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Models describing microscopic or mesoscopic phenomena in physics are inherently
discrete, where the lattice spacing between fundamental components, such as in the case
of atomic sites, is a fundamental physical parameter. The effect of spatial discreteness
over front propagation phenomenon in an overdamped one-dimensional periodic lattice
is studied. We show here that the study of front propagation leads in a discrete
description to different conclusions that in the case of its, respectively, continuous
description, and also that the results of the discrete model, can be inferred by effective
continuous equations with a supplementary spatially periodic term that we have
denominated Peierls–Nabarro drift, which describes the bifurcation diagram of the front
speed, the appearance of particle-type solutions and their snaking bifurcation diagram.
Numerical simulations of the discrete equation show quite good agreement with the
phenomenological description.
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1. Introduction

The description of mesoscopic or macroscopic matter—matter composed of a
large number of microscopic constituents—is usually done using a small number
of coarse-grained or averaged variables. To take into account the interaction of
the fundamental constituents of the system, the space is partitioned in a large
number of cells or regions. The size of these cells is small when compared with the
system volume and large with respect to the microscopic scales. Hence, the system
is described as an extended system, that is, each cell is described by its respective
coarse-grained variables—the local dynamics—and the processes of interaction
or transport of physical observables between the cells are described by the
flows associated with the coarse-grained variables. Consequently, the evolution
of these variables is given by a discrete set of ordinary differential equations.
This reduction is possible owing to a separation of space–time scales, which
allows a description in terms of the slowly varying variables. This is the usual
theoretical framework to describe the motion of atoms in a crystal (see the review
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of Flach & Willis [1] and references therein), where descriptions based on quantum
mechanics are completely unmanageable because of the complexity of the number
of components concerned. However, when the separation of scales between the
microscopic and macroscopic variables is large enough, the matter is usually
described by partial differential equations, which are the continuum counterpart
description of finite-difference equations. Therefore, the coarse-grained variables
are promoted to spatio-temporal fields. This is the case, for example, in fluid
dynamics, electromagnetism, population dynamics, elasticity, nonlinear optics
and chemical reactions to mention a few. It is in this context of continuous media
that the concept of nonlinear coherent excitations or macroscopic particle-type
solutions or localized states in extended systems has emerged. The paradigmatic
examples of macroscopic coherence state are solitons emerging in the context of
fluid dynamics and Hamiltonian systems [2]. Solitons arise from a robust balance
between dispersion and nonlinearity.

In multi-stable macroscopic systems—systems that exhibit different equilibria
for the same value of the control parameters—coherent states emerge that
asymptotically connect different equilibria states, usually called fronts, domain
walls or wavefronts [3,4]. Generically, these domain walls are moving, and this
type of behaviour is called front propagation. The concept of front propagation
emerged in the field of populations dynamics [5,6], and the interest in this
type of phenomenon has been growing steadily in chemistry, biophysics, physics
and mathematics. In physics, front propagation plays a central role in a large
variety of situations, ranging from reaction diffusion models to general pattern-
forming systems (see Pismen [4] and the review of Cross & Hohenberg [7] and
references therein). From the point of view of dynamical systems theory, in one-
dimensional spatial dimension a front is a nonlinear solution that is identified
in the co-moving frame system as a heteroclinic orbit linking two spatially
extended states [4]. The dynamics of the interface depends on the nature of the
states that are connected. If one considers stable uniform equilibrium states,
these domain walls are characterized by propagation at a constant speed, which
is proportional to the energy difference between equilibrium states [3,4]. The
dynamics of these extended bistable systems is characterized by the display of
moving interfaces connecting two stable states, the so-called normal fronts [8,9].
There exist isolated points in parameter space for which the front is motionless,
which is usually called the Maxwell point, and is the point for which the two
states have exactly the same energy [10]. A different situation is that of a
front connecting a homogeneous and a periodic state, for which there exists a
finite region in the parameter space where the front is motionless, called the
pinning range [11]. In this case, the pinning–depinning transition is expected
to occur as a result of the competition between a symmetry breaking of the
global energy that tends to favour the front propagation in one direction, and
spatial modulations that tend to block the front propagation by introducing local
potential barriers. This can be explained by single model describing the dynamics
of the core of the front [12,13]. Depending on the dominant effect, the front
can either stay motionless, i.e. blocked in the pinning range, or propagate with
periodic leaps to the right or to the left when the control parameters are out
of the pinning range. Starting from a critical value of the control parameter,
the pinning–depinning transition occurs by the disappearance of the motionless
front solution.
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All the previous rich theoretical descriptions of coherent states change
dramatically when the discrete nature of the system under study is relevant.
For example, models describing microscopic phenomena in physics, in particular
in solid-state physics, are inherently discrete, with the lattice spacing between
the atomic sites being a fundamental physical parameter. In this context, the
characteristic length of the lattice is of the order of nanometres. The discreteness
effects may modify severely the dynamics of the front propagation even in
the framework of the simplest models (see the pioneering works of Ishimori &
Munakata [14] and Peyrard & Kruskal [15]). The relevant physical contexts can
be quite diverse, including hydrogen-bonded chains [16], calcium release waves in
living cells [17–19], reaction fronts in chains of coupled chemical reactors [20–
22], arrays of coupled diode resonators [23], semiconductor superlattices [24],
discontinuous propagation of action potential in cardiac tissue [25–27], arrays
of autocrine cells [28], superconductivity in Josephson junctions [29], nonlinear
optics and waveguide arrays [30] and the dynamics of neuron chains [31] to
mention a few. The dynamics of all these systems is mainly driven by their
inherently discrete nature. Hence, understanding the role of discreteness becomes
of crucial relevance.

