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Interaction law of 2D localized precession states
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Abstract – A theoretical study of the interaction of localized precession states on an easy-plane
ferromagnetic layer submitted to a magnetic field that combines a constant and an oscillating part
is reported. Within the framework the Landau-Lifshitz-Gilbert equation, we perform a comparison
of analytical studies and micromagnetic simulations. Close to the parametric resonance, the
parametrically driven damped nonlinear Schrödinger equation models this system. By means of
this amplitude equation we are able to characterize the localized precession states and their pair
interaction law. Numerically, we have a good agreement with the pair interaction law.
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Introduction. – During the last years, emerging
macroscopic particle-type solutions or localized states
in macroscopic extended dissipative systems have been
observed in different fields, such as: domains in magnetic
materials, chiral bubbles in liquid crystals, current
filaments in gas discharge, spots in chemical reactions,
localized states in fluid surface waves, oscillons in
granular media, isolated states in thermal convection,
solitary waves in nonlinear optics, among others. Hence,
one can infer the universality of the localized-states
dynamics. Although these states are spatially extended,
they exhibit properties typically associated with particles.
Consequently, one can characterized them with a family
of continuous parameters such as position, amplitude and
width. This is exactly the type of description used in more
fundamental physical theories like quantum mechanics
and particle physics. However, localized states emerging
in extended dissipative systems are characterized by
being made of a large number of atoms or molecules (of
the order of Avogadro’s number) that behave coherently.
The paradigmatic example of macroscopic localized states
are solitons reported in the context of fluid dynamics,
nonlinear optics and Hamiltonian systems [1]. The
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solitons arise from a robust balance between dispersion
and nonlinearity. The generalization of this concept to
dissipative and out-of-equilibrium systems has led to
several studies in the last decades, in particular to the
definition of localized structures intended as patterns
appearing in a restricted region of space [2,3].
In one-dimensional systems, localized states can be

described, geometrically speaking, as spatial trajectories
that connect a steady state with itself, that means, they
are homoclinic orbits from the viewpoint of the dynamical-
systems theory (see the review [4] and references therein),
while domain walls or fronts are seen as spatial trajectories
joining two different steady states —heteroclinic curves—
of the corresponding spatial dynamical system [5]. In a
particular case the localized patterns can be understood
as homoclinic orbits in the Poincaré section of the
corresponding spatial-reversible dynamical system [4–7].
The particular case of localized patterns can also be
understood as a consequence of the interaction of fronts
with oscillatory tails [8,9]; the characterization of such
a localized structure is well known and details can be
found in [10,11]. All the aforementioned scenario cannot
be extended to localized states in two-dimensional space
systems, which currently lack an equivalent geometrical
description as those developed in the one-dimensional
systems [4]. There is another type of stabilization
mechanism that generates localized structures without
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Fig. 1: (Colour on-line) Schematic representation of an uniax-
ial anisotropic Heisenberg ferromagnetic layer. Small arrows
represent the local magnetization (Si,j) and the large arrow
stands for the external magnetic field.

oscillatory tails based on non-variational effects [12],
where the fronts interaction is led by the non-variational
terms [13]. Localized structures that we shall study are
of non-variational type.
A characteristic property of particle-type solutions

is that their interaction can be described simply in
terms of continuous parameters describing the localized
states. Recently, improved experimental techniques have
increased the interest in the study of interaction of
localized states [14,15]. The understanding of the pair
interaction law of localized states allows us to compre-
hend the evolution of the system to equilibrium; more
importantly, we expect a more efficient management
and control of these localized states for their potential
applications. This has a particular technological interest
in new storage media like semiconductor cavity [16].
One of the most prominent parametric oscillators in the
context of spintronics are the nanopillars [17], the ability
to generate and study the localized structures and the
interaction between them opens up the possibility of
developing new magnetic devices.
The aim of this letter is to study, in the classical spin

limit, the interaction of localized precession states on
an easy-plane ferromagnetic spin layer submitted to an
external magnetic field that combines a constant and
an oscillating part. This magnetic system is described
phenomenologically by the Landau-Lifshitz-Gilbert equa-
tion. In this framework we perform a comparative study
of analytical results and micromagnetic simulations. Close
to the parametric resonance, the parametrically driven
damped nonlinear Schrödinger equation models this
system. By means of this amplitude equation we are able
to characterize the pair interaction law between localized
excitations. Numerically, we have a good agreement with
the proposed pair interaction law.

