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Front propagation in one- and two-dimensional spatially modulated media is studied both experimentally
and theoretically. The pinning-depinning phenomenon, long ago predicted by Pomeau �Physica D 23, 3
�1986��, is obtained and verified experimentally in a nematic liquid-crystal cell under various configurations of
optical forcing. The front dynamics is characterized with respect to the different forcing parameters and the
observations are compared with numerical simulations of a full model for the tilt angle of the liquid crystals
under optical feedback. A spatially forced dissipative �4 model is derived near the points of nascent bistability.
From this model we derive analytical results that account qualitatively for the observed front dynamics and
pinning range. Localized structures of different sizes and shapes are found to exist inside the pinning range and
experimentally proved to be stable states of the spatially forced system.
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I. INTRODUCTION

In out of equilibrium systems, different states can coexist
for a given range of parameters. Interfaces between such
metastable states appear in the form of propagating fronts
and give rise to a rich spatiotemporal dynamics �1–7�. Front
dynamics occurs in systems as different as walls separating
magnetic domains �8�, directed solidification process �9�,
nonlinear optical systems �10–13�, oscillating chemical reac-
tions �14�, or population dynamics �15–17�. From the point
of view of dynamical system theory, in one-dimensional
�1D� spatial dimension a front is a nonlinear solution that is
identified in the comoving frame system as a heteroclinic
orbit linking two spatially extended states �7,18�.

The dynamics of the interface depends on the nature of
the states that are connected. In the case of a front connecting
a stable and an unstable state, called a Fisher-Kolmogorov-
Petrosvky-Piskunov �FKPP� front �15,19�, the velocity is not
unique but determined by the initial conditions. The situation
is different for a front connecting two stable states. In this
case, a gradient system tends to develop the most stable
state, in order to minimize its energy, so that the front always
propagates toward the most energetically favored state. It
exists only as one point in parameter space for which the
front is motionless, which is usually called the Maxwell
point, and is the point for which the two states have exactly
the same energy �20�.

The above scenario changes drastically when one consid-
ers a system with discrete reflection symmetry, which can,
therefore, possess two equivalent states. As a consequence of
the discrete symmetry, the interfaces, or domain walls, con-
necting such equivalent states are generically at rest. Indeed,
the two connected states are “energetically” equivalent.
However, under spontaneous breaking of the parity symme-
try, these fronts can acquire a nonzero asymptotic speed.
This phenomenon is the denominated Ising-Bloch transition
�21� and has been observed in such different systems as fer-
romagnetic systems �22�, liquid crystals �LCs� �23,24�,
chemical reactions �25�, and nonlinear optical cavities �26�.

Gradient or variational systems do not exhibit this phenom-
enon, because the front speed is proportional to the energy
difference between the two equivalent states. On the other
hand, the dynamics of a nongradient system can be decom-
posed in two parts, a dissipative and a remnant part, such that
a Lyapunov functional—nonequilibrium potential—
characterizes the dissipative dynamics �27�. The steady states
of the nonequilibrium system minimize the nonequilibrium
potential, whereas the remnant dynamics is responsible for
the nontrivial behavior of stationary states, such as oscilla-
tions, chaos, and so forth. In the same way, the front propa-
gation occurring through the Ising-Bloch transition is a con-
sequence of the remnant dynamics. Due to the universal
nature of domain-wall propagation, the transition from a rest-
ing to a moving front is, in this context, usually denominated
as a nonvariational or nonequilibrium Ising-Bloch transition
�28,29�.

A different situation is that of a front connecting a homo-
geneous and a periodic state, for which the existence of a
pinning range was predicted by Pomeau �1� more than 20
years ago. In this case, a pinning-depinning phenomenon is
expected to occur as a result of the competition between a
symmetry breaking of the global energy that tends to favor
the front propagation in one direction and spatial modula-
tions that tend to block the front by introducing local poten-
tial barriers at the front core dynamics �30,31�. Depending on
the dominating effect, the front can either stay motionless—
blocked over a large range, therefore called the pinning
range—or propagate with periodic leaps apart from it. Start-
ing from a critical value of the control parameter, the
pinning-depinning transition occurs by a loss of stability of
the pinned front.

The existence of a pinning range, and associated pinning-
depinning phenomenon, has a fundamental relevance in nu-
merous domains where front propagation is involved. As ex-
amples, we can cite vibrated fluids �32�, chemical reactions
�14,33�, microfluidic chips �34�, wetting of microstructured
surfaces �35�, control of the motility of bacteria �36�, and
growth of self-assembly monolayers �37�, just to cite a few.
Indeed, spatial discreteness and spatial modulations can be
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seen as the bases for a wealth of life behaviors, where the
emergence of complexity results from the microscopic
granularity of the system �38�. As for the experimental stud-
ies of the pinning-depinning phenomenon, only a few ap-
proaches have been proposed up to date. In a two-
dimensional �2D� spatially forced system, an experimental
characterization of front propagation has shown the aniso-
tropy of the front velocity �39�; however, the issue of a pin-
ning range was not addressed. Only recently, by employing a
1D spatially forced liquid-crystal system, the experimental
demonstration of the existence of a pinning range has been
achieved �40�.

