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59655 Villeneuve d’Ascq Cedex, France, EU
(Received 23 March 2011; published 8 September 2011)

Parametrically driven spatially extended systems exhibit uniform oscillations which are modulationally
unstable. The resulting periodic state evolves to the creation of a gas of dissipative solitons. Driven by
the interaction of dissipative solitons, the multisoliton state undergoes a cascade of coalescence processes,
where the average soliton separation distance obeys a temporal self-similar law. Starting from the soliton pair
interaction law, we have derived analytically and characterized the law of this multisoliton coarsening process.
A comparison of numerical results obtained with different models such as the parametrically driven damped
nonlinear Schrödinger equation, a vertically driven chain of pendula, and a parametrically forced magnetic
wire, shows remarkable agreement. Both phenomena, the pair interaction law and the coarsening process,
are also observed experimentally in a quasi-one-dimensional layer of Newtonian fluid which is oscillated
vertically.
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I. INTRODUCTION

An outstanding property in many nonequilibrium systems is
their ability to generate coherent spatiotemporal structures or
patterns [1–4], which arise from a balance between dissipation
and energy injection. Despite the physical differences of these
systems, particularly from a microscopic point of view, the
dynamics of the pattern belongs to the same universality class.
Thus, one can understand the interest to create and develop
tools that allow an unified description, such as amplitude
equations. These consist basically in a reduction from more
basic and complex equations. Starting from microscopic
equations of motion, equations from first principles, or
phenomenological models describing a given physical system,
one can obtain a simpler macroscopic dynamical system that
accounts for the emergence of the pattern. In the past decades,
major efforts have been made to characterize these type of
equations. However, to the best of our knowledge, there is still
no comprehensive global characterization. Among the most
known classes of amplitude equations are Ginzburg-Landau
[5], Korteweg-de Vries (KdV) [6], Swift-Hohenberg [4,7],
nonlinear Schrödinger (NLS) [8], and so forth. All these
models have been used to describe different phenomena
in diverse areas such as fluid dynamics, optics, chemical
reactions, magnetism, electricity, liquid crystals, biology, crys-
tal growth, population dynamics, astrophysics, geophysics,
engineering, shell patterns, fur of mammals and insects, etc.
(see Refs. [2–4,9,10] and references therein).

On the other hand, to maintain nonequilibrium systems one
must consider the injection of energy by forcing. The response
of a dynamic system to such energy injection is strongly related
to the dynamic nature of the system under study, particularly to
its intrinsic frequencies. The two most prominent mechanisms
are synchronization [11] and resonance phenomenon [12]. The
1:1 resonance, which is also known as simple resonance, occurs
when energy is directly injected into the system in such a
way that response and forcing have the same frequency [12].
When the driving is applied by modulating the parameters
describing the system, the resonance is called parametric. The

system responds to the forcing with oscillations in different
frequencies. A classic example of this behavior is Faraday
waves [13,14], where the system responds at half the forcing
frequency (2:1 resonance). Experimental examples of this
phenomenon have been reported in nonlinear optics, classical
mechanics, magnetodynamics and so forth.

A chain of one-degree-of-freedom nonlinear oscillators
under 2:1 resonance is well described by the parametrically
driven damped nonlinear Schrödinger equation [14,15], which
corresponds to a variant of the nonlinear Schrödinger equation.
Spatially extended systems under parametric excitation have
been reported to exhibit periodic patterns (triangles, hexagons,
rolls, and so forth) [16–18], localized structures (dissipa-
tive soliton, fronts, kinks, localized states) [14,15,19–21],
propagative domain walls [22], and many other structures.
The study of localized states—which correspond to particle-
type solutions—in parametric processes keeps attracting great
interest in all the aforementioned physical areas, not only from
a fundamental point of view, but from an applied perspective
as well. The most studied localized state is the nonpropagative
soliton [15]. It can be observed near the parametric resonance
when a weak damping and driving strength are considered,
as it occurs in the quasireversible limit [23]. This solution
rises through a saddle-node bifurcation [15,24]. Then, it can
be formed only if the localized perturbation lies on its basin of
attraction. Furthermore, the dissipative soliton coexists with
a stable quiescent state (zero uniform state) and nonzero
homogeneous state, which is unstable to cnoidal waves [25]. In
fact, after a given time, the cnoidal wave periodicity is broken
and neighbor peaks exhibit an attractive interaction that ends
with the emergence of a single one.

Then, a cascade of neighbor coalescing peaks follows,
leading to the formation of a stable multisoliton state, and also
to the spontaneous formation of solitary structures. The above
process can be observed in a region of parameters similar to
that on which solitons can be found [26]. Figures 1(a)–1(c)
show, respectively, coalescence processes for three prototype
models of parametric systems: the parametrically driven
damped nonlinear Schrödinger equation, a parametrically
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FIG. 1. (Color online) Cascade of coalescence processes ob-
served numerically in (a) the parametrically driven damped nonlinear
Schrödinger equation (μ = 0.050, γ = 0.053, ν = −0.03), (b) a
parametrically vertically driven pendula chain (μ = 0.100, γ =
0.212, ν = −0.030), and (c) easy-plane ferromagnetic spin chain
exposed to a periodic external field (H = 0.200, h = 0.044, β =
4.800, α = 0.020, ν = −0.030).

vertically driven pendula chain, and an easy-plane ferromag-
netic spin chain exposed to a periodic external field.

