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A novel type of parametrically excited dissipative solitons is unveiled. It differs from the well-known

solitons with constant phase by an intrinsically dynamical evolving shell-type phase front. Analytical and

numerical characterizations are proposed, displaying quite a good agreement. In one spatial dimension,

the system shows three types of stationary solitons with shell-like structure whereas in two spatial

dimensions it displays only one, characterized by a �-phase jump far from the soliton position.
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Macroscopic systems maintained out of equilibrium are
characterized by the possibility of the emergence of
particle-type solutions or localized states. These states
have been observed in different fields such as magnetic
materials, liquid crystals, gas discharge, chemical reac-
tions, fluids, granular media, and nonlinear optics media,
among others (see the reviews [1–3], and references
therein). Although these states are spatially extended,
they exhibit properties typically associated with particle-
like states. Consequently, one can characterize them with a
family of continuous parameters such as position, ampli-
tude, and width. For time-reversible systems where injec-
tion and dissipation of energy can be viewed as
perturbations—quasireversible systems [4]—the prototype
model that exhibits localized states is the parametrically
driven damped nonlinear Schrödinger equation [5]. This
model has been derived in several contexts to describe the
appearance of patterns and localized structures, such as
vertically vibrated Newtonian fluid layers [6], nonlinear
lattices [7], optical fibers [8], Kerr type optical parametric
oscillators [9], easy-plane ferromagnetic materials exposed
to an oscillatory magnetic field [10], and a parametrically
driven damped chain of pendula [11]. One of the greatest
benefits of this model is to present analytical solutions for
localized states characterized by a constant phase and a
bell-like shape for the amplitude [10].

In this Letter, we show that localized states of quasir-
eversible parametric systems present an unexpectedly rich
phase front dynamics. More precisely, the stationary local-
ized states have a shell-type structure in the phase, for a
large range of parameters. These stable structures are of
three types. We term these solutions phase shielding sol-
itons. Using the asymptotic amplitude equation, valid far
from the position of the localized states, we determine
analytically the shape of phase fronts and its dynamics.
This dynamics is characterized by the juxtaposition of two
forces, one due to relative stability between the phases and
the other related to spatial variations of the tail of the
dissipative soliton. As a result of this force balance, these

localized states exhibit a phase structure that shields the
soliton. Numerical simulations show quite good agreement
with our analytical predictions.
The envelope of an oscillation for extended conservative

systems in the presence of small energy injection through a
parameter modulation and energy dissipation—via damp-
ing phenomena—is described by the parametrically driven
damped nonlinear Schrödinger equation

@tc ¼ �i�c � ijc j2c � i@xxc ��c þ � �c ; (1)

where the envelope c ðx; tÞ is a one-dimensional complex
field, �c stands for the complex conjugate of c , and fx; tg
describe, respectively, the spatial and temporal coordi-
nates. The detuning parameter is �, which is proportional
to the difference between half of the forcing frequency and
the natural frequency of the oscillator field. � is the damp-
ing parameter, and � stands for the forcing amplitude of the
parametric forcing. The higher-order terms in Eq. (1) are
ruled out by a scaling analysis, since � � 1, ���� �,

jc j ��1=2, @x ��1=2, and @t ��1=2.

Introducing the following change of variables c ¼
Rðx; tÞei’ðx;tÞ in Eq. (1), the model reads

@tR ¼ 2@xR@x’þ R@xx’��Rþ �R cosð2’Þ; (2)

@t’ ¼ ��� R2 � @xxR

R
þ ð@x’Þ2 � � sinð2’Þ; (3)

where R and ’ stand for the amplitude and phase of c ,
respectively. The previous set of equations in the region

of parameters ��� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ��2

p � 0, exhibit stationary

dissipative solitons of the form Rsðx; x0Þ ¼ffiffiffiffiffiffi
2�

p
sechð ffiffiffiffi

�
p ½x� x0�Þ and ’s ¼ arccosð�=�Þ=2 with

� � ��þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ��2

p
[10] [see Fig. 1(a)]. Hence, the lo-

calized states are defined as having a bell shape in the
modulus and a constant phase. However, when we try to
observe the previous solution, numerical simulations show
that an unexpected and rich phase dynamics arises. Such
dynamics initially establishes a bell shape in the modulus
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of the amplitude. Then, a constant phase appears around
the position of the localized state. At a latter stage, after
some intricate transients, a pair of fronts that connect
different phase equilibrium emerge. These equilibria are
characterized by cosð2’0Þ ¼ �=�. Finally, a rather slow
dynamics of phase front propagation is established, which
ends with the formation of a pair of stationary fronts that
connect steady states. Figure 1(b) illustrates the above
described time evolution of phase dynamics. The system
has four phase equilibria in the range from �� to �.
Therefore, the stable dissipative solitons have three types
of shell-like phase structures. Figures 1(c)–1(e) outline
these solutions. Because of the fact that the function
cosð2�Þ has period �, the phase difference at the ends of
the dissipative soliton can be zero or � (cf. Fig. 1). Thus,
this last localized state is characterized by a phase differ-
ence given by zero around the core and � at the ends. It is
important to mention that dissipative solitons represented
in Figs. 1(a), 1(c), and 1(e), are homoclinic orbits for the
spatial system in polar representation fR;’g. However, the
dissipative soliton shown in Fig. 1(d) corresponds to a
heteroclinic solution. In Cartesian representation
fReðAÞ; ImðAÞg all these solutions correspond to homo-
clinic orbits.

