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The dynamics of an interface connecting a stationary stripe pattern with a homogeneous state
is studied. The conventional approach which describes this interface, Newell–Whitehead–Segel
amplitude equation, does not account for the rich dynamics exhibited by these interfaces. By
amending this amplitude equation with a nonresonate term, we can describe this interface and
its dynamics in a unified manner. This model exhibits a rich and complex transversal dynamics
at the interface, including front propagations, transversal patterns, locking phenomenon, and
transversal localized structures.
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1. Introduction

Nonequilibrium systems are commonly exhibited
as equilibrium extended states: uniform, oscilatory,
chaotic, and pattern states [Nicolis & Prigogine,
1977]. By changing the parameters, a uniform state
can bifurcate to a pattern state, the system under
study has a spatial bifurcation. This instability
arises when a control parameter exceeds a critical
value. The difference between the control parameter
and the critical value is usually called the bifurca-
tion parameter [Nicolis & Prigogine, 1977]. Often,
the macroscopical or mesoscopical equations that
govern the dynamical behavior of the system under
study are complicated and do not have analytical
solutions available; nevertheless, close to the insta-
bility threshold, the system can be well described
by a set of equations called amplitude equations
[Landau, 1944; Stuart, 1960; Schlüter et al., 1965].
These equations describe the dynamical behaviors
of the amplitude for the critical modes. The relation

of the amplitudes with the initial physical variables
is given by an asymptotic series close to the
identity [Elphick et al., 1987]. Amplitude equa-
tions are valid for weak nonlinearities, and slow
modulations in space and time. These mod-
els successfully describe a large number of pat-
terns forming in: Rayleigh–Benard convection,
Taylor–Couette flow, Faraday instability, direc-
tional solidification, nonlinear optics, chemical reac-
tions, biological systems, and so forth [Cross &
Hohenberg, 1993; Newell et al., 1993; van Hecke
et al., 1994]. However, there are several phenomena
which are not described by amplitude equations,
e.g. the nonadiabatic effects such as the pinning
range [Pomeau, 1986; Aranson et al., 2000], local-
ized patterns [van Saarloos & Hohenberg, 1992;
Sakaguchi & Brand, 1996], interface dynamics
in a two-dimensional system [Malomed et al.,
1990; Hagberg et al., 2006; Burke & Knobloch,
2007; Clerc et al., 2008], noise induces propa-
gation [Clerc et al., 2005b], and localized peaks
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[Bortolozzo et al., 2005, 2006]. One way to take into
account these phenomena is to include the nonres-
onant terms in the amplitude equations [Bensimon
et al., 1988; Clerc & Falcon, 2005; Clerc et al., 2005b].
Another way to describe these phenomena is going
beyond all orders of the usual multiple-scale expan-
sion [Kozyreff & Chapman, 2006]. All these phenom-
ena are not described by the conventional amplitude
equations approach and they are a consequence of
the interaction of the spatial variation of the enve-
lope or amplitude with the underlying pattern.

One of the most well-known amplitude equa-
tions in two-dimensional systems is the Newell–
Whitehead–Segel equation (NWS) [Segel, 1969;
Newell & Whitehead, 1969; 1971]. This model
describes the appearance of the stripe pattern in
two-dimensional systems, and their respective sec-
ondary instabilities like Eckhaus, and zigzag [Jakob-
sen et al., 1994; Walgraef, 1996]. However this
amplitude equation does not take into account
the transversal dynamics of the interface connect-
ing a stripe pattern with a uniform state [Hag-
berg et al., 2006; Clerc et al., 2008]. In particular,
the depinning effect has been reported between a
stripe pattern and a uniform state in the supercrit-
ical Swift–Hohenberg model [Hagberg et al., 2006].
In this system the flat interface presents a spa-
tial instability followed by nucleation of convex–
concave disclination pairs and finally the system
displays a labyrinthic pattern. Hence, the nonlinear
response in this model does not saturate the insta-
bility and does not give rise to coarsening process.
On the contrary, numerical simulations in the sub-
critical Swift–Hohemberg equation show that this
interface has transversal spatial periodic structures,
zigzag dynamics and complex coarsening process
[Burke & Knobloch, 2007; Clerc et al., 2008]. In the
last decade, interface dynamics has attracted atten-
tion to different fields of science, including biol-
ogy, chemistry, and physics [Murray, 1993]. Most of
these studies of an interface between patterns and
homogeneous states have been developed in one-
dimensional systems. However, in two dimensions
few studies have been performed of the interface
connecting pattern states to uniform ones.