In this paper, we extend our previous findings by report-
ing an experimental and theoretical study of 1D and 2D
pinning-depinning phenomena in a nematic liquid-crystal
light valve with optical feedback. Starting from fronts be-
tween homogeneous states, spatial light modulations are in-
troduced by using a spatial light modulator �SLM�. In this
way, uniform states are transformed into patterned ones and
pinning effects appear spontaneously in the system. Numeri-
cal simulations of a full model for the average liquid-crystal
tilt angle under optical feedback have been performed, pro-
viding a good agreement with the experimental results. Close
to the points of nascent bistability, a spatially forced dissipa-
tive �4 model has been derived, which is able to capture
analytically the main features of front propagation over the
spatially modulated medium. Finally, we show that localized
structures of different sizes and shapes exist inside the pin-
ning range and are experimentally proved to be stable states
of the spatially modulated system.

The paper is organized as follows. In Sec. II the experi-
mental setup is described and in Sec. III the full model for
the liquid-crystal light valve �LCLV� with optical feedback is
presented. Section IV presents the 1D spatially forced model,
the experimental evidence of the pinning-depinning phenom-
enon, and the influence of the different forcing parameters.
Section V deals with the 2D dynamics, showing the possi-
bility of introducing anisotropic as well as isotropic front
propagation over differently structured grids and associated
pinning-depinning effects. In Sec. VI we show that localized
structures of arbitrary shape can be stabilized inside the pin-
ning range of 2D spatially modulated systems. Finally, Sec.
VII presents the conclusions.

II. EXPERIMENTAL SETUP

The experimental setup comprises a LCLV inserted in an
optical feedback loop. The LCLV consists of a thin film of
nematic liquid crystals interposed in between a glass plate
and a photoconductive material over which a dielectric mir-
ror is deposed. The confining surfaces of the cell are treated
for a planar anchoring of the liquid-crystal molecules �nem-
atic director n� parallel to the walls� �41�. Transparent elec-
trodes deposited over the cell walls allow us to apply an
external voltage V0 across the liquid-crystal layer. Molecules
tend to orient along the direction of the applied electric field,
which—on its turn—changes locally and dynamically by fol-
lowing the illumination distribution present on the photocon-
ductive wall of the cell. When liquid-crystal molecules reori-

ent, because of their birefringence, they induce a change in
the refractive index �42�. Thus, the LCLV acts as a Kerr
medium, providing for the reflected beam a phase variation
�=kdn2Iw proportional to the intensity Iw of the beam in-
coming on its photoconductive side. Here, d is the thickness
of the nematic layer, k=2� /� is the optical wave number,
and n2 is the equivalent nonlinear coefficient.

A schematic of the experiment is displayed in Fig. 1.
Similar setups have been previously used in various different
configurations for the study of spatiotemporal phenomena
and pattern formation in nonlinear optics �13,43–46�. Here,
we focus on the front dynamics that occurs when bistability
is introduced between homogeneous states �10�. The LCLV
is illuminated by an expanded He-Ne laser beam ��
=632.8 nm�, with 3 cm transverse diameter, linearly polar-
ized along the vertical direction. Once shone onto the LCLV,
the beam is reflected back by the dielectric mirror deposed
on the rear side of the cell and, thus, sent in the feedback
loop. A polarizing beam splitter �PBS�, a mirror M, and an
optical fiber bundle FB are used to close the loop and to send
the beam back to the photoconductive side of the LCLV. The
liquid-crystal director is oriented at 45°. The PBS introduces
polarization interference between the ordinary and extraordi-
nary waves propagating in the liquid-crystal layer, thus en-
suring the bistability between differently orientated states of
the liquid-crystal molecules �13�. Together with the
diffraction-free situation, this is the main ingredient neces-
sary to get normal fronts connecting spatially uniform stable
extended states. These fronts correspond to different orienta-
tions of the liquid crystals and appear in the transverse di-
rection of the beam propagation as moving interfaces be-
tween different levels of the light intensity �10�.

In the feedback loop, a self-imaging configuration is ob-
tained by using two lenses L of the same focal length f
=25 cm, placed in such a way that the rear and front sides of
the LCLV are conjugate planes. Thanks to this configuration
the free propagation length in the feedback loop is set to
zero; hence, we have a diffraction-free situation. A SLM is
placed on the optical path of the input beam and a third lens
L, of the same focal length f =25 cm, provides a 1:1 imaging
of the SLM onto the front side of the LCLV. The SLM is a
liquid-crystal display, 1 in. diagonal size, with a 1024
�768 pixels, each coded in 8 bits of intensity level, inter-
faced with a personal computer PC. By using a dedicated
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FIG. 1. �Color online� Schematic experimental setup: FB is an
optical fiber bundle, f =25 cm is the focal length of each lens L, M
is a mirror, PBS is a polarizing beam splitter, and PC is the com-
puter driving the SLM.
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software, intensity masks are produced and sent to the SLM,
which acts as a programmable filter able to impose arbitrary
spatial modulations on the input beam profile. Either 1D or
2D intensity forcing is introduced by using appropriate in-
tensity masks.