In this paper, we are concerned with the characterization of
the above coarsening process, particularly in the evolution in
time of the average separation distance of solitons. The pro-
cesses depicted in Fig. 1 serve as evidence of the universality
of the coalescence process in parametrically driven systems. In
order to provide a unified description of this phenomenon, we
consider the amplitude equation that accounts for these type of
systems as the starting point. Figure 1 also shows clearly that
the cascade coalescence process is mediated by the interaction
of soliton pairs. Thus, one can assume that the statistical
dynamics is lead by the soliton-soliton interaction. From the
analytical characterization of the soliton pair interaction and
its subsequent experimental verification in a vertically forced
water channel, we infer the coarsening law which controls the
coalescence cascade.

The paper is organized in the following way: Section II
gives the guidelines for derivation of the amplitude equation
of nonlinear oscillators under parametric excitation. The pair
interaction law is characterized in Sec. III. In this section
we also highlight our experimental evidence of this law and
report multisoliton coalescence processes as well. In Sec. IV,
we model the behavior of a gas of diluted solitons. Finally,
conclusions and remarks are presented in Sec. V.

II. GENERIC MODEL OF PARAMETRIC INSTABILITY:
THE PARAMETRICALLY DRIVEN DAMPED

NONLINEAR SCHRÖDINGER EQUATION

Parametric resonance is an instability phenomenon [27],
which offers entire control of the system by means of the
driving strength. Thus, numerous examples of this type of
forced oscillator can be counted from classical mechanics
to quantum mechanics through hydrodynamics and optics.
For an extended oscillator under 2:1 resonance, the envelope
of the oscillation is described by the complex field ψ(X,τ ).
At dominant order, this order parameter satisfies the dimen-
sionless parametrically driven damped nonlinear Schrödinger
equation [14,15]

∂τψ = −iνψ − i |ψ |2 ψ − i∂2
Xψ − μψ + γ ψ̄, (1)

where {τ,X} account for time and space, respectively, and the
parameters {ν,μ,γ } stand for the detuning between the natural
and half the forcing frequency, the damping, and the intensity
of the forcing, respectively. The parameters that control the
resonance are the detuning and the intensity of the forcing.
Near resonance, the detuning is a small parameter (ν � 1)
and the above amplitude equation is valid in the following,
scaling ψ ∼ ν1/2,μ ∼ γ ∼ ν,∂X ∼ ν1/2, and ∂T ∼ ν. Hence,
the terms in Eq. (1) are of order ν3/2. Higher-order terms were
neglected. The term proportional to ν describes the difference
between the forcing frequency and twice the natural frequency.
The nonlinear term accounts for the nonlinear response of the
oscillation envelope as a function of its own amplitude and
its negative sign is linked to the soft nature of the oscillator.
The term with spatial derivatives accounts for the dispersive
effect of the original system, which, together with the nonlin-
earity, characterizes the focusing features of the system. The
terms proportional to μ and γ describe, respectively, linear
dissipation and energy injection through a parametric forcing
of the 2:1 type. Examples of systems modeled by Eq. (1)
include vertically oscillating fluid layers [14,26], nonlinear
lattices [28], optical fibers [29], Kerr-type optical parametric
oscillators [19], magnetization in easy-plane ferromagnetic
materials subject to periodic magnetic fields [21,30], and a
vertically driven damped chain of pendula [31].

It is noteworthy that model (1) has played a central role
in understanding the formation of patterns and dissipative
solitons in parametrically forced systems. However, this
model does not contain stable nonzero uniform states, which
account for uniform oscillations which can be trapped by
considering corrections of this model [20,21]. These terms help
to explain other localized states observed in parametrically
driven systems.

With the aim of emphasizing the widespread nature of the
phenomenon under study, we consider two different physical
systems, a vertically driven pendula chain and a classical
easy-plane ferromagnetic spin chain. Since the derivation of
Eq. (1) is detailed in the references cited above, we will discuss
only the relation between the dimensionless parameters and
variables of this equation with the original physical systems.

A vertically driven pendula chain. In the continuum limit,
a vertically driven pendula chain in a viscous medium with
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an elastic nearest-neighbor coupling is well described by the
driven and damped sine-Gordon equation:

φ̈(x,t) = − [
ω2

0 + � sin(ωt)
]

sin(φ) − αφ̇ + k∂xxφ, (2)

where φ(x,t) is the angle formed by the pendulum and the
vertical axis at the x position at time t . ω0 is the pendula natural
frequency and the parameters {α,k,�,ω} are the damping,
elastic coupling, amplitude, and frequency of the parametric
forcing, respectively. We now choose the forcing frequency ω

to be close to twice the natural frequency ω0. Indeed, if one
assumes a weak forcing and damping—quasireversible limit—
the solution of the small deviation angles is well described by
the following ansatz:

