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We show that the advection of optical localized structures is accompanied by the emission of vortices,

with phase singularities appearing in the wake of the drifting structure. Localized structures are obtained

in a light-valve experiment and made to drift by a mirror tilt in the feedback loop. Pairs of oppositely

charged vortices are detected for small drifts, whereas for large drifts a vortex array develops.

Observations are supported by numerical simulations and linear stability analysis of the system equations

and are expected to be generic for a large class of translated optical patterns.
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In hydrodynamics, fluid particles or scalar passive quan-
tities can be advected by a flow in a given direction. A
classical example of the advection phenomenon and result-
ing instabilities is that of Bénard–von Kármán street,
where a viscous fluid flowing past an obstacle organizes
in two rows of eddies on either side of its wake, with the
vortices on one side rotating in one sense and those on the
other side rotating oppositely [1]. Such behavior is driven
by the Reynolds number, a dimensionless parameter that
includes the advection velocity, characteristic length of the
obstacle and fluid viscosity. In non dissipative systems, like
superfluids and Bose-Einstein condensates, vortex shed-
ding from a moving obstacle has been evidenced by nu-
merical simulations of the nonlinear Schrödinger equation
[2,3], showing several analogies with vortex streets in
Newtonian fluids [4].

The formation of vortex-antivortex pairs, or topological
defects, also accompanies phase transitions that are asso-
ciated with symmetry breaking [5], such as, for example, in
magnets, superfluids [6], plasma jets [7]. In optics, vortices
have been introduced on symmetry grounds as the topo-
logical defects arising above the laser transition [8]. In this
context, they have been identified as the singular points
where the field amplitude is zero, while the circulation of
the phase gradient on any loop which encloses the vortex
core is equal to �2�, with the total vorticity a conserved
quantity. Optical vortices, therefore, appear and disappear
in pairs of opposite charge. They are also known as screw
dislocations or phase singularities, because the phase is
twisted around the axis of light propagation, with the
topological charge corresponding to the number of twists
that the light makes in one wavelength [9]. In nonlinear
optics, vortex-antivortex pairs have been reported for pho-
torefractive cavities [10–12] and Kerr media [13]. By
introducing a mirror tilt in a photorefractive cavity, a
wake of alternating vortices has been observed in the
transverse field [14], showing analogies with fluid behav-
iors. Indeed, nonlinear light often behaves as a ‘‘photon

fluid’’ and several analogies with hydrodynamics exist,
including, for instance, shock waves [15], wave turbulence
[16] and rogue waves [17,18]. In this framework, optical
localized structures are intriguing objects, having both
wave properties, described by the amplitude of the electric
field, and a particlelike nature, permitting to switch them
on or off as elementary pixels [19]. Optical vortices have
been observed in triangularly shaped localized structures
[20], where the breaking of the circular symmetry was
shown to cause the appearance of several pairs of oppo-
sitely charged phase singularities [21].
In this Letter, we show that, in the presence of a trans-

lational effect that makes them to drift, optical localized
structures are advected as particlelike objects and, while
they are advected, the O(2) rotational symmetry is broken
leading to a distortion of their initially round profile and
to the emission of vortices by pairs of oppositely charged
phase singularities in their wake. We obtain localized
structures in the liquid crystal light-valve (LCLV) experi-
ment [22] and make them to drift by introducing a mirror
tilt in the optical feedback loop. Phase singularities are
detected by an interferometric system allowing their visu-
alization as dislocations in a fringe pattern. Qualitative
analogies are drawn with vortex street in viscous fluids,
while the dual nature of optical localized structures brings
us to emphasize the role of symmetry breaking as a cause
of the vortex appearance. For large translations, we show
that structures form a chain and develop a regularly spaced
vortex array. Observations are confirmed by numerical
simulations and qualitatively accounted for by linear
stability analysis of the full model for the LCLV with
translated optical feedback.
Previous studies of translational effects in the LCLV

experiment have evidenced secondary instabilities of pat-
terns [23,24] such as transitions from hexagons to stripes,
squares to zigzag [25]. More recently, it has been shown
that drifting localized structures can be guided by using a
spatial light modulator [26]. However, the drift-induced
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asymmetrical deformation of localized structures and the
associated emission of vortices have never been reported or
predicted before. When a translational effect is introduced
in the experiment by tilting the mirror at the entrance of the
feedback loop (see Fig. 1), localized structures start to drift
along the direction of the mirror displacement. The motion
of a single localized structure is shown in Fig. 1(a), where
successive experimental snapshots with interference fringe
patterns are displayed with a time separation of 1.07 s.
Here, the drifting direction x is marked by an arrow. After
the initial transient acceleration induced by the mirror tilt,
the localized structure acquires a constant velocity, as
indicated by the dotted line. During the first stages of the
advection, the structure loses its round shape and under-
goes an asymmetrical deformation developing a large
tail in its wake. The fourth panel of Fig. 1(a) shows a
profile of an advected structure without fringes. The sym-
metry breaking is accompanied by the emission of pairs of
optical vortices, appearing as dislocations in the interfer-
ence pattern.