Most of the theoretical works on the spatial discreteness effect over the front
propagation have been developed in the framework of Hamiltonian systems [15].
One of the well-known effects in dissipative discrete systems is the propagation
failure [32], that is, the front is motionless as a consequence of the discreteness
of the systems under study. To take advantage of widespread calculation
methods of partial differential equations and developing a qualitative intuition
of dynamical behaviours of discrete models, we attempt to circumvent the spatial
discreteness effect over the front propagation in an overdamped one-dimensional
periodic lattice with the proposition of explicit continuum effective equations
for finite-difference equations—which corresponds to the continuum limit with
an extra spatial periodic term—and analyse directly the effective behaviour of
front propagation in dissipative systems. Front propagation in finite-difference
equations exhibits temporal modulation of the speed and pinning phenomena,
which are contained in the continuum effective equations. This model allows the
understanding of the bifurcation diagram of the front speed. Also, this description
allows us to identify and characterize the particle-type solutions and their
respective snaking bifurcation diagram, which we observe in the discrete systems.

2. Front propagation

Let us introduce a prototype model of a discrete bistable system with linear
interaction or transport mechanism between first neighbour cells—the dissipative
and discrete f4 model—which has the form

dui

dt
= h + 3ui − u3

i + ui+1 − 2ui + ui−1

(dx)2
= −dF

dui
, (2.1)

where F = − ∑
i hui + 3u2

i /2 − u4
i /4 + (ui+1 − ui)2/2dx2 is a Lyapunov function,

ui(t) a coarse-grained variable that accounts the dynamics on the i-cell at the
instant of time t, dx accounts for the intensity of transport between the first
neighbour cells and the cell size, 3 is the bifurcation parameter and h accounts
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Figure 1. Front propagation. (a) Spatio-temporal diagram of front solution obtained from model
(2.1) by h = 0.2, 3 = 1.0, dt = 0.1, and dx = 2.0. The inset represents the front solution in a
given time. (b) Dots and continuous curves are, respectively, front speed obtained by numerical
simulation of model (2.1), and fitting V (t) = −0.014 − 0.012 cos(p(t + to)/T ) − 0.004 cos(2p

(t + to)/T ) − 0.00114 cos(3p(t + to)/T ) − 0.0004 cos(4p(t + to)/T ) where to = 1.8 and T = 3.54.
(c) Lyapunov potential as function of time obtained numerically from model (2.1).

for the asymmetry between the homogeneous states. The local dynamics of
the previous model, near a stationary instability, describes in a unified manner
the emergence of new equilibria, which is known as the imperfect pitchfork
bifurcation [33]. The transport mechanism between first neighbour cells is linear
and proportional to the difference of the coarse-grained variables in the respective
cells. The model (2.1) has been used to describe propagation phenomena in
various physical contexts such as nonlinear electrical lattices [34,35], individual
cells in the cardiac tissue, which are resistively coupled through gap junctions
(e.g. Keener [36] and references therein), in arrays of coupled nonlinear cells [37],
cellular differentiation [38] and coupled chemical reactors [20].

The system (2.1) exhibits bistability in the h-interval [−2(3/3)3/2, 2(3/3)3/2]. In
this interval model (2.1) has three uniform states, two stable and one unstable. In
the case h = 0, the uniform states are ui = ±√

3 (stable) and ui = 0 (unstable). In
the bistability region for negative and large h, model (2.1) presents front solutions
connecting asymptotically both stable states. In figure 1a is depicted the typical
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Figure 2. Average of front speed as a function of bifurcation parameter for model (2.1). The points
are obtained by dx = 2.0. The vertical dashed lines represent the bistability region. The dashed
and the solid curves are the average front speed obtained from the saddle-node (Vsn) and harmonic
approach (Vharm). The inset depicts the pinning range in {h, dx}-space and the grey area is the
pinning range.