φ(x,t) = 2
√

ε

ω0
ψ(X,τ )ei(ω0+ν)t − 2

√
ε

ω0

{
ψ3(X,τ )

48

+ iγ

16ω2
0

ψ(X,τ ) − iγ ε

8ω3
0

|ψ(X,τ )|2ψ(X,τ )

}
e3i(ω0+ν)t

+ c.c. + h.o.t., (3)

where τ = εt , X = √
2εω0/kx, and ε is a small parameter

measuring the distance to the parametric resonance such
that � ∼ α ∼ ν ∼ ε. Combining both Eqs. (2) and (3), and
assuming θ � 1, this is sin(θ ) � θ − θ3/3, the solvability
condition that yields to Eq. (1) after setting ν = ω/2 − ω0, γ =
�/4, and μ = α/2. Therefore, the envelope of the oscillation
of the vertically driven pendula chain in the quasireversible
limit is described by the model (1).

A classical easy-plane ferromagnetic spin chain. In the
continuum approximation limit, in which the relative position
of two neighbor spins or magnetic moments displays only a
slight variation, a one-dimensional wire of easy-plane ferro-
magnetic material such as CcNiF3 or Ni80Fe20 is described
by the well-known Landau-Lifshitz-Gilbert equation, which
in dimensionless form is written as [30,32]

∂tM = M × Mxx − β(M · x̂)(M × x̂) + M × H

−αM × Mt , (4)

where M(x,t) stands for the normalized unit vector of the mag-
netization along the direction of the wire which is represented
by the coordinate x and β > 0 is the easy-plane anisotropy
constant. Thus, magnetization minimizes the magnetic energy
when it is orthogonal to the wire. x̂ ≡ (1,0,0) denotes the
unit vector along the hard axis, α is the relaxation constant,
and H ≡ (0,0,H ) is an applied magnetic field orthogonal
to the wire. Under the influence of a constant external
field [H (t) = H (0) = H0], any spin perturbation along the
chain go through a damped gyroscopic precession to the
stable state, which corresponds to the spins aligned with
the field [21]. The frequency of this precession is given by
ω0 ≡ √

H0(β + H0). Hence, model (4) describes a chain of
nonlinear oscillators characterized by (a) the conservation of
magnetization modulus and (b) the alignment of magnetization
with the external field.

In the case of considering H having both constant H0

and time-dependent h1(t) components, such that h1 � H0

accounts for small deviations of the magnetization with respect
to the direction of the constant external field H0ẑ [ẑ ≡ (0,0,1)],

the set of three equations (4) can be reduced to a single
one [21]:

m̈z = − [
ω2

0 − (β + 2H0)h1
]
mz + (β + 2H0)∂zzmz

− β + 2H0

2
αṁz − ḣ1

H0
ṁz + β

2H0

(
ṁ2

z + H 2
0 m2

z

)
mz,

(5)

where mz is the component of magnetization in the direction
ẑ. The upper dots represent derivatives with respect to the
time. The above model stands for a parametrically forced
mechanical extended oscillator. The other components of the
vector M are related to mz at dominant order as follows:

mx � 1 − m2
y + m2

z

2
, (6)

my � − 1

H0

(
1 + h1

H

)
∂tmz. (7)

When h1(t) oscillates harmonically close to twice the natural
frequency ω0, the forced magnetic wire exhibits a parametric
resonance. Introducing the following ansatz,

mz = 4

√
ω0H0

β
(
ω2

0 + 3H 2
0

)Re(ψei(ω0+ν)t ) + w(x,t,ψ), (8)

in Eq. (5) and linearizing the small corrections w(x,t,ψ), the
solvability condition for the amplitude of the oscillations leads
to Eq. (1) with X ≡ √

2ω0/(β + 2H0)x, μ ≡ (β + 2H0)α/2,
and γ ≡ βh/4ω0. Notice that for a high anisotropy regime
(β � H ), Eq. (4) can be reduced to Eq. (2) after setting ω2

0 ≡
H0β, � ≡ βh, μ ≡ βα, k ≡ β, and φ being the azimuthal
angle in the easy plane [30,33].

In brief, a vertically driven pendula chain and a classical
easy-plane ferromagnetic spin chain show the same type of
behavior near the parametric resonance, which is described by
the amplitude equation (1).

III. NONLINEAR WAVE COLLAPSE AND
NONPROPAGATIVE SOLITON INTERACTION

When the detuning is negative (ν < 0), Eq. (1) has
nontrivial exact steady solitonic solutions of the form [30]

cos(2θ0) = μ

γ
, (9a)

R0
±(X) =

√
2δ±sech(δ±[X − X0]), (9b)

where δ± =√−ν − γ sin(2θ0)=
√

−ν±
√
γ 2 − μ2 such that

ψ(X,τ ) ≡ ψ±(X) = χR±(X)eiθ0 . Thus, these solitons are
completely characterized by two related parameters, amplitude
(
√

2δ±) and width (δ−1
± ), the phase θ0 that is fixed by the

balance between injection and dissipation of energy, plus two
others arbitrary parameters, the position (X0) linked to spatial
translation symmetry displayed by Eq. (1) and the polarity
(χ = ±1, hence this is a sign parameter). ψ+ solutions are
stable only when μ < γ <

√
μ2 + ν2 with small detuning.