To obtain 1D profiles, masks were sent to the SLM with a
zero-level intensity except on a narrow channel of 150 �m
width and 2.5 mm length. In the channel, the intensity is set
either to a uniform level A or spatially modulated with an
amplitude B and wavelength p, providing a general expres-
sion for the input beam profile Iin�x�=A+B sin�2�x / p�,
where both A and B are controlled by changing the transmit-
tance of the SLM. Here, the intensity is expressed in gray
levels, from 0 to 255, as delivered by the SLM. For a uni-
form mask of 185 gray values, a typical value of the input
intensity is Iin=0.84 mW /cm2. To obtain 2D profiles, masks
I�x ,y� were produced with a transverse extension and with
different grid symmetries. Both in the 1D and 2D cases, the
front dynamics is controlled by adjusting the parameter of
the imposed spatial modulations as well as by varying the
external voltage V0 applied to the LCLV.

III. LCLV MODEL EQUATIONS

The model describing the evolution of the average orien-
tation tilt angle of the liquid-crystal molecules was first in-
troduced in �47�. It consists of a diffusive and relaxation
equation for the average director tilt ��x , t�, 0	�	� /2,
coupled with an equation for the feedback light intensity Iw
�13�. In the case of zero diffraction length in the feedback
loop, the equation for Iw can easily be solved, and the full
LCLV model reads as


LC�t� = l2�2� − � + �0, VLC � VFT

�

2
�1 −� �VFT

VLC���
� , VLC 
 VFT,	

�1�

where 
LC=30 ms is the LC relaxation time, l=30 �m is
the electric coherence length, ��

2 is the transverse Laplacian,
and

VLC��� = �V0 + �Iw �2�

is the effective voltage applied to the liquid crystals, with
VFT=3.2 Vrms as the threshold for the Fréedericksz transi-
tion, �
0.3 as the overall impedance of the LCLV dielectric
layers, and �
5.5 V cm2 /mW as a phenomenological pa-
rameter summarizing, in the linear approximation, the re-
sponse of the photoconductor.

The light intensity reaching the photoconductor is

Iw = Iin�1 − cos����� , �3�

where ��=� cos2 � is the overall phase shift experienced by
the light traversing the LC layer, �=2kd�n with d=15 �m
as the thickness of the nematic layer, �n=0.2 as the LC
birefringence, and k=2� /� with �=632.8 nm.

If one does not consider the optical feedback, model �1�
describes a linear diffusive and relaxation dynamics, which

characterizes the Fréedericksz transition for the liquid-crystal
orientation under the application of an external field �41�. In
our case, the equilibrium state �c satisfies

�c = �0, VLC � VFT

�

2
�1 −��VFT

VLC
� , VLC 
 VFT,	 �4�

that is, molecules are characterized by an average vertical
inclination �c=0 when the applied voltage is below the criti-
cal value VFT for the Fréedericksz transition to occur,
whereas they acquire a nonzero average tilt when the voltage
exceeds this threshold value. As illustrated in Fig. 2�a�, near
the critical value VFT the inclination tilt increases as the
square root of the voltage. Then, saturation takes place when
all the molecules are in average aligned along the direction
of the applied field.

In the absence of optical feedback, the Fréedericksz tran-
sition described by model �1� is of second order type. The
above scenario changes drastically when one considers the
optical feedback. In this case, liquid-crystal molecules inter-
act with themselves through the optical loop and the relax-
ation dynamics becomes of nonlinear nature. As a conse-
quence, the Fréedericksz transition becomes of first order
type �10�. By considering V0�VFT, and by substituting into
Eq. �1� the optical feedback intensity �Eq. �3��, we obtain the
expression for the average equilibrium director tilt �c, which
reads as

�c =
�

2
�1 −� �VFT

�V0 + �Iin�1 − cos�� cos2 �c��
� . �5�

In Fig. 2�b� the average equilibrium director tilt is plotted as
a function of the applied voltage V0 and input intensity Iin,
which are the two control parameters of the experiments. As
highlighted by the figure, for sufficiently large values of the
input intensity the surface describing the steady-state solu-
tion becomes folded. Close to the folding points, the system
shows different branches of bistability, that is, it is character-
ized by more than one equilibrium state. Therefore, depend-
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FIG. 2. �a� Equilibrium average director tilt �c as a function of
the applied voltage V0 in the absence of optical feedback; circles are
experimental points and the solid line is a best fit with model �1�.
�b� The multivalued function �c�V0 , Iin� representing the equilib-
rium average director tilt when the optical feedback is present;
shaded areas mark the locations of the nascent bistability points.
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ing on the initial condition, the molecular tilt may take dif-
ferent values for the same set of parameters. Due to the
transverse spatial extension of the liquid-crystal layer, one
expects to find domains with different inclinations of the
molecules and, thus, a rich dynamical behavior associated
with the presence of fronts connecting these domains.

Determination of the points of nascent bistability

To have a simple description of the fronts dynamics in the
system under consideration, we first study the dynamics of
model �1� around the emergence of bistability, i.e., when the
function �c�V0 , Iin� becomes multivalued. At this purpose, we
express Eq. �5� as

V0 =
VFT

�1 −
2�c

�
�2 −

�Iin

�
�1 − cos�� cos2 �c�� , �6�

and from this relation we determine the values of parameters
for the emergence of bistability. Indeed, in the parameter
space, the above expression generates a folded surface from
which one can geometrically infer the points of nascent bi-
stability. In fact, �c becomes multivalued when the function
V0��c , Iin� has a saddle point.