front solution observed in this model. Numerically, we observe that the front
speed and Lyapunov potential are periodic functions in time (cf. figure 1b,c).
The negative uniform stable state invades the positive one with a oscillatory
front speed. When h is increased the oscillatory front speed is characterized by
periodic leaps with a large period; and when h is increased further suddenly at
h ≡ h− < 0 the front becomes motionless, in spite of the fact that the negative
state is more favourable than the positive one. This phenomenon is well known
as failure propagation, which also originates from lattice discreteness effects
[39]. Increasing h more until it reaches h+ > 0, the front remains motionless
in a range of parameter h-pinning range ([h−, h+]). Hence, the points {h−, h+}
account for points in the parameter space where the pinning–depinning transition
occurs. Increasing h further, the positive uniform state invades the negative
one with a periodic front speed, initially with a periodic leap and for large h
with more regular oscillations. Figure 2 shows the average front speed observed
for a given cell size dx . Similar pinning behaviour has been reported in an
array of coupled bistable chemical reactors [20–22], a semiconductor superlattice
[24] and a one-dimensional array of autocrine cells [28]. The pinning range as
function of h and cell size is depicted in the inset of figure 2. Note that the
pinning range decreases for small cell size and numerically we found the fitting
h±(dx) = ±(2dx0.1 + 4dx), which is represented by the continuous curve in the
inset of figure 2. Then, as the cell size is smaller, the pinning region decreases
by a cusp-type singularity, which is very thin for small cell size, making it
difficult to observe the phenomenon of propagation failure and demonstrating
that this phenomenon disappears in the continuum limit. Therefore, the pinning
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region and oscillatory front propagation between homogeneous states are inherent
phenomena in discrete systems.

The achieving of analytical results in this theoretical framework is in general
a difficult task. To understand the rich dynamics exhibited by model (2.1), we
approach this system by its continuous limit with an extra spatially periodically
modulated term, which we have termed the Peierls–Nabarro drift. This term
accounts for the intrinsic discrete nature of the system under study. The
different spatial configurations of the front have different energies, which are
periodic with period dx [15]. The potential that considers this energy is often
denominated the Peierls–Nabarro potential. This potential was introduced in
the framework of continuous theory of solid-state physics to understand the
dynamics of dislocations as a result of underlying atomic lattice in the solid state
[40,41] (for more thorough discussions, see [42]). On the other hand, the steady
states of discrete systems and the phenomenological continuous description must
be the same, and model (2.1) is invariant under spatial reflection and discrete
translation with periodic dx . Therefore, we consider the simplest continuous
model that includes all above ingredients, then model (2.1) is approached by
the continuous equation

vtu = h + 3u − u3 + vxxu + Gdx(x)vxxu, (2.2)

where Gdx(x) = Gdx(x + dx) is a spatial periodic function that accounts for the
discrete nature of the system under study. Therefore, the last term of the above
equation reveals that the interaction or the transport mechanism between the
cells is characterized by the size of the cells. Recently, in the context of nonlinear
optics the effect of spatial forcing on the front propagation has been studied
theoretically and experimentally [43]. For zero spatial forcing (Gdx(x) = 0), the
above model is the continuum limit of model (2.1)—the dissipative f4 model.
Therefore, the dissipative f4 model does not give the dynamics of the discrete
system (2.1), even for infinitesimal cell size, because the dissipative f4 model
describes only the average of front speeds. Hence, in general, we expect that the
continuum limit of discrete systems loses the oscillatory nature of speed front,
pinning–depinning transition phenomenon and propagation failure.

To understand the mechanisms of front propagation, we consider zero h and
without spatial forcing the above model has kink solutions—motionless front—of
the form

uk(x − P) = ±√
3 tanh

(√
3

2
(x − P)

)
. (2.3)

This solution links spatially the stable state
√

3 with −√
3, where P stands for

the position of the front core, i.e. the position of the maximum of vxuk . As a
result of spatial translational invariance of the f4 model, the kink solution is
characterized by a continuous parameter P. The previous strategy for studying
the effects of discreteness is based on the fact that in the limit of small dx one
expects that these effects are becoming smaller. Therefore, in this limit, we can
consider forcing as a perturbative term.