In this region the soliton coexists with the quiescent state
ψ0 = 0. As it is shown in the bifurcation diagram (Fig. 2), the
soliton rises through a saddle-node bifurcation with respect
to the driving strength γ at fixed ν and μ. Consequently, it
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R

FIG. 2. Bifurcation diagram of the parametrically driven of the
solitons [Eqs. (9)] of the parametrically driven damped nonlinear
Schrödinger equation. In this diagram, we assume that we are close
enough to the curve γ (ν) =

√
μ2 + ν2, so the periodic or chaotic

oscillation of the stable soliton is avoided [30]. Discussion about
the stability of the homogeneous steady state (HSS) can be found in
Ref. [20]. MI refers to the maximum amplitude of the standing waves
(ψ sw).

can be formed only if the perturbation falls on its basin of
attraction, making a spontaneous formation of the soliton quite
difficult. For γ >

√
μ2 + ν2, both dissipative solitons and the

trivial state are unstable. The other nonzero uniform states are
represented by HSS, which has the form ψs

± = Rs
±eiθ0 such

that

Rs
± =

√
−ν ±

√
γ 2 + μ2. (10)

These solutions appear via a saddle-node bifurcation, when
the injection and dissipation of energy are equal (γ = μ),
as it is depicted in Fig. 2. Under the influence of dispersive
effects (i∂2

X) the HSSs are unstable by means of a modulational
instability. In particular, for the upper branch ψs

+, the most
unstable mode has a wave number of the form [20,34]

kc =
√

−ν + 2
√

γ 2 + μ2. (11)

Hence, an expression of the resulting standing wave can
be found under the following form of a truncated Fourier
expansion,

ψ sw =
{√

−3ν

5
+

√
γ 2 + μ2 + 2

√
− ν

15
cos(kcX)

}
eiθ0 . (12)

The solution (12) can then be considered as an approximation
of the stable state of Eq. (1) for γ >

√
μ2 + ν2. Starting from

this standing wave, within the region μ < γ <
√

μ2 + ν2, the
system rapidly develops some instabilities, leading first to the
formation of an unstable multipulse state, and then to a cascade
of the coalescence process as shown in Fig. 1. The interesting
feature of this process is that after a given time one can obtain
spontaneously a stable multisoliton state. Then, in this region,
the HSS solution is unstable and generates initially a periodic
solution, which subsequently becomes unstable, decaying into
a multiple-soliton state. Our purpose is to characterize the time
scale governing the process under consideration. Clearly, this
process is driven by the interaction of pairs of solitons. Thus,

we concentrate our efforts on characterizing this interaction.
Indeed, as it can be seen in Fig. 1, only two pulses are involved
simultaneously in each coalescence process. This allows us to
assume that all of the cascade time law can be derived from
the pair interaction law of a two-soliton state.

We have recently studied, experimentally and theoretically,
the motion and interaction of the localized excitations in
a vertically driven small rectangular water container [26].
Close to the Faraday instability, this system is described by
model (1). This model allows us to characterize the pair
interaction law between localized excitations. Experimentally
we have an excellent agreement with the pair interaction
law. In the following, we summarize the main results of this
characterization.

A. Analytical approach of isolated solitons pair interaction law

Interaction forces between adjacent localized states are
still being studied since the first applications were reported
[19,35–38]. The main upshot of these studies is that interaction
may be attractive or repulsive depending on the soliton
phase. In order to derive quantitatively this interaction in
the parametric resonance regime, let us consider a state of
two diluted dissipative solitons [Eq. (9)] initially spaced by a
distance larger than their typical width. Figure 3 this config-
uration, where �(t) is the instantaneous distance between the
solitons, �(t)/2 stands for the center of mass, and the polarity
χ = 1 (χ = −1) corresponds to an in-phase (out-of-phase)
interaction. A solution of this state can be written as

R(X,τ ) = R0
+

(
X − �(τ )

2

)
+ χR0

+

(
X + �(τ )

2

)
+ ρ(X,�), (13a)

θ (X,τ ) = θ0 + ϕ(X,�), (13b)

where ρ(X,�) and ϕ(X,�) are small correction functions.
For simplicity, we place ourselves in the parameter region
near the saddle-node bifurcation so

√
γ 2 − μ2 � μ ∼ γ . In

addition, we consider that the solitons are sufficiently separated
from each other (diluted) so then we can consider that �(t)
variates slowly. Consequently, we have �̈ � �̇ � 1 and

A

0

-100 0 100

0.4

χ = +1
χ = −1

R
co

s(
θ

)

X

(τ )

B

-0.4

FIG. 3. (Color online) Illustration of a state of a pair of interacting
dissipative solitons. The aim of the theoretical study of Sec. III A is
the determination of the effective phase and the instantaneous velocity
(�̇) of solitons.
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�δ
1/2
+ � 1. Introducing the ansatz ψ = R(X,τ ) expiθ(X,τ ) in

Eq. (1), and using the parameter variation method, we obtained,
after a straightforward calculation (see Ref. [26] and details
therein), the expression of the phase correction ϕ(X,�) and
the instantaneous position [�(t)] of the form