To illustrate this property we plot in Fig. 3�a� the equilib-
rium average director tilt as a function of V0 and for three
different values of the input intensity taken close to a point
of nascent bistability. By exchanging the axis of the graph, as
represented in Fig. 3�b�, the multivalued function �c�V0� be-
comes a single-valued function V0��c�. By confronting the
two graphs, we can easily see that the nascence of bistability
is characterized by the appearance of a saddle point for the
V0��c� function. Moreover, around the saddle point V0��c�
creates two new extreme points that determine the width of
the bistability region. From the viewpoint of the theory of
dynamical systems the emergence of bistability reveals the
existence of an imperfect pitchfork bifurcation �48�. On the
other hand, from the viewpoint of catastrophe theory the
emergence of new equilibria is related to the cusp catastro-
phe and the nascent bistability point is associated with the tip
of the cusp �49�.

To find the saddle points of the V0��c� function we impose
the conditions dV0 /d�c=0, d2V0 /d2�c=0 and, after straight-
forward calculations, we obtain the relations

Iin =
− �2�VFT

2����/2 − �c�3sin�2�c�sin�� cos2 �c�
, �7�

3

�

2
− �c

− 2 cot 2�c = − � sin�2�c�cot�� cos2 �c� . �8�

The first expression �Eq. �7�� gives the critical value of Iin for
which �c becomes multivalued. The second expression �Eq.
�8�� is an algebraic equation that depends only on the param-
eter � and determines all the points of nascent bistability.
The curves in Fig. 4 are the left- and right-hand sides of Eq.
�8�, calculated for �=14. The interception points of the two
curves correspond to all the points of nascent bistability that
can be found for this value of �. However, only half of them
have physical significance because the other half correspond
to negative values of the intensity.

By taking into account the constraint that the intensity
must be positive and considering that the cotangent function
is � periodic, we have that the actual number of points of
nascent bistability is equal to the next smallest integer of
� /2�. For the values considered in the experiment � is about
54, then one expects to find eight points of nascent bistability
in the entire �V0 , Iin� parameter space, a prediction that is
confirmed by the experiment. In Fig. 4 the actual points of
nascent bistability are marked by filled circles. Once a point
of nascent bistability is identified, one can determine the
critical values �V0

c , Iin
c � of the voltage and input intensity for

which �c becomes multivalued and, then, characterize the
front dynamics in the vicinity of those values.

IV. 1D SPATIALLY MODULATED SYSTEMS

A. Forced model and pinning-depinning phenomenon

As depicted in Fig. 3, the dynamics near a nascent bista-
bility point is described by a vector field governed by a cubic
nonlinearity. Hence, close to a given point of nascent bista-
bility, Iin� Iin

c , and V0�V0
c, we can approximate the average

director tilt field by the expression
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FIG. 3. �Color online� �a� Equilibrium average director tilt �c as
a function of the applied voltage V0 and at fixed input intensities
Iin=0.38, 0.41, and 0.43 mW /cm2 for the lower �green�, middle
�blue�, and upper �red� curves, respectively. �b� Same graph for
inverted axis.
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FIG. 4. �Color online� Left-hand �dashed blue curve� and right-
hand �solid red curve� sides of Eq. �8� for �=14; the points of
nascent bistability, marked by the filled circles, are the interception
points of the two curves that correspond to positive intensity.
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��r�,t� � �c +
��r�,t�

�0
, �9�

where ��r� , t� is an order parameter that accounts for the dy-
namics around the point of nascent bistability and �0

2

�2� cos 2�c cot�� cos2 �c�+ �4+�2 sin 2�c� /3−2 / �� /2
−�c�2 is a normalization constant introduced to simplify the
equation for the field �.

Introducing the above expression into Eq. �1�, considering
the 1D forced case and developing in Taylor series by keep-
ing the cubic terms, after straightforward algebraic calcula-
tions, we can reduce the full LCLV model to a forced dissi-
pative �4 model, which reads as


�t� = � + �� − �3 + l2�xx� + �b + c��sin�2�x

p
� , �10�

where b, c, and p are the forcing parameters, with p as the
spatial period of the forcing grid. The various coefficient �,
�, b, and c can be expressed as functions of the different
experimental parameters and read as

� �
2�

�2VFT
�1 − cos�� cos2 �0����/2 − �0�3
�Iin − �Ic

+ ��1 − cos�� cos2 �0���V0 − Vc�� ,

� �
12

�2VFT
���/2 − �0�2�V0 − Vc��

+
12

�2VFT
���2VFT

12
− ��/2 − �0�2��Iin − Ic�/Ic� ,

b �
2�B

�2�VFT
�1 − cos�� cos2 �0����/2 − �0�3,

c �
B

Ic
�1 −

12V0

�2VFT
��/2 − �0�2� ,

where B is the amplitude of the forcing.
It is instructive to write the above model in a potential

form


�t� = −
�F

��
, �11�

where

F = −� ��� + �
�2

2
−

�4

4
−

l2

2
��xx��2�dx �12�

is the Lyapunov functional for the unforced case �b=c=0�,
which has a potential associated of the form

V��� = �� + �
�2

2
−

�4

4
.