To study the effect of the spatial forcing and h, we write then the following
ansatz for the front solution:

u(x , t) = uk(x − P(t)) + w(x , P(t)), (2.4)
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where the position of the front core P(t) has been promoted to a slowly varying
function of time in order to account for the periodic forcing and energy asymmetry
between the equilibrium states, and w is a small correction that is of the
order of Ṗ � 1. The dynamic equation of P characterizes the evolution of the
front solution. Introducing the above ansatz in the effective equation (2.1) and
linearizing in w, we obtain

Lw = −Ṗvzuk − h − Gdx(x)vzzuk , (2.5)

where the linear operator L ≡ vzz + 3 − 3u2
k (z), and z = x − P is the moving

coordinate. Considering the inner product 〈f | g〉 ≡ ∫∞
−∞ fg dx , the linear operator

L is self-adjoint (L† = L). The kernel of this operator is characterized by the
goldstone mode vzuk , which is L†vzuk = 0. In order to have a solution of the
linear equation (2.5), the right-hand side of equation (2.5) has to be orthogonal
to the kernel elements of L†; therefore, we have to impose the following solvability
condition, which is also called the Fredholm alternative (see [4]):

Ṗ = −3h√
23

+ gdx(P) ≡ −3h√
23

−
∫∞

−∞ dzvzukGdx(z + P)vzzuk
∫∞

−∞ dz(vzuk)2
. (2.6)

Hence, the front speed is constituted by two drifts, a constant (−3h/
√

23) and
periodic ones, which are related to the energy difference of two states and the
discrete nature of the system under study (gdx(P + dx) = gdx(P)), respectively.
In the range of parameters where the value of the constant part is smaller than
the amplitude of the periodic one, the front is motionless—pinning range. Note
that this dynamical behaviour is independent of the energy difference of the
uniform states. In this parameter region, the system has infinite equilibria, which
correspond to a rigid translation of the kink solution.

(a) Pinning–depinning transition

When the value of the constant drift is close to the amplitude of the periodic
one (h ∼ h±, for the sake of simplicity without loss of generality we consider
h ∼ h+), the dynamics around the equilibria is approached by a saddle-node
bifurcation, i.e.

Ṗ ≈ s(h − h+) − aP2. (2.7)

The last approach is based on the separation of scale that displays the position
of the front near and far from the region where the equilibrium points are created.
The slower dynamics drives the evolution of the front, which corresponds to the
region where the equilibrium points appear. For h < h+, P has equilibrium points
that account for the different positions of the stationary front. When h = h+,
the equilibrium positions disappear by saddle-node bifurcation and the system
presents a pinning–depinning transition. Finally, for h > h+, the front speed
is characterized by periodic leaps. From the approach (2.7), we can estimate
the average front speed based on bottleneck time (cf. [33]), that is, one can
estimate the average speed of the front considering the distance between cells
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and the time spent around the region where the equilibrium points disappear,
and it reads

Vsn ≈ dx

√
s(h − h+)

a
. (2.8)

Hence, the average front speed increases as the square root of h around the critical
value h+. This average speed, Vsn, is depicted by the dashed curve in figure 2 and
it is in quite good agreement close to h+. An analogous result can be deduced
around h−.

(b) Average front speed

To study the dynamics far from the saddle-node bifurcation for the sake of
simplicity, we have considered a simple harmonic approach by

g(P) ≈ g0 sin
(

2pP
dx

)
. (2.9)

In this case, we have h± = ±√
23g0/3. Then we integrate equation (2.6) and obtain

the following analytical expression:

P(t) = P0 + dx
2p

arctan

⎡
⎢⎣tan

⎛
⎜⎝ dx

2p

√
9h2/g2

0232 − 1
t

⎞
⎟⎠

√
3h + g0

√
232√

3h − g0
√

232

⎤
⎥⎦. (2.10)

The above expression can be rewritten in the following form:

tan
[
2p(P(t) − P0)

dx

]
=

√
3h + g

√
232√

3h − g
√

232
tan

(
dx

2p
√

9h2/g2232 − 1
t

)
, (2.11)

hence, we have the equality of two periodic functions of period 2p. If l and t are,
respectively, the spatial and temporal periods, then they satisfy the relation

l = dx and t = ∓
√

9h2/g2232 − 1
dx

,

and the average front speed can be defined as

Vharm = l

t
= ∓

√
9h2

g2232 − 1
. (2.12)

As an alternative way, we can rewrite the above expression as [44]

Vharm = dx

√(
h

h±

)2

− 1. (2.13)

For |h| < |h±|, the above formula is imaginary, i.e. the front speed is zero.
Close to h±, the above formula recovers the dynamical behaviour expected for a
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saddle-node bifurcation, with the front speed increasing as the square root of h,
as predicted by the following formula:

Vharm ≈ dx

√
2(h − h±)

h±
. (2.14)

However, for large h, the average front speed behaves as a linear function of h,
which is consistent with the front speed obtained by the standard continuum
description (Gdx = 0, V ≈ −3h/

√
23). Figure 2 shows the Vharm by a solid curve,

which is in quite good agreement with the numerical results obtained by finite-
difference equation (2.1) with dx = 2.0. Hence, the dynamics of finite-difference
equation (2.1) is well described by a simple harmonic periodic drift in model (2.2).