ϕ = �̇�(X,�) + O(
√

γ − μ), (14a)

�̇ = −3χ〈∂z+R+,+ | R2
+,+R+,−〉

2μ〈∂z+R+,+ | W�〉 , (14b)

where

�(X,�) ≡ −
∫ X

−∞

dX′

2W 2

∫ X′

−∞
dy W (∂z+R+,+ − χ∂z−R+,−),

(15a)

〈∂z+R+,+ | W�〉 = −
∫ ∞

−∞
dz ∂zR+,+W (z)

∫ X

−∞

dX′

W 2(X′)

×
∫ X′

−∞
dy W (y)�(y), (15b)

〈∂z+R+,+ | R2
+,+R+,−〉 =

∫ ∞

−∞
dz ∂zR+,+(z)R2

+,+

× (z) R+,− (z + �) , (15c)

W = R0
+(z+ ≡ X − �/2) + χR0

+(z− ≡ X + �/2)

= (R+,+ + χR+,−), (15d)

�(y) ≡ ∂z+R+,+(y) − χ∂z−R+,−(y). (15e)

Integrals (15a)–(15c) can be evaluated taking whichever
of the two solitons and considering the asymptotic tendency
of one soliton around the other one. For this purpose, let us
consider the soliton R+,+ (which is represented by curve
A in Fig. 3), where the soliton represented by curve B
decays exponentially: R+,−(z + �) ≈ 2

√
2δ+e−δ+(z+�). Then

the integral (15c) can be approximated by

〈∂z+R+,+ | R2
+,+R+,−〉

≈ 2
√

2δ+e−δ+�

∫ ∞

−∞
dz ∂zR+,+(z)R2

+,+ (z) e−δ+z, (16)

leading finally to the law of soliton pair interaction [26]

�̇ ≈ −Rχe−δ+�, (17)

where

R = 3
√

2δ+
∫ ∞
−∞ dz ∂zR+,+(z)R2

+,+ (z) e−δ+z

μ
∫ ∞
−∞ dz ∂zR+,+W (z)

∫ X

−∞
dX′

W 2(X′)

∫ X′
−∞ dy W (y)�(y)

(18)

is a positive constant. In the limit of large interaction distance,
R explicitly reads

R = 8δ3
+

μ
. (19)

Therefore, the dynamics of a pair of solitons is overdamped
and governed by interactions that decrease exponentially
with the soliton-soliton distance. This interaction is attractive
(repulsive) when solitons are in (out of) phase, that is, for
χ = 1 (χ = −1).

For a given initial condition, we can integrate the evolution
of the soliton distance, which takes the form

� (τ ) = 1

δ+
ln [δ+R (τ0 − τ )] , (20)

where τ0 is determined by the initial condition by

τ0 = χ
eδ+�0(τ=0)

δ+R
, (21)

and �0 accounts for both the initial condition and the critical
separation distance. For in-phase solitons, formula (20) is valid
only for τ < τ0. This time is related to the characteristic time
of fusion between the two particles. Hence, two dissipative
solitons that are in phase follow a logarithmic decrease of
their separation distance. Although the above analytical result
is valid rigorously for large values of �(τ ), it also gives
a quite good approximation at a small interaction length
(see, e.g., Fig. 4), where the temporal evolution is to the
left-hand side. Figure 4 shows the numerical (red squares)
and analytical (blue solid line) reversed temporal evolution of
the soliton-soliton distance for an in-phase pair of dissipative
solitons. Consequently, the approximate interaction of solitons
described by (17) provides a quite good description of the
process of solitons interaction. Thus, the dynamics of a soliton
pair can be simply reduced to point-particle interactions.
Notice that the analytical interaction process described here
does not stand for the collapse and subsequent radiation and
annihilation of one of the solitons during interaction (the inset
of Fig. 4). The study of these processes is still in progress.

B. Experimental measurement of the pair interaction law

Parametric instabilities can take place in a liquid layer
that is placed in a vertically forced rectangular container.
Nonpropagative solitons described by Eqs. (9) have been
reported previously in Refs. [35,39]. This suggests that
this could be the proper setup to verify experimentally the
interactions among solitons.

45

X

50

(AC)

0 2 4 6 8 10 × 104

(NS)

(τ0 − τ )