Then the dynamics of the previous model is characterized by
the minimization of the potential F. This situation corre-
sponds to an imperfect extended pitchfork bifurcation
�6,7,48� and admits front solutions connecting the two stable
states that coincide with the minima of the potential.

The analytical expression of the motionless front connect-
ing asymptotically the stable state �� with the other stable
state −�� can be easily calculated and reads as ��=0�

�k�x − x0� = � �� tanh���l2/2�x − x0�� . �13�

The front always propagates toward the most energetically
favorable state, which is defined by the sign of �. This situ-
ation is depicted in Fig. 5�a�, where the potential is plotted,
together with the corresponding direction of front propaga-
tion, for negative and positive � �left and right graphs, re-
spectively�. It exists only as one point in the parameter
space, the so-called Maxwell point �7,20�, for which the in-
terface is immobile because the two states have the same
energy, and this occurs for �=0 �central graph�. When a
spatial forcing is introduced �b
c�0�, the uniform states
become periodic and the front exhibits a pinning range, that
is, it is motionless in a large interval of parameters. A quali-
tative representation of this effect is represented in Fig. 5�b�.
Because of the local potential wells introduced by the spatial
forcing, the front remains trapped beyond the potential bar-
riers and does not propagate until � exceeds a critical value
�c �central shaded area�. Once this happens, the front propa-
gates by leaps over the discontinuous potential, moving to-
ward the most favorable state on the respective side of the
pinning range �left and right graphs�.

To study analytically the effect of the forcing, we consider
the ansatz ��x , t�=�k(x−x0�t�)+w�x ,x0�, where x0 is the po-
sition of the front core, that is, the region of space where the
front has the highest spatial variations. Introducing the pre-
vious ansatz in Eq. �10�, linearizing in w, and imposing a
solvability condition, after straightforward calculations we
derive �50�

ẋ0 = −
3�

�2�
− ��p�sin�2�

p
x0 + �� , �14�

from which we see that the front speed has a constant term
plus an oscillatory part. The amplitude of the oscillation is

η=0η<0 η>0
V(φ)

φ

η>|ηc|0<η<|ηc|η<-|ηc| -|ηc|<η<0

η=0

a)

b)

pinning

FIG. 5. �Color online� Evolution with � of the potential V���
for the �a� unforced and �b� spatially forced cases. �a� For ��0 or
��0, the front propagates toward the most favored state, as indi-
cated by the red arrow, and stays motionless only at the Maxwell
point, �=0. �b� The front is pinned over a large range of parameters
and propagates by periodical leaps only when � exceeds a critical
value �c.
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��p� = 2�2 cosech��2�2/p��9b2p2 + 2c2�2/2p3, �15�

and tan �=�2c� /3bp. The front is motionless in the range of
parameters for which the first term is smaller than the ampli-
tude of the periodic term, which defines the pinning range
�−	�	�+, with the critical values being ��

� ��2���p� /3. Outside this region, the front propagates
with an oscillatory speed. In order to compute the average
front speed we can integrate the above equation �Eq. �14��
and obtain

x0�t� = x0�t0� + p/2� arctan�tan�p/2��9�2/�22� − 1t�

��3� + ��2�/�3� − ��2�� . �16�

The above expression can be rewritten in the following form:

tan�2��x0�t� − x0�t0��
p

�
=

�3� + ��2�

�3� − ��2�
tan�p/2��9�2/�22� − 1t� . �17�

Hence, we have the equality of two periodic functions of
period 2�. If � and 
 are, respectively, the spatial and tem-
poral periods, then they satisfy the relation

� = p, 
 = � �9�2/�22� − 1/p ,

and the average front speed can be defined as

� dx0

dt
� =

�



= � �9�2/�22� − 1.

As an alternative way, we can rewrite the above expression
as �50�

� dx0

dt
� = �

3�2

2
��1 − ���

�
�2

. �18�

For ���� ���� the above formula is imaginary, i.e., the front
speed is zero. Close to ��, the above formula recovers the
dynamical behavior expected for a saddle-node bifurcation,
with the front speed increasing as a square root of �, as
predicted by the following formula:

�dx0/dt� � � 3��� − �����. �19�

However, for large �, the average front speed behaves as a
linear function of �.

In Fig. 6 the bifurcation structure of the front speed nu-
merically obtained from the �4 model is compared with the
analytical expression of Eq. �18�, showing a good agreement.
The forcing parameters are A=1, B=0.2, and p=0.05Lx, with
Lx=800 as the number of integration points. Figure 7 dis-
plays the bifurcation structure of the average front speed
�dx0 /dt� numerically calculated for the full LCLV model
�Eq. �1�� and for the same forcing parameters as above. The
solid lines on the same figures are the theoretical fits with
Eq. �18�. Thus, when one compares the bifurcation structure
of the front speed obtained from the full LCLV model with
the analytical expression of Eq. �18�, a good agreement is
also found.