3. Front interaction and localized states

Apart from the understanding of the front propagation in finite-difference
equations, the effective continuum equations enable us to describe unexpected
dynamics of particle-like solutions. Based on front interaction and small h, we
can consider the following ansatz for the kink and anti-kink interactions [45]:

u = uk

(
x − D

2

)
− uk

(
x + D

2

)
− √

3 + w(x , D), (3.1)

where D is a slowly varying variable that accounts for the distance between the
core of the fronts. In figure 3 is outlined the above ansatz. Introducing the above
ansatz in equation (2.2) and linearizing in w, we obtain analogously a linear
equation that has a solution if it satisfies the following solvability condition:

Ḋ = f (D) = − 6h√
23

+ 2gdx(D) − be−√
3D, (3.2)

where

b ≡ 6

∫
dz vzuk(z)u2

k (z)e
−√

3z
∫

dz(vzuk(z))2

is a positive number. Hence, the front interaction is characterized by the
superposition of a constant drift, a periodic and an attractive exponential ‘force’.
Close to the Maxwell point, h = 0, the system has infinite equilibria, f (D∗) = 0,
that are stable if f ′(D∗) < 0. Each one corresponds to different localized states.
Thus, the existence and the stability of localized states are given by the oscillatory
nature of the front interaction, which is a result of the discrete nature of the
system under study. The lengths of the localized state are roughly multiples of the
cell size. Numerical simulations of the discrete equation (2.1) show the existence of
the solutions predicted by equation (3.1). Figure 4a depicts the front interaction
law. Examples of localized states are shown in the insets. Changing h, the localized
structures disappear by a sequence of successive saddle-node bifurcations (see
[45] and references therein). Hence, the system exhibits coexistence of different
branches of localized states in the parameter space characterized by the snaking
bifurcation [46,47]. The snaking bifurcation diagram obtained from model (2.1)
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Figure 3. Schematic of the interaction of kink and anti-kink solutions.

–0.6 0.6

1
N

–1

h
LS2

LS2LS1 LS1

LS3
LS3

f (Δ)

Δ

(a) (b)

Figure 4. Localized states of finite-difference model (2.1). (a) Schematic of front interaction, formula
(3.1). The circle symbols stand for stable localized states (LSi , i = 1, 2, . . .). Inset figures depict the
different localized states. (b) Snaking bifurcation diagram obtained from model (2.1) by dx = 2.0;
the horizontal axis is h-parameter, the vertical axis is the norm, N = ∑

i(ui + 3), and S-shape is
the uniform states of model (2.1) as a function of h.

is depicted in figure 4b. Therefore, the localized states and their respective
organization in the space of parameters are fully described by the continuous
phenomenological equation (2.2).

4. Conclusions

Mesoscopic and macroscopic spatially extended systems are often described by
their continuum limit; however, interface propagation in an overdamped one-
dimensional periodic lattice leads to different conclusions in the discrete and
continuous description, and phenomenological continuum equations allow us to
grasp the observed dynamical behaviours of their respective discrete systems.
Hence, one has an adequate framework to understand novel phenomena and to
achieve analytical results in finite-difference equations. Propagation of fronts in
higher dimensions in discrete systems should exhibit similar phenomena to those
we observed, which can account for complex and unexpected behaviours (e.g.
[48]); a study in this direction is in progress.

We can consider more generic Peierls–Nabarro drift terms in the
phenomenological continuous description of the form Gdx(x , vxu)vxxu; however, we
obtain similar results to those obtained with the simplest continuous description.
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A pinning–depinning transition similar to that shown in figure 2 has also been
observed for travelling waves in the context of coupled map lattices, when the
parameter that describes the advective speed is changed. This phenomenon of
failure propagation can be understood as an effect of spatial discretization. Work
in this direction is in progress.

The simulation software DIMX, developed at INLN France, has been used for all numerical
simulations presented in this paper. M.G.C. and R.G.R. acknowledge, respectively, the financial
support of FONDECYT projects 1090045 and 11080286.

References

1 Flach, S. & Willis, C. R. 1998 Discrete breathers. Phys. Rep. 295, 181–264. (doi:10.1016/
S0370-1573(97)00068-9)

2 Newell, A. C. 1985 Solitons in mathematics and physics. Philadelphia, PA: Society for Industrial
and Applied Mathematics.

3 Murray, J. D. 1993 Mathematical biology. Berlin, Germany: Springer.
4 Pismen, L. M. 2006 Patterns and interfaces in dissipative dynamics. Springer Series in

Synergetics. Berlin, Germany: Springer.
5 Fisher, R. A. 1937 The wave of advance of advantageous genes. Ann. Eugen. 7, 355–369.
6 Kolmogorov, A. N., Petrovsky, I. G. & Piskunov, N. S. 1937 Etude de l’équation de la diffusion

avec croissance de la quantité de matière et son application à un problème biologique. Bull.
Univ. d’Etat à Moscou, Sér. Int. A 1, 1–25.