The aim of this manuscript is to study the
dynamics of an interface connecting a stripe pat-
tern with an homogeneous one. To describe in a
unified manner this type of interface we consider the
amended NWS equations, that is NWS with extra
nonresonant terms. Since, the conventional NWS
does not describe the wealthy interface dynamics

observed in a prototype model, which has inter-
faces with a stripe pattern and a uniform state, we
show that amending the NWS equation, one can
render and recover the rich and complex transver-
sal dynamics at the interface, including interface
or front propagation, transversal spatial pattern
(which has been recently termed embroidery [Clerc
et al., 2008]), locking phenomena, and transversal
localized structures.

The manuscript is organized as follows: In
Sec. 2 the NWS equation is introduced, the gen-
eralization of this model is presented in Sec. 3. The
transversal interface dynamics is described in Sec. 4.
The localized structures observed in the transversal
interface are discussed in Sec. 5, and conclusions
and remarks are presented in Sec. 6.

2. The Newell–Whitehead–Segel
Equation

Let us consider a two-dimensional isotropic
dynamical system with a homogeneous solution
u(x, y, t)= uo

∂tu = F(u, ∂x, ∂y, {λ}), F(uo, ∂x, ∂y, {λ}) = 0,
(1)

where u(x, t) is a field of dimension n that describes
the system under study, F is the vector field which
accounts for the dynamics of the system, the sym-
bols ∂x, ∂y and ∂t stand for derivatives with respect
to the x, y and t variables, respectively. {λ} is a
set of parameters which characterize the system
under study. In order to study the interface con-
necting a stripe pattern with a uniform state, the
dynamical system (1) needs to exhibit coexistence
between a stationary stripe pattern and a homoge-
neous state. A simple way to have this scenario is
that the system (1) has a subcritical or inverted
bifurcation at a finite spatial wave length. From
the point of view of dynamical system theory, this
type of bifurcation is generic, however a few physi-
cal examples are known in two extended dimensions
such as Rayleigh–Benard in binary fluids [Burke &
Knobloch, 2006]. When the dynamical system (1) is
isotropic, and for the sake of simplicity we choose
the direction of variation of the stripes as the x-
direction, then close to the spatial bifurcation one
can propose as solution [Cross & Hohenberg, 1993]

u = uo + [A(x, y, t) eiqx +A(x, y, t) e−iqx] v̂

+
∑
n,m

anmAnAm ei(n−m)qxûnm, (2)
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where v̂ is the growing direction of the marginal
mode with wave number q = (q, 0) and A(x, y, t)
is the envelope or amplitude of the critical mode
eiqxv̂. Introducing the above ansatz in Eq. (1)
after straightforward calculation one arrives at the
dimensionless subcritical Newell–Whitehead–Segel
equation (NWS)

∂tA = εA + ν|A|2A − |A|4A +
(

∂x − i
2
q
∂yy

)2

A,

(3)

where ε is the bifurcation parameter, for negative
(positive) ε the uniform state uo is stable (unsta-
ble). The parameter ν controls the type of bifurca-
tion (super and subcritical). Positive ν accounts for
a subcritical bifurcation. Hence, below the bifurca-
tion the uniform state uo is stable, by increasing the
bifurcation parameters, this state becomes unstable
and gives rise to a stripe pattern with finite ampli-
tude. Decreasing the bifurcation parameter (ε < 0
and ν > 0) the amplitude of stripe pattern decreases
and this solution coexists with the uniform state,
which correspond to the coexisting region. Higher-
order terms are ruled out by the following scaling,
ν ∼ ε1/2, |A| ∼ ε1/4, ∂t ∼ ε, ∂x ∼ ε1/2, ∂y ∼ ε1/4

and ε � 1. Hence, the above equation is of order
ε3/2. For the sake of simplicity and without loss of
generality rescaling time, space, the amplitude A,
and fixing ν = 1, the amplitude equation reads

∂tA = εA + |A|2A − |A|4A +
(

∂x − i
2
q
∂yy

)2

A.

(4)

Due to the isotropy property of the original
system, Eq. (1), the spatial operator in the NWS
Eq. (4) is anisotropic because perturbations in the
direction of the stripes are not equal to those in the
orthogonal direction. Notice that the above model
(4) is variational, i.e.