0 0.1 0.2 0.3

15

20

25

30

35

40
τ

FIG. 4. (Color online) Temporal evolution of soliton separation
distance �(τ ) for μ = 0.05, γ = 0.054, and ν = −0.04. Red squares
stand for the numerical simulation of Eq. (1) and the continuous curve
is deduced from formula (20). The inset gives the spatiotemporal
diagram of the amplitude of ψ .
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In Ref. [26] we have recently reported the soliton pair inter-
action law, studied both theoretically and experimentally. We
now briefly explain the experimental setup details and our main
results. Experiments were performed on a vertically vibrating
plexiglass basin, Lx = 45 cm long, Lz = 9.0 cm deep, and
Ly = 2.54 cm wide. The channel is filled with water to a
depth H = 1.5 cm. Several drops of the wetting agent Kodak
Photo-Flo are added to improve wetting and minimize surface
pinning on walls. The container is vibrated vertically with an
electromechanical shaker (Dynamic Solutions VTS100) fed
with a harmonic signal of the form y(t) = A sin(ωt) at the
frequency f = ω/2π = 10.2 Hz. This signal is provided by
a function generator (Rigol DG1022) and amplified through a
power amplifier. The amplitude A is the experimental control
parameter, which is of the order of 0.3 mm. Hence, the typical
acceleration container is ∼10% the acceleration of gravity. The
container acceleration is measured by means of a piezoelectric
accelerometer (PCB 340A65) connected to a lock-in-amplifier
(SR830) providing a precision of 0.01%g. The lower-left-hand
inset of Fig. 5 represents an image sequence of a pair of
interacting in-phase solitons at different times. The temporal
evolution of their separation distance, given by the red filled
circles in Fig. 5, fits well with formula (20). Indeed, all the
adjusted parameters present relative errors smaller than 6%,
for both the in-phase and out-of-phase (upper-right-hand inset
of Fig. 5) interactions. These errors are computed from the 95%
confidence interval of the adjusted parameters. Therefore, we
can conclude that there is excellent agreement between the
theoretical description and experimental observations for the
interaction law of dissipative solitons.
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FIG. 5. (Color online) Temporal evolution of separation distance
of a pair of in-phase and out-of-phase [inset (b)] solitons in a vertically
driven rectangular water container (red filled circles). The fit �(t) =
a ln[−b(t − t0)] (blue solid line) of the experimental data, motivated
by formula (20) gives a/H = 2.20 ± 0.04, b = 2.7 ± 0.1 s−1, and
t0 = 8.20 ± 0.04 s for the in-phase solitons and a/H = 3.00 ± 0.04,
b = 4.0 ± 0.2 s−1, and t0 = 6.7 ± 0.1 s for the out-of-phase solitons.
Inset (b) gives snapshots of the experiment of in-phase soliton
interaction at some arbitrary given times.

C. Multisoliton state observations

In order to be able to support a reasonable quantity of
solitary waves in our setup, we increased the length and width
aspect ratio of the basin Lx = 50 cm long, Lz = 5.0 cm
deep, and Ly = 2.54 cm wide. The basin was narrowed
by adding two supplementary inner plexiglass walls so the
final width is 1.54 cm. The basin was filled up to a depth
H = 2.0 cm. Nonpropagating solitons are observed when
the driving frequency is fixed at ∼14 Hz and the amplitude
is approximately � = Aω2/g = 0.2. Faraday waves are also
observed in this region of parameters. Small gaps of 5.0 mm
width were left between each lateral and supplementary wall.
This is done to increase dissipation at the lateral boundaries
as this seems to delay the onset of the extended Faraday wave
state. This idea was first suggested by Wang and Wei [35].

In contrast to what is observed in the early stages of the
simulations of Fig. 1, we have not been able to observe
experimentally the onset of a multisoliton state from broken
cnoidal waves. Furthermore, the first transverse mode (0,1),
which should give rise to the cnoidal wave state, was not
observed either. We believe that this could be due to the
proximity of different attractors in our physical setup. This
competition between modes was already noticed by Wu et al.
[39]. Even the main direction of motion of one-dimensional
(1D) Faraday and solitary waves is different, and the passage
from one state to another becomes less difficult. This fact
is exacerbated when the aspect ratio is increased as Faraday
wave longitudinal modes are contracted in the spectrum.
The frequency gaps between the first transverse mode and
its two longitudinal closest neighbors become smaller so
three attractors are squeezed into a small frequency region.
Higher hybrid modes (n,1) are also compressed near the (0,1)
mode. In the setup, these higher modes usually appear as
propagating fronts that resemble a cascade process of creation
of out-of-phase successive solitons. Unfortunately, all these
effects are out of scope of our numerical simulations. Further
research on this subject is still in progress.

Still, multisoliton states can be produced artificially by the
creation of many localized structures by hand. It is not difficult
to accomplish three-soliton states just by perturbing the water
with a paddle in quite separated regions. Solitons must be
created in phase and far enough from the wall to avoid pinning.
Figure 6(a) shows the interaction between three solitons just
after the creation of the last one (notice the logarithmic time
axis). The interactions occur by pairs, giving a final one-soliton
state.

Despite the difficulty, we had also success in creating
four-soliton states. When solitons are created, destabilization
into the extended Faraday wave state is much more likely,
especially when the distance between neighbor pairs is the
same. States characterized by four solitons in phase are harder
to obtain than other four solitons states, e.g., (↑↓↓↑), as
those reported by Wang et al. [35]. Due to the size of our
basin, the first interaction occurs very fast. For this reason,
we designed a cage device that allows the existence of many
solitons before letting them interact. The cage allows the basin
to be split in several subcells. The plastic separating walls
are 0.635 mm thick. They are attached to a rigid structure in
such a way that all the walls can be removed at the same time.
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a

b

c

FIG. 6. (Color online) Multisoliton state evolution on the free
surface of a 50 × 1.54 cm2 rectangular basin filled with water (2 cm
depth). The figures show the spatiotemporal diagrams (logarithmic
time scale) for three different realizations, unveiling coalescence
cascade processes. The images are taken stroboscopically. The
forcing frequency is ν = 14 Hz and the amplitudes are (a) � = 0.202
(three solitons) and (b) and (c) � = 0.201 (four solitons).