7 Cross, M. C. & Hohenberg, P. C. 1993 Pattern formation outside of equilibrium. Rev. Mod.
Phys. 65, 851–1112. (doi:10.1103/RevModPhys.65.851)

8 Clerc, M. G., Nagaya, T., Petrossian, A., Residori, S. & Riera, C. 2004 First-order Fréedericksz
transition and front propagation in a liquid crystal light valve with feedback. Eur. Phys. J. D
28, 435–445. (doi:10.1140/epjd/e2003-00316-1)

9 Residori, S., Petrossian, A., Nagaya, T., Riera, C. & Clerc, M. G. 2004 Fronts and localized
structures in a liquid-crystal-light-valve with optical feedback. Physica D 199, 149–165.
(doi:10.1016/j.physd.2004.08.010)

10 Goldstein, R. E., Gunaratne, G. H., Gil, L. & Coullet, P. 1991 Hydrodynamic and interfacial
patterns with broken space–time symmetry. Phys. Rev. A 43, 6700–6721. (doi:10.1103/
PhysRevA.43.6700)

11 Pomeau, Y. 1986 Front motion, metastability and subcritical bifurcations in hydrodynamics.
Physica D 23, 3–11. (doi:10.1016/0167-2789(86)90104-1)

12 Clerc, M. G., Falcon, C. & Tirapegui, E. 2005 Additive noise induces front propagation. Phys.
Rev. Lett. 94, 148302. (doi:10.1103/PhysRevLett.94.148302)

13 Clerc, M. G., Falcon, C. & Tirapegui, E. 2006 Front propagation sustained by additive noise.
Phys. Rev. E 74, 011303. (doi:10.1103/PhysRevE.74.011303)

14 Ishimori, Y. & Munakata, T. 1982 Kink dynamics in the discrete Sine–Gordon system a
perturbational approach. J. Phys. Soc. Jpn 51, 3367–3374. (doi:10.1143/JPSJ.51.3367)

15 Peyrard, M. & Kruskal, M. D. 1984 Kink dynamics in the highly discrete sine–Gordon system.
Physica D 14, 88–102. (doi:10.1016/0167-2789(84)90006-X)

16 Karpan, V. M., Zolotaryuk, Y., Christiansen, P. L. & Zolotaryuk, A. V. 2002 Discrete kink
dynamics in hydrogen-bonded chains: the one-component model. Phys. Rev. E 66, 066603.
(doi:10.1103/PhysRevE.66.066603)

17 Dawson, S. P., Keizer, J. & Pearson, J. E. 1999 Fire-diffuse-fire model of dynamics of
intracellular calcium waves. Proc. Natl Acad. Sci. USA 96, 6060–6063. (doi:10.1073/pnas.
96.11.6060)

18 Bugrim, A. E., Zhabotinsky, A. M. & Epstein, I. R. 1997 Calcium waves in a model with
a random spatially discrete distribution of Ca2+ release sites. Biophys. J. 73, 2897–2906.
(doi:10.1016/S0006-3495(97)78318-8)

Phil. Trans. R. Soc. A (2011)

http://dx.doi.org/doi:10.1016/S0370-1573(97)00068-9
http://dx.doi.org/doi:10.1016/S0370-1573(97)00068-9
http://dx.doi.org/doi:10.1103/RevModPhys.65.851
http://dx.doi.org/doi:10.1140/epjd/e2003-00316-1
http://dx.doi.org/doi:10.1016/j.physd.2004.08.010
http://dx.doi.org/doi:10.1103/PhysRevA.43.6700
http://dx.doi.org/doi:10.1103/PhysRevA.43.6700
http://dx.doi.org/doi:10.1016/0167-2789(86)90104-1
http://dx.doi.org/doi:10.1103/PhysRevLett.94.148302
http://dx.doi.org/doi:10.1103/PhysRevE.74.011303
http://dx.doi.org/doi:10.1143/JPSJ.51.3367
http://dx.doi.org/doi:10.1016/0167-2789(84)90006-X
http://dx.doi.org/doi:10.1103/PhysRevE.66.066603
http://dx.doi.org/doi:10.1073/pnas.96.11.6060
http://dx.doi.org/doi:10.1073/pnas.96.11.6060
http://dx.doi.org/doi:10.1016/S0006-3495(97)78318-8