∂tA = −δF
δA

, (5)

where

F =
∫ (

−ε|A|2 − |A|4
2

+
|A|6
3

+
∣∣∣∣
(

∂x − i2
q

∂yy

)
A

∣∣∣∣
2
)

dxdy. (6)

Hence, the dynamics of the amplitude equation (4)
is characterized by the minimization of this func-
tional F . This functional has two trivial equilibria

states Ao = 0 and A1 = (1/2 +
√

ε + 1/4)1/2eiφ

where φ is an arbitrary constant. This equation has
a family of front solutions connecting the homo-
geneous states Ao and A1. The solutions Ao and
A1 represent the homogeneous and the spatial peri-
odic states of the original dynamical system, respec-
tively. This front is static only at the Maxwell point
[Goldstein et al., 1990], i.e. for εM = −3/16. For
ε < εM the homogeneous solution invades the peri-
odic one and for ε > εM the periodic invades
the homogeneous state because the most favorable
state — that is the global minimum of F — invades

Fig. 1. Density plot of |A| of model (9) with ε = −3/16,
q = 2.6, and for: (a) η = 0.0, (b) η = 0.08, (c) η = 0.10,
and (d) η = 0.15. The figures on the right are the linear
spectra of the flat interface respectively. The inset figures (a)
and (b) depict the typical coarsening dynamics exhibited by
model (3) and the inset figures (c) and (d) are the final states
observed in the respective regime of the parameter. On top,
we give the scale of all density plots.
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the other. At the Maxwell point, the front solution
is motionless and has the form

A(x, y) =

√√√√√ 3
4

1 + e±
√

3/4(x−P )
eiθ, (7)

where P is the position of the interface, and θ is
an arbitrary phase. Hence, the family of front solu-
tions is parameterized by two continuous parame-
ters {P, θ}. From now on, we will denominate core
or interface of the front, the region of the space
where the front solution has a large spatial vari-
ation. Numerical simulations show that this front
interface is unstable in the transversal direction
(y-direction). Numerically, we have computed the
growth rate of the transversal mode of the inter-
face [cf. Fig. 1(a)]. The most unstable transversal
mode, has a wave number close to the original crit-
ical one q.

In [Sakaguchi & Brand, 1996], an interface is
shown that connects a stripe pattern with an uni-
form state exhibiting a locking phenomenon in the
context of quintic Swift–Hohenberg equation. More
recently in [Clerc et al., 2008] is shown that these
interfaces can suffer a transversal spatial instabil-
ity, which gives rise to transversal patterns (embroi-
deries), and nonlinear zigzag dynamics. The NWS
model (4) cannot render account of these phe-
nomena, because it does not exhibit locking phe-
nomenon and embroideries at the interface. In the
next section, we will present a formalism which
allows to recover the dynamics exhibited by the
original system.

3. The Amended Amplitude
Equation

To describe the observed phenomena, we propose
to amend the NWS equation, i.e. to consider the
nonresonant terms in the conventional amplitude
equation. Below the bifurcation, the equilibrium
state has the continuous symmetry x → x + α,
but above the bifurcation this symmetry is sponta-
neously broken by the stripe pattern. The ansatz (2)
shows that, above the bifurcation, the system has
the symmetry x → x + α and A → Aeiqα, simulta-
neously. However, the NWS equation (4) possesses
this symmetry independently. In order to restore
the spatial symmetry of the original system, we
consider the nonresonant terms in the amplitude

equation, which reads

∂tA = εA + |A|2A − |A|4A +
[
∂x − i

2
q
∂yy

]2

A

+
∑
m,n

cmnAmAnei(m−n−1)qx, (8)

where m − n �= 1 and cmn are coefficients of order
one. All these extra terms are usually neglected,
because they represent rapidly varying spatial oscil-
lations, that is, these terms are exponentially small
in the scaling under consideration. However, these
terms are invariants under the transformation x →
x − α and A → Aeiqα and then they restore the
right symmetry of the amplitude equation. For a
system with reflection symmetry one needs to con-
sider that the extra condition m + n is a odd num-
ber. To explore the effects of restoring the original
spatial symmetry and for the sake of simplicity we
consider the dominating term of the nonresonant
terms for a system with reflexion symmetry, that
is, m = 3 and n = 0, then the Amended Newell–
Whitehead–Segel equation (ANWS), reads

∂tA = εA + |A|2A − |A|4A

+
[
∂x − i

2
q
∂yy

]2

A + ηA3ei2qx (9)

where η is the intensity of the spatial forcing or the
nonresonant term, and without loss of generality it
is taken to be positive as a result of the symmetry
η → −η and x → x + π/(2q) of the above model.
This equation has three other symmetries: x → −x
and A → A simultaneously, A → −A, and y → −y.
Notice that the nonresonant term is a spatial forcing
term with amplitude η and frequency 2q. Hence,
one expects the non-null uniform state to become a
spatial periodic state.