Parametrically driven magnetic layer. – Let us
consider a two-dimensional anisotropic Heisenberg ferro-
magnetic layer formed by Nx×Ny spins or magnetic
moment exposed to an external magnetic field, which is
contained in the plane (x, y) and oriented in the direction

x̂≡ (1, 0, 0). Figure 1 depicts the setup of the system
under study. When the quantum effects are small enough,
the spin vectors Si,j can be treated as classical spin
or magnetic moment [18] and satisfies the dynamical
evolution Ṡi,j =−γSi,j × (∂H/∂Si,j) [19], where γ is the
gyromagnetic constant and the Hamiltonian H has the
form [20]

H =
N
∑

i,j

(−JxSi,jSi+1,j −JySi,jSi,j+1

+2D(Szi,j)
2− gµ(Sxi,j)Hx). (1)

Here, {Jx, Jy} are the exchange coupling constants
which are of the same order of magnitude, Hx and
D account for the external magnetic field and the
anisotropy energy, respectively. The characterization
and the understanding of this discrete system is a
complicated task. Hence we study the continuum limit
of this set of the ordinary differential equations [18,21].
Thus we can assume that Si,j(t)→ S(�r, t), where �r(x, y)
accounts for the coordinates describing the magnetic
plane and taking the limit Jxγ(Si+1,j − 2Si,j +Si−1,j)+
Jyγ(Si,j+1− 2Si,j +Si,j−1)→ (lx∂2x+ ly∂2y)S, scaling the
spatial coordinates (lx∂

2
x+ ly∂

2
y)S→ lex∇2⊥S, where lex

denotes the characteristic interaction length and ∇2⊥ is
the Laplacian operator in the new transversal coordinates
(∇2⊥ ≡ ∂xx+ ∂yy). Finally, introducing phenomenolog-
ically the Gilbert damping, the motion of the magne-
tization field is governed by the well-known Landau-
Lifshtiz-Gilbert equation

∂τM=M×
[

∇2⊥M−β(M · ẑ)ẑ+He−α∂τM
]

, (2)

whereM≡ S/Ms stands for the unit vector of the magne-
tization, with Ms the saturation magnetization; we have
also considered the following normalization of scales and
parameters {τ → γMst, β→ 4D/γMs, He→ gµH/γMs},
where β > 0 is the uniaxial easy-plane anisotropy constant,
and α is the damping parameter. This damping parame-
ter for a great quantities of materials is small. Assuming
that the external magnetic field is constant and neglecting
damping effects (α= 0), the dynamics of model (2) is time
reversible. However, when we consider the effects of damp-
ing and an external magnetic field with both a constant
and an oscillatory part, model (2) becomes a quasi-
reversible type, i.e. a time reversible system perturbed
with injection and dissipation of energy. The instabilities
of these types of systems have been studied during the last
decades [22].
As a result of the anisotropy and constant external

field (He = h0x̂), the natural equilibrium of the previous
model (2) corresponds to the magnetization field lying
in the direction of the external magnetic field, M= x̂
(cf. fig. 1). When spatial coupling is ignored, it is easy
to show that the dynamics around this equilibrium is
described by a nonlinear oscillator with natural frequency
ω0 =

√

h0(β+h0) [23,24]. It is worthy to note that in
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Fig. 2: (Colour on-line) Localized precession states obtained
from micromagnetic simulation (mms) of model (2) by β = 1,
h0 = 0.1, α= 0.01, Γ = 0.009 and ω= 0.328. The background
color describes the value of the intensity of Mx. The arrows
represent the instantaneous local magnetization unit vectorM.
Its respective color scale accounts for the value of the angle

θ≡ (̂x̂,M). The inset shows a profile of My and is compared
with the variational approximation (ac) given by (5).

eq. (2), the magnetization components are proportional to
the external magnetic field, which therefore acts as a para-
metric forcing. Then if this field combines a constant and
a time-periodic part (He = [h0+Γcos(ωt)]x̂) oscillating
about twice the natural frequency (ω≡ 2(ω0+ ν), where
ν is the detuning parameter), the system exhibits a para-
metric resonance at Γ2(β/4ω0)

2 = α2(β/2+h0)
2+ ν2 for

small {ν, h0, α,Γ} —Arnold’s tongue. Dynamically speak-
ing this resonance corresponds to an undamped precession
of the magnetization unit vector around the direction of
the external magnetic field with the angular velocity ω0.