In summary, a large pinning range clearly appears when
spatial modulations are introduced in the system. The �4

model provides a simplified description around the points of
nascent bistability, where we can understand the mechanism
of front propagation and perform analytical calculations.
These results, when compared with the full LCLV model,
show a remarkable agreement.

B. Experimental observations of the pinning-depinning
phenomenon

The front dynamics in the 1D spatially forced case has
been characterized by using intensity masks of zero-level
intensity everywhere except on a narrow channel �width D
=150 �m and length 2.5 mm�, where the intensity has the
expression I�x�=A+B sin�2�x / p�. The resulting input inten-
sity Iin in front of the LCLV is spatially modulated as Iin
= I0+b0 sin�2�x / p�, where both I0 and b0 can be controlled
by changing A and B. I0 is measured when imposing a uni-
form 2D masks with A gray value. In the set of measure-
ments presented here we have fixed I0=0.9 mW /cm2 and
b0=0.1 mW /cm2. This average intensity is kept constant. As
previously seen, the response of the liquid-crystal molecules
depends on Iin and V0. Here, the control parameter chosen to
tune the front dynamics is V0, playing the role of a symmetry
breaking parameter like the � parameter in the �4 model.

Once identified the range of V0 values corresponding to
the bistable region, where two different molecular orientation
states coexist, we have characterized the dynamics of the
normal fronts propagating over a uniform background. For
different V0 voltages, the front speed is measured by record-
ing with a charge-coupled device camera the interface evo-
lution over the channel. In the absence of spatial forcing, the
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pinning
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FIG. 6. Bifurcation structure of the average front speed for the
�4 model �Eq. �10��; a.u. is arbitrary units. Points are numerical
simulations and solid lines are theoretical fits with Eq. �18�.
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FIG. 7. Bifurcation structure of the average front speed �dx0 /dt�
for the full LCLV model with optical feedback �1�; a.u. is arbitrary
units. Points are numerical simulations and solid lines are theoreti-
cal fits with Eq. �18�.
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most stable state tends to invade all the available space, de-
veloping an expanding or retracting front. The front speed
evolves linearly with V0, with its sign changing at the Max-
well point, the only point where the front is motionless �40�.
When, with the SLM, we apply the spatially periodic forc-
ing, the uniform states transform into patterns and the dy-
namics changes significantly. The front either stays motion-
less in a large region of parameters or outside this region
propagates by periodical leaps. In Fig. 8 the average front
velocity �v� is plotted against V0 for a forcing wavelength
p=115 �m. Due to the spatial forcing, the front is pinned
over a large range of parameters, confirming Pomeau’s pre-
diction �1�: in order to propagate over a periodic medium the
core of the front has to overcome a finite energy barrier. The
experimentally observed pinning range is marked in the fig-
ure by the darkest shaded area, whereas the light gray area
marks the region of bistability.

Outside the pinning range the front propagation occurs
through periodical leaps and the front speed oscillates regu-
larly. Most particularly, the pinning-depinning transition at
the right or left side of the pinning range is a saddle-node
bifurcation. The solid line in Fig. 8 represents the velocity
calculated by using the theoretical prediction �Eq. �18��,
which scales as the square root of � close to the pinning-
depinning transition and linearly with � far from this transi-
tion. We can note that the experimental results are in a quali-
tative good agreement with the model. The region on the left
side of the pinning range �retracting front� is very small;
hence, it was not possible to accurately fit the speed of the
front in this region.

C. Influence of the forcing parameters

The influence of the forcing parameters has been tested in
various experimental measurements. As a first test, we have
checked the influence of the intensity level around which the
modulation is made. A was then set to 190, instead of 210 as
in the previous measurements, and the input intensity I0 was
changed, correspondingly, from 0.9 to 0.8 mW /cm2. By fol-

lowing the same procedure as before, we have constructed
the bifurcation diagram of the average speed �v� with respect
to V0, as reported in Fig. 9. We note that the pinning range is
shifted to higher values of V0, which is consistent with the
intensity-voltage characteristics of the LCLV �47�.

The main difference with respect to the previous case is
the absence of leap propagation on the left side of the pin-
ning range. When launching in this region an upper state as
the initial condition, we observe that it relaxes locally to the
lower state without oscillatory front motion. This behavior
can be explained by considering that the modulation re-
sponse of the system is more important for this forcing and,
at higher modulation amplitudes, it may happen that the
lower state collides with the uniform state and disappears by
a saddle-node bifurcation. A similar behavior occurs for lo-
calized states when they are nucleated over a modulated
background �51�. This phenomenon of relaxation onto the
lower state at the left of the pinning range can be observed
by numerical integration of the 1D model for the LCLV with
a spatial forcing Iin�x�=A+B cos� 2�x

p �.
Figure 10 shows numerical spatiotemporal plots obtained

for increasing V0 values and two different average intensities
A=3.5 �upper row� and A=4.5 �lower row�. For the lower
value of V0 �4.9 V�, corresponding to Fig. 10�a�, the system
relaxes to the low state, whereas for V0=5.0 and 5.1 V �Figs.
10�b� and 10�c��, the system is in the pinning range and there
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FIG. 8. Average front velocity �v� against the voltage V0 in the
spatially forced experiment; A=210, B=15, and p=115 �m; the
light gray area is the bistable region, while the shaded darker area is
the pinning range. Shown in the insets are the spatiotemporal plots
of the front evolution before, inside, and beyond the pinning range.
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is no front propagation in between these two behaviors. On
the other hand, for a higher average intensity A=4.5, the
spatiotemporal plots show a front retracting by periodic
leaps, as shown in Figs. 10�d� and 10�e� �V0=4.5 and 4.6 V,
respectively�, and then a pinning range, as shown in Fig.
10�f� �V0=4.7 V�. As in the experiment, changing the aver-
age intensity value A leads to the disappearance of the front
propagation at the left of the pinning range as well as de-

creasing A shifts the pinning range to higher V0 voltage
range.