12 M. G. Clerc et al.

19 Keizer, J., Smith, G. D., Ponce-Dawson, S. & Pearson, J. E. 1998 Saltatory propagation of Ca2+
waves by Ca2+ sparks. Biophys. J. 75, 595–600. (doi:10.1016/S0006-3495(98)77550-2)

20 Laplante, J. P. & Erneux, T. 1992 Propagation failure in arrays of coupled bistable chemical
reactors. J. Phys. Chem. 96, 4931–4934. (doi:10.1021/j100191a038)

21 Laplante, J. P. & Erneux, T. 1992 Propagation failure and multiple steady states in an array
of diffusion coupled flow reactors. Physica A 188, 89–98. (doi:10.1016/0378-4371(92)90256-P)

22 Booth, V., Erneux, T. & Laplante, J. P. 1994 Experimental and numerical study of weakly
coupled bistable chemical reactors. J. Phys. Chem. 98, 6537–6540. (doi:10.1021/j100077a019)

23 Löcher, M., Cigna, D. & Hunt, E. R. 1998 Noise sustained propagation of a signal
in coupled bistable electronic elements. Phys. Rev. Lett. 80, 5212–5215. (doi:10.1103/
PhysRevLett.80.5212)

24 Amann, A. & Schöll, E. 2005 Bifurcations in a system of interacting fronts. J. Stat. Phys. 119,
1069–1138. (doi:10.1007/s10955-005-4405-2)

25 Cole, W. C., Picone, J. B. & Sperelakis, N. 1988 Gap junction uncoupling and discontinuous
propagation in the heart. A comparison of experimental data with computer simulations.
Biophys. J. 53, 809–818. (doi:10.1016/S0006-3495(88)83160-6)

26 Keener, J. P. 1991 The effects of discrete gap junction coupling on propagation in myocardium.
J. Theor. Biol. 148, 49–82. (doi:10.1016/S0022-5193(05)80465-5)

27 deCastro, M., Hofer, E., Muñuzuri, A. P., Gómez-Gesteira, M., Plank, G., Schafferhofer, I.,
Pérez-Muñuzuri, V. & Pérez-Villar, V. 1999 Comparison between the role of discontinuities
in cardiac conduction and in a one-dimensional hardware model. Phys. Rev. E 59, 5962–5969.
(doi:10.1103/PhysRevE.59.5962)

28 Muratov, C. B. & Shvartsman, S. Y. 2004 Signal propagation and failure in discrete autocrine
relays. Phys. Rev. Lett. 93, 118101. (doi:10.1103/PhysRevLett.93.118101)

29 Ustinov, A. V., Doderer, T., Vernik, I. V., Pedersen, N. F., Huebener, R. P. & Oboznov, V. A.
1993 Experiments with solitons in annular Josephson junctions. Physica D 68, 41–44.
(doi:10.1016/0167-2789(93)90026-W)

30 Christodoulides, D. N. & Joseph, R. I. 1988 Discrete self-focusing in nonlinear arrays of coupled
waveguides. Opt. Lett. 13, 794–796. (doi:10.1364/OL.13.000794)

31 McLaughlin, D., Shapley, R., Shelley, M. & Wielaard, D. J. 2000 A neuronal network model
of macaque primary visual cortex (V1): orientation selectivity and dynamics in the input layer
4Ca. Proc. Natl Acad. Sci. USA 97, 8087–8092. (doi:10.1073/pnas.110135097)

32 Fáth, G. 1998 Propagation failure of traveling waves in a discrete bistable medium. Physica D
116, 176–190. (doi:10.1016/S0167-2789(97)00251-0)

33 Strogatz, S. H. 1994 Nonlinear dynamics and chaos: with applications to physics, biology,
chemistry and engineering. Reading, MA: Addison-Wesley.

34 Marquie, P., Binczak, S., Comte, J. C., Michaux, B. & Bilbault, J. M. 1998 Diffusion effects in
a nonlinear electrical lattice. Phys. Rev. E 57, 6075–6078. (doi:10.1103/PhysRevE.57.6075)

35 Remoissenet, M. 1999 Waves called solitons: concepts and experiments. Berlin, Germany:
Springer.

36 Keener, J. P. 2000 Homogenization and propagation in the bistable equation. Physica D 136,
1–17. (doi:10.1016/S0167-2789(99)00151-7)

37 Kladko, K., Mitkov, I. & Bishop, A. R. 2000 Universal scaling of wave propagation
failure in arrays of coupled nonlinear cells. Phys. Rev. Lett. 84, 4505–4508. (doi:10.1103/
PhysRevLett.84.4505)

38 Fáth, G. & Ski, Z. D. 1999 Avalanche of bifurcations and hysteresis in a model of cellular
differentiation. Phys. Rev. E 66, 4604–4609. (doi:10.1103/PhysRevE.60.4604)