Localized precession states. – The inclusion of
spatial coupling should increase the complexity of the
dynamics. For example, one expects the formation of
patterns, domain walls, and localized states near the
parametric resonance. This wide range of phenomena is
described in a unified manner near the parametric reso-
nance by the parametrically driven damped nonlinear
Schrödinger equation [25]. In order to show that the LLG
system can exhibit this kind of solutions, we have numer-
ically solved (2) using the fixed step fourth-order Runge-
Kutta scheme (dt= 10−4), over a square lattice of size
250× 250 a.u. with spatial a discretization step set to 0.1
in both directions. Numerical solutions of (2) are simul-
taneously compared with those obtained by integration of
the equivalent stereographic representation [26] in order
to check their accuracy. Figure 2 illustrates the typical
non-propagative localized precession states obtained from
these simulations. This magnetic state, is characterized
by a localized precession surrounded by a static magnetic
state that lies in the x-direction.
Changing the detuning and the amplitude of the forcing,

the system exhibits a stable uniform precession state,
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Fig. 3: (Colour on-line) Space-temporal diagram of interaction
of a pair of localized precession states obtained from model (2)
by the same parameters of fig. 1 . The circles represent the core
of the localized states, i.e. the isolines of the full width at half
maximum of the localized state.

which exhibits a spatial instability when the detuning is
decreased. This instability is characterized initially by the
appearance of a pattern with a well-defined wavelength,
which then decomposes into a gas of localized precession
states. The subsequent dynamics of this system is led
by the interaction of these states. This interaction is
characterized by the collision of a pair of localized states,
ended by a coalesce process from which there emerges a
single localized precession state. In fig. 3 this process is
shown.

Parametrically driven damped nonlinear

Schrödinger equation. – To understand the localized
precession state and the interaction between them, in
the quasi-reversible limit (Γ∼ ν ∼ α≪ ω0) and close to
the parametric resonance, we can introduce the following
Ansatz [23,24] into eq. (2):

Mx ≈ 1−
M2y +M

2
z

2
,

My ≈
1

h0

[

1+
Γ

h0

]

Ṁz,

Mz ≈ 4
√

ω0h0
β(ω20 +3h

2
0)
ψ(�r, t)ei(ω0+ν)t+ c.c., (3)

to the dominant order. After straightforward calculations
and imposing a solvability condition for the corrections
of the previous Ansatz we find (the parametrically driven
damped nonlinear Schrödinger equation)

∂tψ=−iνψ− i|ψ|2ψ− i∇2⊥ψ−µψ+ γψ̄, (4)

with γ ≡ βΓ/4ω0 and µ≡ (β/2+h0)α. This model has
been derived in several contexts to describe pattern and
localized structures, such as vertically oscillating layers of
water [27], nonlinear lattices [28], optical fibers [29], Kerr-
type optical parametric oscillators [30], among others.
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It is well known that eq. (4) exhibits stable non-
propagative dissipative solitons in two spatial dimen-
sions [31]. The localized states have the form
ψ=±Rs(r= |�r |)eiθ0 , where cos(2θ0) = µ/γ, and Rs
satisfies the equation ∂rrRs+ ∂rRs/r−λRs+R3s = 0,
where λ≡−ν+

√

γ2−µ2 > 0. To our knowledge, there
does not exist an analytical solution of the localized
state. However the asymptotic behaviors of this solution

are well defined: for instance R(r→∞)→ e−
√
λr/
√
r.

Furthermore, using the variational method, one can also
obtain a good approximation by [32]

Rs(r) =A0
√
λ sec h

(

B0

√

λ

2
r

)

, (5)

where A0 = 2.166 and B0 = 1.32. From this variational
approach and using the Ansatz (3), one can have an
adequate representation for the localized precession states.
In inset of fig. 2, we contrasted this approach with those
obtained from micromagnetic simulations of the model (2).
We note that there is a quite good agreement.
From the approximated localized state (5), one can

infer that for negative detuning, this solution appears by
a saddle-node bifurcation when dissipation and energy
injection are equal (γ = µ and ν < 0). Furthermore, this
solution is unstable when the uniform magnetization
M= x̂ —which supports this localized state— becomes
unstable at Arnold’s tongue (γ2 = ν2+µ2, by ν < 0).
The characteristic size and amplitude of the localized
precession states, respectively, are 1/

√
λ and

√
λ.