To visualize phase singularities the setup is modified in
such a way to include a Mach-Zehnder type interferometer,
as shown in Fig. 1(b). At this purpose a reference beam is
extracted by the cube splitter PC and sent through mirrors
m to interfere with a small portion of the feedback beam.
The resulting interference pattern is sent to a CCD camera,
where fringes are recorded and phase singularities detected
as dislocations. In order to maximize the fringe contrast,
the relative intensity and polarization of the reference and
signal beam are adjusted by a neutral density filter and a
half-wave plate, respectively. The LCLV is made of a thin

nematic liquid crystal (LC) layer, 15 �m thickness, sand-
wiched between a glass plate and a photoconductive wall
over which a dielectric mirror is deposed. The surfaces in
contact with the LC are treated in such a way to induce a
planar anchoring of the molecules (nematic director paral-
lel to the confining walls). A voltage V0 is applied across
the cell, which is illuminated by an expanded He-Ne laser
beam, � ¼ 632:8 nm, linearly polarized along the vertical
direction. Once passed through the LC, the beam is re-
flected back by the dielectric mirror deposed on the rear
side of the valve and sent in the feedback loop. An optical
fiber bundle is used to close the loop and redirect the
beam back to the photoconductive side of the LCLV. The
nematic director is oriented at 45� and the polarizing cube
splitter PC introduces polarization interference between
the ordinary and extraordinary waves, a condition ensuring
the bistability between differently orientated states of the
LC [27].
A self-imaging configuration is realized by inserting two

cofocal lenses, f ¼ 25 cm focal length, in such a way that
the rear and the front side of the LCLV are conjugate
planes. If the fiber bundle is displaced over a L distance
from this self-imaging configuration, diffraction is intro-
duced over L, thus selecting a transverse spatial scaleffiffiffiffiffiffiffiffiffi
2�L

p
that gives the size of localized structures. To

optimize the vortices visualization, we have taken L ¼
�16 cm, in order to have large localized structures (trans-
verse diameter � 450 �m), and the interferometer is
adjusted to have about three to five fringes per structure.
Figure 2(a) shows a zoom of the interference pattern
around a moving structure. The snapshot is taken after a
few seconds of the mirror tilt and the drift velocity can be
roughly estimated as vd � 0:9 mm=s. The fringe pattern
is displayed with inverted intensity levels, over which
are superimposed digitized fringe maxima. Oppositely
charged phase singularities, marked by þ and �, appear
as pairs of dislocations in the wake of the moving structure.
In Fig. 2(b) it is displayed a one-dimensional transverse
profile of the drifting structure, from which the asymmetric
deformation and tail development can be appreciated.
To confirm the observations we have performed

numerical simulations of the full model for the LCLV
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FIG. 1 (color online). (a) Successive experimental snapshots
(time separation 1.07 s) of an optical localized structure drifting
along the x direction; the advection occurs after tilting the mirror
M at the entrance of the feedback loop; the first three snapshots
realize the process of symmetry breaking whereas the last four
account for the propagative phenomenon; the dotted line is the
velocity acquired after the initial acceleration; (b) experimental
setup: FB optical fiber bundle, L lenses, PC polarizing cube
splitter; the other cubes deflect part of the beam to the CCD
camera for detection; a reference beam (dashed line) is used to
realize a Mach-Zehnder interferometer through mirrors m; the
half-wave plate, �=2, and the neutral density filter, NF, adjust the
polarization, respectively, the intensity of the reference beam.
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FIG. 2 (color online). (a) Experimental snapshot with inverted
intensity levels and digitized fringe maxima showing a localized
structure moving along the arrow direction; oppositely charged
phase singularities, marked by + and -, appear as dislocations;
(b) corresponding one-dimensional profile.
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with translated feedback, which consists in two coupled
equations, one for the average tilt angle � of the LC [27]

2

�
ð�@t�� l2r2

?�þ �Þ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VFT

�V0 þ �Iwðxþ�x; yÞ

s
;

(1)

with � ¼ 30 ms and l ¼ 30 �m the LC response time and,
respectively, electrical coherence length,r2

? the transverse

Laplacian, VFT the Frederickz transition voltage, � the
transfer function of the equivalent electric circuit of the
LCLV, V0 the applied voltage, � a coefficient accounting
for the response of the photoconductor and �x the trans-
lation of the feedback beam, and one for the intensity Iw on
the photoconductor

IwðxÞ ¼ Iin
4
jeiLr2

?=2kðe�i’ � 1Þj2 (2)

with k ¼ 2�=� the optical wave number and ’ ¼ �cos2�
the phase shift acquired by the light when passing through
the LC layer, � ¼ 4��nd=�, �n ¼ 0:2 the LC birefrin-
gence and d the thickness the LC layer. The electric field at
the exit of the LC layer is Einðe�i’ � 1Þ, where Ein is the
input field and Iin ¼ jEinj2. Numerical integrations of
Eqs. (1) and (2) are made by using a pseudo spectral
method, for which the spatial derivatives and the diffrac-
tion operator are solved in Fourier space, while the tem-
poral derivate is calculated with an adaptive Runge-Kutta
algorithm. In the bistable regime a single localized struc-
ture is generated by applying a Gaussian pulse, then, a
translation �x of the intensity Iw is introduced.