Then, the influence of the forcing wavelength at a con-
stant V0 voltage has been studied by changing the spatial
period p of the grid delivered by the SLM. As p increases,
the main qualitative effect is the increase in the pinning
range and the decrease in the front speed. The experimentally
measured change in the average front speed �v� as a function
of p is reported in Fig. 11�a�. Experimental and numerical
spatiotemporal diagrams of the front propagating from a lo-
cal initial condition are shown in Figs. 11�b�–11�g� for in-
creasing forcing wavelength.

A final characterization of the pinning-depinning transi-
tion has been made for varying the amplitude B of the forc-
ing modulation. The average front speed �v�, measured as a
function of B for three different values of V0, is reported in
Fig. 12. As can be seen in the figure, the smaller is V0, the
larger is the pinning range. For the largest value of V0 no
pinning occurs because the amplitude of the forcing is too
important and the bistability is lost starting from B=15. Nu-
merical spatiotemporal plots are shown in Fig. 13 for a fixed
V0 and by increasing the forcing amplitude B. We can note
that, as B increases, the average front speed decreases until it
reaches zero when entering the pinning range, which is in
qualitative good agreement with the experimental results.

V. EXPERIMENTAL FRONT PROPAGATION IN
SPATIALLY MODULATED 2D SYSTEMS

A. Stripe grid

As a first step, it is interesting to consider the extension in
two dimensions of the 1D case presented above. To do this,
the intensity mask sent to the SLM is made by designing a
stripe grid uniform in the y direction, as shown in Fig. 14�a�.
The expression for the light intensity distribution reads as

I�x,y� = A + B�sin�kx�� , �20�

where k=2� / p. The forcing wavelength is fixed at p
=115 �m and we take as an initial condition a circular area
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of 255 gray value level on a zero-level intensity background,
as shown in Fig. 14�b�. Once the initial condition is released,
a front spontaneously propagates over the grid and along the
stripe direction, as displayed in Fig. 14�c�.

Because of the anisotropy of the forcing, one expects the
dynamics of the front over the grid to be anisotropic, too. An
example temporal sequence of the front propagation at the
right side of the pinning range is shown in Fig. 15. The front
presents a propagation characterized by discrete jumps in the
direction perpendicular to the stripes, whereas the propaga-
tion occurs with a constant velocity along the parallel direc-
tion once a new island is nucleated on the closest stripe line
of the underlying grid. Theoretical and numerical studies of
propagation of striped patterns show that the propagation of
the interface is anisotropic �52,53�.

We have characterized experimentally the front propaga-
tion by measuring the average speed in both the parallel and
perpendicular directions with respect to the stripes. The re-
sulting bifurcation diagrams as a function of V0 are displayed
in Figs. 16�a� and 16�b�, respectively. The speed in the di-
rection parallel to the stripes, �v��, does not display a pinning
range, and the front propagates uniformly on both sides of its

respective Maxwell point. On the other hand, the speed per-
pendicular to the stripes, v�, shows a large pinning range and
the front propagates with periodical leaps at the right of the
pinning region. At the left side of the pinning range the
propagation by leaps exists only for a very tiny region of
parameters, before the loss of bistability. At the right side of
the pinning range, we have fitted the front velocity with the
theoretical expression �Eq. �18��. The fit is represented by a
solid line in Fig. 16�b�. Again, we can see that Eq. �18�
provides a very good agreement with the experimental data.
For comparison, a fit with a square-root law, as predicted by
the saddle node, has been tested and shown to provide a less
accurate agreement, especially far from the pinning-
depinning transition. We can, therefore, conclude that the �4

model gives a good qualitative description of the front dy-
namics close to the pinning range.

B. Square and hexagonal grids

We have seen that, by using a stripe grid, it is possible to
pin the front in a given direction whereas it remains free to
propagate in the perpendicular direction. Considering this, it
is worth now to investigate the possibility of pinning the
front in two directions by using 2D intensity masks with
modulation along both directions, such as square or hexago-
nal grids.

To study the front dynamics over a square modulated me-
dium, suitable intensity distributions were generated through
the SLM, so that the input intensity takes the following ex-
pression:

I�x,y� = A + B�cos�kx� + cos�ky�� ,

with x as the horizontal direction, y as the vertical one, and
k=2� / p, where p is the wavelength of the spatial modula-
tion. The forcing wavelength is fixed at p=160 �m and the
other forcing parameters are A=190 and B=30. For increas-
ing V0 we have measured the average front velocity along the
diagonal direction, �v45°�, as marked on the temporal se-
quence displayed in Fig. 17. The bifurcation diagram for
�v45°� as a function of V0 shows a clear pinning range, as
displayed in Fig. 18. At the left or right side of the pinning
range the front propagates by leaps, both in horizontal and
vertical directions, with horizontal and vertical leaps alter-
nating during the time.