Pair interaction law of localized states. – We
consider two localized states sufficiently separated, i.e. the
distance between them is greater than the characteristic
size of the localized states. Hence, we can introduce the
following Ansatz: ψ(r, t) =R(r, t)eiθ(r,t),

R = R+s

(

r+
Δ(t)

2
r̂

)

+χR−s

(

r− Δ
2
r̂

)

+ ρ (�r,Δ) ,

θ = θ0+ϕ(�r,Δ) , (6)

where R±s are non-propagative dissipative solitons, Δ(t)
stands for the distance between the localized states (Δ≫√
λ), r̂ is the unit vector in the direction between the
localized states, χ=±1 is a sign that defines whether
the solutions are in or out of phase, ρ(�r,Δ) and ϕ(�r,Δ)
are, respectively, the corrections functions. Defining W ≡
R+s +χR

−
s , considering the parameter region where the

dissipation and injection of energy are similar (0< γ−
µ≪ 1), introducing the above Ansatz into eq. (4) and
linearizing correction functions, we obtain

W∂tW = �∇⊥(W 2�∇⊥ϕ), (7)

W∂tϕ=Lρ− 2µϕ− 3χR+s R−s W, (8)

where L≡−ν+
√

γ2−µ2+3W 2+ �∇2⊥ is a linear op-
erator.
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Fig. 4: (Colour on-line) Phase ϕ around one of the two
interacting localized solitons of eq. (4) using γ = 0.53, µ= 0.25
and ν = 0.05. a) two-dimensional representation, b) solid and
dashed lines are, respectively, the profile of ϕ obtained from
the numerical simulation of model (4) and fit (9).

To solve the above equations, we need to derive ϕ.
However finding a global solution for ϕ remains a difficult
task. Nevertheless, if localized states are diluted we can
find ϕ around the center of each dissipative soliton.
In order to get ϕ, we changed our reference system
by �r ′ = �r+ r̂Δ/2, and in consequence, we approximate
the functionsW (r′ = |�r ′|)≈R+s (r′) and ∂tW≈ Δ̇∂r′R+s /2.
Next, using the approximation (5) and integrating eq. (7),
after straightforward calculations we find out that

ϕ(r′) =−Δ̇
4

(

r′− 1
2B
Shi(2Br′)

)

≡ Δ̇Θ(r′), (9)

where Shi(2Br′) is the hyperbolic sine integral. Figure 4
compares this approximation with those obtained from
numerical simulations.
Replacing expression (9) into eq. (8), we find a linear

equation in ρ. To solve this linear equation, we use
the Fredholm alternative [2]. Therefore we introduce the
following inner product: 〈f |g〉=

∫∫

fg dxdy, where L is
self-adjoint and its kernel is characterized by {∂r′R±s }.
Then applying this product to eq. (8), we find the following
solvability condition (pair interaction law):

Δ̇ = −χ 3
aµ

∫ r′

0

∂r′R
−
s (R

−
s )
2R+s (r̂

′−Δx̂) r′dr′dθ

≈ −χ b
aµ

e−
√
λ∆

√
Δ
, (10)

where a= 〈∂r′R−s |Θ〉 and b≡ 3A
∫ r′

0
∂r′R

−
s (R

−
s )
2−

e−
√
λr cos θdr′. The pair interaction law is derived using

the asymptotic behavior of the localized state. Hence, the
localized precession states experience an exponential force
of attraction (χ= 1) or repulsion (χ=−1) if they are in
or out of phase. In the limit of diluted localized states
the prefactor 1/

√
Δ is a correction of the dominant term

which is exponential. However, when these states are
located closer to this prefactor it becomes more relevant.
Hence the interaction of localized precession states is

like over-damped two-dimensional particles with two types
of charges where the interaction is only radial. In fig. 5
the evolution of the distance between the localized states
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Fig. 5: (Colour on-line) Temporal evolution of the separation
distance Δ(t). The points represent the separation distance
obtained from a) micromagnetic simulations of the model (2)
using the parameters of fig. 2 and b) numerical simulations
of eq. (4), using the parameters of fig. 4. The solid line is
the evolution of the separation distance deduced from the
interaction law (10).

obtained using the pair interaction law is compared to
those obtained from the numerical simulations of the para-
metrically driven damped nonlinear Schrödinger equation
and micromagnetism simulations of the model (2). We find
a remarkable agreement.
In the case of reversible two-dimensional systems, using

Lagrangian methods one can derive a similar interaction
law, however the radial dynamics can be enhanced by the
appearance of tangential forces [33,34].

Conclusions. – We have theoretically studied the
interaction of localized precession states on an easy-plane
ferromagnetic spin layer submitted to a magnetic field that
combines a constant and an oscillating parts. We have
performed a comparison of analytical studies and micro-
magnetic simulations. Close to the parametric resonance,
we are able to characterize the localized precession states
and their pair interaction law. Numerically, we have a good
agreement with the pair interaction law.
Given the numerical parameters that we have consid-

ered in the micromagnetic simulations in the case of
permalloy (Ms ≃ 10 kOe) and Ni (Ms ≃ 6.2 kOe) the char-
acteristic size of the localized precession state is 43 nm and
57 nm, respectively. Therefore the description presented
here corresponds to a particular-type state of nanoscale.
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