Figure 3 shows a set of numerical results for L ¼
�16 cm, �Iin ¼ 1:2, V0 ¼ 12:9 V, giving localized struc-
tures with a diameter of 450 �m. The range of �x for
which the advection regime exists is in between
30–250 �m. The intensity profiles show how the initially
axisymmetric structure [�x ¼ 0, Fig. 3(a)] is deformed
during the advection. For relatively small translations
(�x ¼ 126 �m, Fig. 3(b)], the profile is slightly deformed,
with wavelets visible behind the structure. For larger drifts
[�x ¼ 182 �m, Fig. 3(c)], the deformation becomes more
important, with the amplitude of the principal and second-
ary maxima increasing and a large wake developing behind
the structure. At the left of the central panels are displayed
linear intensity profiles along the drift direction. By nu-
merically inspecting the electric field of the advected
structures, phase singularities are detected as the intersec-
tions of the null lines of the real and imaginary parts, as
displayed at the right of the central panels. While at rest
the null lines of the electric field are circular and never
cross each other, the deformation induced by the trans-
lation brings the lines to intersect at multiple points, where
optical vortex are nucleated by pairs of opposite topologi-
cal charge. In Fig. 4(a) the numerically calculated drift
velocity vd is plotted vs the drift �x.

For further increase of the drift a change of the dynami-
cal scenario is observed: while they are advected, localized
structures form a chain and develop a spatial organization
of regularly spaced vortices lining up in the direction of
the drift. An experimental snapshot showing the chain
and associated vortex array is displayed in Fig. 4(b).
Figure 4(c) shows a numerical simulation for the same
set of parameters as before and �x ¼ 253 �m. The null
lines of the field, superimposed to the inverted intensity
pattern, show a periodic array of intersections, at which
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FIG. 3 (color online). Numerical intensity profiles of a drifting
localized structure, (a) �x ¼ 0, (b) �x ¼ 126 �m, (c) �x ¼
182 �m; on the right, corresponding one-dimensional profiles
along the advection direction x; on the left, null lines of the
electric field; dark (blue online), light (red online) lines corre-
sponds to real, respectively, imaginary part of the field; phase
singularities are nucleated at the intersections.
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FIG. 4 (color online). (a) Numerically calculated advection
velocity vd vs the translation �x; L ¼ �16 cm. (b)–
(d) Chains of localized structure: (b) experimental interference
pattern; (c) numerical intensity pattern for �x ¼ 253 �m with
superimposed null lines of the electric field; dark (blue), light
(red) lines corresponds to real, respectively, imaginary part of the
field; (d) corresponding phase pattern, where dark (blue), light
(red) intensity maps a phase change from �� to �.
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phase singularities are nucleated by opposite pairs. The
corresponding phase pattern is plotted in Fig. 4(d). The
drift velocity signing the passage from vortex pairs to
arrays of vortices can be estimated as vd � 3:3 mm=s.
Note that, once attached in the chain, localized structures
acquire a smaller size along the drift the direction. The
spatial period of the chain is approximately one half the
size of free localized structures, which is also the minimum
drift required for the chain formation.

A qualitative explanation of the different observed re-
gimes can be drawn by performing a linear stability analy-
sis, l.s.a., of the model Eqs. (1) and (2). If �0 is the
homogeneous stationary solution, we take the ansatz � ¼
�0 þ "�1, with �1 the perturbation satisfying @t�1 ¼ �t
and r2

?�1 ¼ �q2�1, " � 1. By substituting the perturbed
solution into Eqs. (1) and (2) we obtain the dispersion
relation

� ¼ �q2 � 1� 	eiqx�x cos

�
�q2 þ ’0

2

�
; (3)

with q2 ¼ q2x þ q2y and the other coefficients as in [28]. In

Fig. 5<ð�Þ is plotted against qx, qy for various �x. While

for small �x the most unstable mode, giving the character-
istic size of the structures, is only slightly changed when
compared to the rest state, for increasing �x the dispersion
relation becomes the more and more anisotropic. At a
critical drift a large change occurs, with the most unstable
mode along x shifting at almost twice the one along y,
corresponding to the chain formation with structures
stacked along the drift direction. For certain drifts trans-
verse instabilities occur, with unstable modes along y
giving rise to zigzag deformations of the chain. This effect
is also observed in the experiment [29]. Note that in the
l.s.a. limit the response of the LCLV reduces to that of a
Kerr medium; therefore, the above results are expected to
be generic for a large class of nonlinear optical systems
where translated structures can be obtained.

In conclusion, we have shown that advection of optical
localized structures is accompanied by a large deformation
of their profile with the emission of optical vortices in their
wake. For large translations a qualitative change is ob-
served, with the formation of chains of structures with
smaller size along the drift direction. Further studies are

envisaged for a better characterization of this transition,
which is reminiscent of the absolute-convective transition
in optical instabilities [30]. Similar behaviors could also be
observed in the spontaneous motion of localized patterns
in delayed feedback resonators [31].
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