We can proceed in a similar way by replacing the square
modulation with a hexagonal grid and, thus, study the front
dynamics over a hexagonally modulated medium. At this
purpose, intensity profiles of the input beam were produced
in the form

v⊥

v//

FIG. 15. Temporal sequence showing a front propagating over
the stripe grid; V0=6.0 V, A=195, B=15, and p=115 �m; the
time delay between two successive snapshots is 0.8 s.
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FIG. 17. Temporal sequence showing a front propagating over a
square grid; V0=5.7 V, A=190, B=30, and p=160 �m; the time
delay between two successive snapshots is 3.2 s.
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I�x,y� = A + B�cos�kx� + cos�1

2
kx +

�3

2
ky��

+ B�cos�1

2
kx −

�3

2
ky�� ,

with k=2� / p. Figure 19 displays a sequence of images
showing how, starting from a circular initial condition, the
generated front spontaneously propagates over a hexagonally
modulated medium. We can note that the front moves by
steps expanding along a discrete set of preferential direc-
tions, with these being dictated by the axis of symmetry of
the underlying hexagonal grid.

As a generalization of this method more complex grids
can be designed by adding more wave vectors, �ik�i=0, with
an appropriate phase matching condition. By sending the re-
sulting grids to the SLM, the pinning-depinning phenomenon
could be studied over arbitrarily spatially modulated media,
for example, quasicrystal grids or superlattices. Similar
methods could also be employed to study the behavior of
ultracold atom clouds, or Bose-Einstein condensates, over
arbitrarily complex or spatially modulated potentials �54�.

VI. LOCALIZED STRUCTURES

Finally, it is interesting to investigate the possibility of
using the pinning range in order to generate and stabilize
localized structures of different sizes and different shapes. In
the experiment, stable localized states can be induced by
starting with a 2D suitable initial condition �square, circular,
or uniform extended profile� and then switching it off over
the spatially modulated medium.

To prove the existence of stable localized structures, by
following the procedure described above we have taken ei-

ther a square or a hexagonal grid, and we have set V0 values
in the pinning range of the front. Thanks to the bistability
and to the pinning phenomenon, by locally applying a per-
turbation on the input intensity profile, it is possible to
change the size of the initial pattern and then stabilize local-
ized states formed by a different number of cells of the un-
derlying grid. As an example, the alpaca picture displayed in
Fig. 20 has been produced starting from a square initial con-
dition over a square grid of wavelength p=160 �m. Another
example is displayed in Fig. 21, where are shown a localized
structure in the form of a large domain and, apart from this,
a single-cell localized structure, both stabilized over a hex-
agonal grid of wavelength p=150 �m.

Thus, provided we fix the parameters in the pinning range
of the fronts, localized structures are stable states of the 2D
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FIG. 18. Bifurcation diagram of the average velocity �v45°� of
the front propagating along the diagonal of the square grid; A
=190, B=30, and p=160 �m.
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FIG. 19. Temporal sequence showing the spontaneous front evo-
lution over a hexagonal grid; �a� is the circular initial condition and
�b�–�d� are separated by a time delay of 4 s; V0=5.8 V, A=187.5,
B=7.5, and p=130 �m.
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FIG. 20. �Color online� Three-dimensional intensity profile of a
localized structure taking the form of an alpaca, stabilized over a
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spatially forced system. Different shapes and symmetries of
localized structures are expected to exist depending on the
specific grid and initial conditions, which could be employed
to extend the domain of possible applications of localized
structures in optical control and storage �45,55–57�.

VII. CONCLUSIONS

We have reported a detailed characterization of the 1D
and 2D front dynamics in a spatially modulated medium and
given evidence, both theoretically and experimentally, of the
pinning-depinning phenomenon induced by the spatial forc-
ing. The experiment consists of a LCLV with spatially modu-
lated optical feedback. By adjusting the forcing parameters
through a spatial light modulator, we have proved the possi-
bility of controlling the front dynamics to a large extent. A
significant pinning-depinning phenomenon has been ob-
tained both in 1D and 2D spatially modulated systems.

Near the onset of bistability, we have derived an extended
pitchfork bifurcation model with spatial forcing, which ac-
counts for the main features of the front dynamics observed
experimentally. In the 1D spatially forced system and in the
2D system forced with stripes we have shown a very good

agreement between the experimental front speed and the the-
oretical prediction of the �4 model derived close to the
points of nascent bistability. In 2D systems forced with
square or hexagonal grids, we have shown that the front
propagation becomes anisotropic, with the possibility of pin-
ning the front along one or more specific directions coincid-
ing with the symmetry axis of the underlying pattern.

Using a square or a hexagonal grid, we have shown that a
voltage interval exists in the pinning range for which it is
possible to stabilize localized structures of arbitrary size and
shape, thus opening the possibility to use the spatially forced
medium as an optical writing board. Further investigations
are in progress to fully characterize the different localized
states that can be stabilized in the pinning range.
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