39 Keener, J. P. 1987 Propagation and its failure in coupled systems of discrete excitable cells.
SIAM J. Appl. Math. 47, 556–572. (doi:10.1137/0147038)

40 Peierls, R. F. 1940 The size of a dislocation. Proc. Phys. Soc. 52, 34–37. (doi:10.1088/0959-5309/
52/1/305)

41 Nabarro, F. R. N. 1947 Dislocations in a simple cubic lattice. Proc. Phys. Soc. 59, 256–272.
(doi:10.1088/0959-5309/59/2/309)

42 Nabarro, F. R. N. 1987 Theory of crystal dislocations. New York, NY: Dover.

Phil. Trans. R. Soc. A (2011)

http://dx.doi.org/doi:10.1016/S0006-3495(98)77550-2
http://dx.doi.org/doi:10.1021/j100191a038
http://dx.doi.org/doi:10.1016/0378-4371(92)90256-P
http://dx.doi.org/doi:10.1021/j100077a019
http://dx.doi.org/doi:10.1103/PhysRevLett.80.5212
http://dx.doi.org/doi:10.1103/PhysRevLett.80.5212
http://dx.doi.org/doi:10.1007/s10955-005-4405-2
http://dx.doi.org/doi:10.1016/S0006-3495(88)83160-6
http://dx.doi.org/doi:10.1016/S0022-5193(05)80465-5
http://dx.doi.org/doi:10.1103/PhysRevE.59.5962
http://dx.doi.org/doi:10.1103/PhysRevLett.93.118101
http://dx.doi.org/doi:10.1016/0167-2789(93)90026-W
http://dx.doi.org/doi:10.1364/OL.13.000794
http://dx.doi.org/doi:10.1073/pnas.110135097
http://dx.doi.org/doi:10.1016/S0167-2789(97)00251-0
http://dx.doi.org/doi:10.1103/PhysRevE.57.6075
http://dx.doi.org/doi:10.1016/S0167-2789(99)00151-7
http://dx.doi.org/doi:10.1103/PhysRevLett.84.4505
http://dx.doi.org/doi:10.1103/PhysRevLett.84.4505
http://dx.doi.org/doi:10.1103/PhysRevE.60.4604
http://dx.doi.org/doi:10.1137/0147038
http://dx.doi.org/doi:10.1088/0959-5309/52/1/305
http://dx.doi.org/doi:10.1088/0959-5309/52/1/305
http://dx.doi.org/doi:10.1088/0959-5309/59/2/309


Continuous description of lattice 13

43 Haudin, F., Elias, R. G., Rojas, R. G., Bortolozzo, U., Clerc, M. G. & Residori, S. 2009 Driven
front propagation in 1D spatially periodic media. Phys. Rev. Lett. 103, 128003. (doi:10.1103/
PhysRevLett.103.128003)

44 Rojas, R. 2005 Sur de gouttes, cristaux liquides et fronts. PhD thesis, University of Nice Sophia
Antipolis, France. See http://tel.archives-ouvertes.fr.

45 Clerc, M. G. & Falcon, C. 2005 Localized patterns and hole solutions in one-dimensional
extended systems. Physica A 356, 48–53. (doi:10.1016/j.physa.2005.05.011)

46 Woods, P. D. & Champneys, A. R. 1999 Heteroclinic tangles and homoclinic snaking in the
unfolding of a degenerate reversible Hamiltonian–Hopf bifurcation. Physica D 129, 147–170.
(doi:10.1016/S0167-2789(98)00309-1)

47 Bortolozzo, U., Clerc, M. G. & Residori, S. 2008 Local theory of the slanted homoclinic snaking
bifurcation diagram. Phys. Rev. E 78, 036214. (doi:10.1103/PhysRevE.78.036214)

48 Rojas, R. G., Elias, R. G. & Clerc, M. G. 2009 Dynamics of an interface connecting a stripe
pattern and a uniform state: amended Newell–Whitehead–Segel equation. Int. J. Bifurcat.
Chaos 19, 2801–2812. (doi:10.1142/S0218127409024499)

Phil. Trans. R. Soc. A (2011)

http://dx.doi.org/doi:10.1103/PhysRevLett.103.128003
http://dx.doi.org/doi:10.1103/PhysRevLett.103.128003
http://dx.doi.org/doi:10.1016/j.physa.2005.05.011
http://dx.doi.org/doi:10.1016/S0167-2789(98)00309-1
http://dx.doi.org/doi:10.1103/PhysRevE.78.036214
http://dx.doi.org/doi:10.1142/S0218127409024499

	Continuous description of lattice discreteness effects in front propagation
	Introduction
	Front propagation
	Pinning--depinning transition
	Average front speed

	Front interaction and localized states
	Conclusions
	References