Solitons could then be created separately in each subcell. After
creation, solitons move toward their equilibrium in the center
of the subcell. Figures 6(b) and 6(c) show the evolution of
the four-soliton state after removing the cage. The picture is
the same for the three-soliton interactions: a cascade of pair
interactions and a final state consisting of a single solitary
wave.

In spite of the fact that the cage can support even eight
solitons in phase placed in separate subcells, higher than four
stable states could not be observed in our setup. In fact, the
layer destabilizes into Faraday waves as soon as the separating
wall structures is removed.

Recently, we have reported that soliton motion is affected by
basin inclination [40]. Solitonic structures are slowly attracted
to a fixed position in the cell following an exponential motion
law. This fixed equilibrium position depends on the tilt angle
in a very sensitive way. When the basin is correctly aligned, the
equilibrium position is located in the center of the basin. If it is
not the case, it moves away from the center, and moves farther
for steeper tilt angles. Nonparallelism of the fore and back
walls would produce a similar outcome on soliton dynamics.
We remark on this because this effect breaks spatial invariance
in the coalescence process. Thus, any slight deviation on the

walls or the tilt angle would explain the asymmetry arising
in the final coalescence process, shown in the spatiotemporal
diagrams of Fig. 6. As the supplementary walls added to our
setup were very large, we think that small deviations were
likely to happen.

Realizations performed with four solitons also show the
appearance of strong extended perturbations before the last
interaction occurs. Moreover, whenever a pair of solitons
coalesces, the other solitons suffer a slight change of behavior.
We think that this is due to small adjustments in the driving
force, which is actually done at constant power and not
constant amplitude. Whenever a soliton is annihilated, the
system loses some dissipation related to the decoupling of
the soliton momentum. This residual power is then pumped to
the whole system and transformed into an amplitude growth.

Our experimental observations show that multisoliton states
do exist in a parametrically driven dynamical system. The
evolution is characterized by successive fusion processes
between solitons that resembles the coalescence cascade
observed in the numerical simulations of parametrically driven
systems models.

IV. INTERACTION OF A GAS OF SOLITONS

As mentioned in Sec. I, the solitons under consideration
appear via a saddle-node bifurcation. Hence, they are gener-
ated only if an external perturbation lies within of the basin
of attraction. Any spontaneous formation is not possible. For
example, in the experiment described above, the dissipative
solitons have been generated by a disturbance created by a
metallic paddle. In contrast, the nonzero homogeneous steady
states emerge spontaneously above the instability threshold,
when −

√
γ 2 − μ2 � ν �

√
γ 2 − μ2 (see Fig. 2). The linear

spectrum of this solution shows that it is unstable to a modula-
tional instability with a well-defined wave number close to the
bifurcation. Switching the detuning in the stability domain of
the nonpropagative soliton, modulational instabilities in turn
are unstable and develop a cascade of coalescing collisions (cf.
Fig. 1). After a sufficiently long time, this process decays into
a multisoliton state which still displays a cascade of soliton
pair interactions. In this section, we propose a characterization
of the process described above since it can provide a way of
spontaneous soliton formation in a parametric forced system.

For this purpose, let us consider now a state of randomly
distributed pulses in interaction, as depicted on Fig. 7. Then,
using an ansatz for the multiple-soliton solution, which
corresponds to a trivial generalization of the ansatz (13), and
considering the same type of analysis performed in Sec. III,
we can obtain an equation for the position of the ith soliton:

żi =
∑
j=1

(−1)Re−δ(zi−zi−j ) + Re−δ(zi+j −zi ). (22)

Then, solitons placed to the left (right) of the ith soliton push
the ith soliton to the left (right). As the interaction between
the solitons decays exponentially with distance, the evolution
will be mainly governed by the closest neighbor interaction.
Hence, the above equation can be approximated by

żi = −Re−δ(zi−zi−1) + Re−δ(zi+1−zi ). (23)
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FIG. 7. (Color online) (a) Amplitude spatiotemporal density plot
of numerical solution of Eq. (1) for μ = 0.05, γ = 0.053, and ν =
−0.03. The black solid line represents the profile at a given time. (b)
Geometrical picture of the three interacting solitons.