For the purpose of understanding and capturing the
wealth of these phase front solutions, let us consider

Eq. (1) in a semi-infinite domain, with zero flux boundary
conditions. The system can exhibit a dissipative soliton
located at one edge, with the phase formed by a single front
[see Fig. 2(a)]. In addition it is worth noting that these
phase fronts emerge at a distance far from the core of the

soliton, i.e., at a distance much larger than 1=
ffiffiffiffi
�

p
.

Accordingly, Rðx; xoÞ � 2
ffiffiffiffiffiffi
2�

p
e�

ffiffiffi
�

p ðx�x0Þ for x� x0 � 0,
with x0 at the left edge of the region of interest. Together
with Eq. (2) this approximation leads to the following
Newton-type equation

@xx’ ¼ 2
ffiffiffiffi
�

p
@x’þ�� � cosð2’Þ: (4)

This equation has heteroclinic solutions corresponding to
phase fronts, which analytically are well described by

’Fðx;xfÞ � arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
�	�

�
�

s
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2��2

p ðx� xfÞ
2

ffiffiffiffi
�

p
�
; (5)

where xf accounts for the position of phase front, i.e., the

point at which the spatial derivative of the phase front has
its global maximum. Thus, the phase front solutions are
parametrized by a continuous parameter xf. Figure 2 shows

the numerically computed phase fronts, which present a
difference of 1% with respect to expression (5). Notice that
if one considers the first correction to the previous equation

’ � ’F þ @x’F=2
ffiffiffiffi
�

p
this difference decreases to 0.8%.

As it can be also seen from Fig. 2(b), this front displays
an unexpected dynamical behavior characterized by a non-
uniform translation. To describe this dynamics, we pro-
mote the front position to a time-dependent function xfðtÞ.
Hence, using Eq. (3) and formula (5), we obtain

� _xf@x’F ¼ �ð�þ �Þ � 8�e�2
ffiffiffi
�

p
x

þ ð@x’FÞ2 � � sinð2’FÞ; (6)

where _xf stands for the time derivative of xf. Multiplying

the above equation by @z’F with z � x� xf, and intro-

ducing the following inner product hfjgi � R
fgdz, we

obtain the following equation for the phase front after
straightforward calculations,
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FIG. 2 (color online). Phase propagation: (a) phase front pro-
file considering half of the dissipative soliton; (b) spatiotemporal
diagram of phase front obtained from Eq. (1) by � ¼ 0:083, � ¼
�0:063, and � ¼ 0:058. The dashed curve is the numerical
solution obtained using Eq. (7).

FIG. 1 (color online). Solitons in the parametrically driven
damped nonlinear Schrödinger equation: (a) soliton with
constant phase; (b) space-time diagram for the phase ’ðx; tÞ of
Eq. (1) with � ¼ 0:123, � ¼ �0:093, and � ¼ 0:100; (c), (d),
and (e) solitons with phase shell-like structure obtained numeri-
cally from Eq. (1) for � ¼ 0:083, � ¼ �0:063, and � ¼ 0:058.
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_x f ¼ Aþ Be�2
ffiffiffi
�

p
xf ; (7)

where

A � hð�þ �þ � sinð2’FÞ � ð@z’FÞ2Þj@z’Fi
h@z’Fj@z’Fi ;

B � 8�
he�2

ffiffiffi
�

p
zj@z’Fi

h@z’Fj@z’Fi
are real numbers, which can be either positive or negative
depending on the shape of the phase front. For example,
when one considers a front that increases monotonically
with the spatial coordinate, A (B) is a negative (positive)
constant. The term proportional to A accounts for the
constant speed at which the larger phase invades the
smaller value. This speed can be understood as a conse-
quence of the energy difference between these states.
Hence, this term gives rise to phase fronts propagating
towards the soliton position. Conversely, the term propor-
tional to B accounts for the effect of spatial variation of the
tail of the amplitude soliton, which induces a force that
leads to phase fronts moving away from the localized state.
Consequently, the superposition of these two opposing
forces generates a stable equilibrium for the position of
the phase front, which is consistent with the dynamics
illustrated in the space-time diagram in Fig. 2. The dashed
curve in Fig. 2(b) represents the solution obtained from
Eq. (7), using the above formulas A and B. Modifying the
parameters, we observe that as � increases the equilibrium
position is smaller; i.e., the shell-type structure surround-
ing the soliton decreases. Instead, as � increases the equi-
librium position of the phase front also grows.

