2Þ 
 1, meaning the effective interaction is

small. Here, f6 ¼ n6D=2, where D is the distance between

the two maxima. Inserting this ansatz into the equations for

ðu; vÞ and linearizing the equations for ðdu; dvÞ in the station-

ary case we obtain,

d2du=dn2 þ ðbþþ � 1Þduþ gb�þ dv ¼ cþ;

d2dv=dn2 þ ðbþ� � 1Þdvþ g�1b�� du ¼ c�;
(4)

using the abbreviations c6 ¼ �6Sg66 sech f� sech fþ and

b66 ¼ 3S26 162l=n½ �S2 þ 1þ �=k2ð Þ with S 	 sech f�
þ sech fþ and g 	 gþþ=g��. Approximate solutions of this

non-autonomous system of equations can be found by choos-

ing a particular set of trial functions and optimizing the pa-

rameters with the result,

dwðnÞ � aw
0 UðnÞ þ aw

1 UðnÞ2 þ aw
2 UðnÞ4

þ aw
3 1� UðnÞ½ �2sechðaw

4 nÞ; (5)

where w 2 fu; vg and UðnÞ ¼ ð1=2Þðtanh fþ � tanh f�Þ.
Thus, du and dv have the same functional form, but different

coefficients, fau
ng and fav

ng, which are complicated functions

of the parameters l; �; a, and D. In Fig. 4(b), the two-soliton

state is shown by dots, based on a numerical solution of

Eq. (2), and by lines, obtained from the approximate analyti-

cal solution (5). The comparison shows good agreement,

with a difference of less than 5%.

In summary, we have determined the parameter region

where two-soliton precession states occur in an anisotropic

magnetic wire simultaneously exposed to a constant and a

time dependent magnetic field. We have derived an approxi-

mate analytical solution for the stationary bound state, which

is in good agreement with the numerical simulations. In clos-

ing, we mention that there exist even more complicated

bound soliton states in this system such as, e.g., oscillating

breather-like two-solitons and anti-symmetric stationary

two-solitons. Work on these structures is in progress.
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FIG. 4. (Color online) (a) The � � h0 phase diagram of the existence of differ-

ent soliton states of Eq. (2). The open (blue) circles represent single solitons,

while the filled (red) squares denote two-soliton bound states, respectively. The

solid line is a2 ¼ l2 þ �2, where the spatial extensions of the solitons shrinks

to zero. The insets show the spatio-temporal behavior of the real part of A for

both types of solitons. (b) Spatial distribution of the amplitude of a two-soliton

solution; the lines are approximate analytical results from Eq. (5), while the

dots represent the numerical solution of Eq. (2) at h0 ¼ 0:5, � ¼ �0:4, and

D ¼ 6:8. The fixed parameters are as in Fig. 2. The connection of a and l of

Eq. (2) with the magnetic parameters is given in the text.
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