Introducing the distance between the left soliton (i − 1) and
the right one (i + 1) as 2�̃, the time needed to reach the single
soliton (equilibrium) state is given by τ ′

0 ∝ eδ+�̃ + e3δ+�̃/2,
while for the same distance the pair interaction needs τ ∝
e2δ+�̃ to reach the single state. Then for large values of �̃

the characteristic time to remote the (i + 2)th neighbor is
approximatively given by τ1 ∝ e3δ+�̃/2. Figure 8 illustrates
the geometric properties governing solitons for model (1):
the chain of pendula and the easy-plane ferromagnetic spin
chain (from top to bottom). These geometric properties are the
separation distance � of a soliton pair that survives almost to
the end of the cascade coalescence process and the average
distance 〈�〉 of a system counting with a large number of
solitons. The former is defined by Eq. (20), and the latter by

〈�〉 =
∑

i=0(zi+1 − zi)

N
, (24)

with N the number dissipative solitons. Consequently, the
average distance 〈�〉 is an implicit function of the time
through the quantity N which is a time-dependent function
as consequence of the coalescence process [〈�〉 = f (t)].
Increasing this distance from 〈�〉 to 〈�〉 + 〈�〉0 involves a
dilation of the collision time from t0 to t0e

3δ〈�〉0/2. Thus, the
dynamics controlled by Eq. (24) is self-similar. Introducing
the following self-similar law,

zi+1 − zi−1 → zi+1 − zi−1 + 〈�〉0, (25a)

t → te3δ〈�〉0/2, (25b)

Eq. (24) is invariant. We get that f (t) must satisfy the condition

f (t) + 2〈�〉0 = f (te3δ〈�〉0/2),

from which we deduce the temporal evolution of the average
distance 〈�〉 as a coarsening law:

〈�〉 = 〈�〉0 + 4

3δ
ln t, (26)

where 〈�〉0 is an arbitrary constant depending on the initial
condition. Therefore, for a dilute gas of solitons the average
separation between solitons grows logarithmically with time.

Given the generic nature of model (1), one expects that
the coarsening law is valid for a variety of parametrically
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FIG. 8. (Color online) Left-hand column: Average soliton-soliton
distance evolution for the coalescence cascade. Right-hand column:
The separation distance for a soliton pair that survives almost
to the end of the cascade coalescence process. Squares represent
the numerical results and the blue solid lines give the nonlinear
interpolations with respect to our analytical predictions, Eqs. (20) and
(26). The numerical results obtained from (a), (b) the PDNLS equation
(μ = 0.05, γ = 0.053, and ν = −0.03), (c), (d) the pendulum chain
(γ = 0.21, μ = 0.1, ν = −0.03), and (e), (f) the ferromagnetic spin
chain (H0 = 0.2, h1 = 0.044, β = 4.8, α = 0.02, ν = −0.03).

forced systems exhibiting solitons. In Fig. 8, we contrast our
analytical prediction with the results of numerical simulations
of the parametrically driven damped nonlinear Schrödinger
equation (PDNLS), the vertically driven pendula chain, and
a forced ferromagnetic spin chain [Landau-Lifshitz-Gilbert
(LLG) equation]. As it can be seen in Fig. 8, both logarithmic
law and its predicted scaling factor are in a gratifying
agreement with our analytical results. Indeed, the ratio between
the logarithmic growth of the average soliton-soliton distance
and that of the decay of the pair interaction are 1.33 (PDNLS),
1.4 (pendulum chain), and 1.51 (spin chain), while the
predicted value is 1.33. Hence, the cascade of coalescence
that seems complex can be well described by the interaction
of a soliton pair. We emphasize here that although the
interaction of pair of solitons is valid for remote solitons and
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does not render to the collapse process, it provides a good
tool to understand a dynamical process that could generate
spontaneously dissipative solitons in any parametrically driven
system.

Even though several coalescence processes could be studied
experimentally in the vertically driven channel with water,
the characterization of a coarsening law cannot be verified
using the current setup. This would require a large number of
solitons, at least 100, which is not achievable with the present
setup.

V. CONCLUSIONS

Nonlinear dissipative and dispersive systems under para-
metric forcing exhibit a great variety of spatiotemporal coher-
ent structures. Over and above their difference from the point
of view of the dynamical behavior, these structures also differ
in the way they are excited. For instance, since the Faraday
instabilities rise spontaneously above a given threshold, the
solitary wave needs an external perturbation that is more
or less energetic. Therefore, the localized structures cannot
appear spontaneously starting from the basic state, although
their threshold is attained. In this paper, we have investigated,
both theoretically and experimentally, the way to generate
spontaneously parametrically sustained solitary structures. In
fact, we have observed numerically that a homogeneous steady
state can be spontaneously excited when driving a system
very close to the parametric resonance. Then, switching to the

region of existence of the solitary waves, this homogeneous
state is unstable to a periodic one (cnoidal wave), which in
turn develops rapidly, displaying an irregular cascade of a
coalescence process leading to a diluted gas of solitons. We
show that the time scale of the formation of this nonpropagative
multisoliton state obeys a self-similar law, which has been
derived from the two isolated soliton interaction laws. A
detailed analytical calculation of this pair interaction law
has also been proposed. The model is able to reproduce the
experimental measurements carried out in a vertically driven
Newtonian fluid in a rectangular container. We also report the
existence of multisoliton states in the same setup. This state
evolves to a one-soliton state through a cascade of coalescence
processes driven by pair interactions.

Despite the large number of simplifications to derive the
coarsening law that is valid in the limit of dilute soliton gas,
we have compared this prediction with several models, such
as the parametrically driven damped nonlinear Schrödinger
equation, a vertically driven chain of pendula, and a parametric
forced magnetic wire, where we found excellent agreement.
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