Considering now the soliton located at the center of the
spatial region, a small disturbance on the system produces
some complex transients on the phase dynamics, ending by
the formation of a pair of fronts propagating in opposite
directions away from the soliton core. The dynamics of
these fronts differs from that of the single front by the
inclusion of an interaction process which decays exponen-
tially with the distance between the fronts. As the system
displays two types of phase fronts monotonically increas-
ing or decreasing, then the soliton exhibits three different
types of shield structures in its phase, as shown in Fig. 1.
Hence, the dissipative solitons in parametrically driven
systems have a rich dynamics of phase fronts.

To understand the correspondence between the constant
phase solitons and phase shielding solitons, we have per-
formed a numerical linear stability analysis similar to the
one made in Ref. [12], considering both the control pa-
rameters and size of the system L. When L is small enough
the spectrum—set of eigenvalues associated with the linear
stability analysis—is characterized by being centered on an
axis parallel to the imaginary one [cf. Fig. 3(b)], where
every single eigenvalue has negative real part. Increasing L
the set of eigenvalues begin to collide creating a curve of
eigenvalues (a continuum). For a critical value of L this

curve collides with the imaginary axis at a nonzero fre-
quency [cf. Fig. 3(c)]. Therefore the system exhibits an
Andronov-Hopf bifurcation. Figure 3 outlines the spec-
trum before, during, and after the bifurcation.
From previous numerical analysis, one can infer that the

soliton with homogeneous phase is unstable, over a wide
parameter region, for sufficiently large values of L. In
short, there exists a critical value of L for which the soliton
with constant phase is unstable to small perturbations in
phase and amplitude. Because of the analytical complexity
of this analysis, we have only determined numerically this
critical value. For a system size smaller than the critical
one, we observe that for parameters 0< ��� � 1, the
soliton with constant phase is stable. Increasing the forcing
amplitude �, the soliton becomes unstable by an
Andronov-Hopf bifurcation similar to the one shown in
Fig. 3. This figure illustrates the region in parameter space
where this solution is stable and unstable. In the shaded
region in Fig. 3, we found stable phase shielding solitons.
To study the robustness of the phase dynamics around

the soliton, we consider the two-dimensional spatial ex-
tension of Eq. (1), that is, the @xx operator is replaced by a
two-dimensional Laplacian operator r2 ¼ @xx þ @yy. It is

well known that this equation has soliton type solutions
with a constant phase [13], which are the natural extensions
of the one-dimensional case. However, an analytical ex-
pression for these solutions is unknown. Considering a
similar parameter region of phase shielding solitons in
one dimension, we observe a rich phase fronts dynamics
in two dimensions. If one slightly perturbs the soliton, after
some complex transient in the phase dynamics we observe
the appearance of a circular phase front that spreads slowly.
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FIG. 3 (color online). Stability of solitons: (a) schematic rep-
resentation of bifurcation diagram in the �� � space for � ¼
0:050, the shaded region corresponds to the phase shielding
soliton region, and the striped area is the region of soliton
with constant phase. (b), (c), and (d) are the spectra of the
soliton with constant phase before (system size L ¼ 520), during
(L ¼ 564), and after (L ¼ 600) the bifurcation, respectively, for
� ¼ 0:263, � ¼ 0:050, and � ¼ �0:083.
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For later times, the front becomes asymmetric, giving rise
to another front. Finally, the two fronts become stationary,
creating a shieldlike structure around the soliton. Figure 4
shows the stationary phase structure observed numerically
in a two-dimensional system. It is important to note that we
only see phase shielding structure as a state of equilibrium
for dissipative soliton in a large system size. The two-
dimensional solution is characterized by being composed
of all the solutions found in one dimension. Indeed, if one
performs different cuts containing the center (soliton posi-
tion), one can recognize the observed solutions in
one dimension (see Fig. 1). A surprising property of the
shell-like structure observed is that if one calculates the
phase change on a path that connects two opposite points

with respect to the position of the soliton (
R
�
~r’d~s)

within the region close to the position of the soliton one
finds that this is zero. Nevertheless, if one takes this type
of path far away from the soliton position, one findsR
�
~r’d~s ¼ 	�.
In conclusion, localized structures in parametrically

forced systems have a rich and unexpected phase dynam-
ics, creating novel types of localized states. We expect that
phase shielding solitons could be observed experimentally
in simple coupled forced oscillators, such as vertically
driven fluid layers in narrow cells, optical parametrical
oscillators, driven magnetic media, and a chain of coupled
oscillators.

Shell-like phase structure must play a significant role in
soliton interaction, since bound states of two solitons show
a complex phase structure [14]. Experimental observations
show an intricate temporal dynamics of dissipative solitons
[15] which cannot be explained from uniform phase sol-
itons. Work in this direction is in progress.
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