For ε = εM = −3/16 — Maxwell’s point —
and η = 0.0, the front (7) is stationary, linearly
unstable in the transversal direction and it develops
a zigzag instability without a characteristic length
scale. Figure 1(a) shows the growth rate of transver-
sal mode as a function of the wave number. Hence,
the most unstable mode has a wave number close
to q; the modes with large (small) wave number
are stable (unstable). Initially, the interface devel-
ops an spatial instability characterized by a well-
defined wavelength, which is close to 2π/q and gives
rise to sinusoidal interface. Later on, the sinusoidal
shape of the interface becomes a zigzag interface
[cf. Fig. 1(a)]. Two adjacent pieces of the zigzag



September 9, 2009 14:24 02449

Dynamics of an Interface Connecting a Stripe Pattern and a Uniform State 2805

interface, whose orientations are opposite, are con-
nected by a region of strong curvature which is
usually denominated kink [Chevallard et al., 2002].
The dynamics of interface consists then in reassem-
bling domains of even orientation. It is important
to note that the angle of the “zig” and “zag” facets
stays unchanged. This reassembling process occurs
thanks to annihilations of kinks and without charac-
teristic length-scale. Indeed, the averaged size of the
domains increases regularly in time. The dynamics,
which tends to separate the zig and zag states, looks
like the one-dimensional counterpart of the spin-
odal decomposition dynamics observed in conserva-
tive phase transition system [Calisto et al., 2000;
Argentina et al., 2005].

For large η > 0, the model (9) shows a peri-
odic structure in the x-direction, stripe pattern [see
Fig. 1(d)], which coexists with the uniform zero
state. In this region of parameters, the interface con-
necting these states is stable and it is motionless in
a region of parameters, which corresponds to the
pinning range. When η is decreasing, this interface
exhibits a spatial instability. For η > 0.12 the flat
interface is stable [see Fig. 1(d)]. For 0 < η < 0.12
the flat interface is transversally unstable, under
a small perturbation, the flat interface becomes a
periodic interface [see Fig. 1(c)]. Hence, as a con-
sequence of the confluence of transversal instability
exhibited by the NWS equation and the interac-
tion of the envelope variation with the small under-
lying pattern the interface presents a transversal
periodic structure. We observe numerically that this
interface is motionless in a region of parameters. In
[Hilali et al., 1995], a comparable structure has been
observed at the interface of super critical bifurca-
tion when a parameter is changed in the longitudi-
nal direction, at variance, the embroidery interface
observed in model (9) is a result of a spontaneous
spatial breaking of symmetry. Figure 2 shows the
amplitude of the embroidery or transversal periodic
interface as function of η, it shows that the bifurca-
tion is supercritical and the amplitude is the square
root of the bifurcation parameter, that is, the ampli-
tude of embroidery satisfies

a = α
√

ηc − η (10)

where α = 7.2 and ηc = 0.12. Numerical sim-
ulations of the Swift–Hohenberg equation show a
supercritical bifurcation for the embroidery inter-
faces. For 0.095 < η < 0.12 these periodic solutions
are stable. However, if η < 0.095 these solu-
tions are unstable too and exhibit a similar zigzag

0.1 0.11 0.12 0.13 0.14 0.15
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fig. 2. Bifurcation diagram. “a” represents the amplitude of
the periodic pattern at the interface. The points are numer-
ical solution of model (9) for ε = −3/16 and the line is the
fitting (10).

coarsening dynamics to those exhibited by NWS
(4) [see Fig. 1(b)]. However, this zigzag dynamics
for large time is frozen — frozen pattern [Verdasca
et al., 1995] — that is, the reassembling process of
the facets is stopped and gives rise to a transversal
pattern state. Therefore, the coarsening dynamics
exhibited by NWS model (4) is a cross-over dynam-
ics for the ANWS model (9). If η is decreased fur-
ther, the cross-over time increases due to the fact
that more modes with small wave numbers become
unstable.

The spectra of Figs. 1(c) and 1(d) depict the
spatial bifurcation of the interface that connects the
stripe pattern and uniform state.

4. Moving Front at the Interface

To study the dynamics features of stable flat
interface, we consider η = 0.2. From now on, the
parameter η will be fixed to this value. From the
symmetry x → x + 2nπ/q, one can deduce if there
is a stable interface at xo-position then there is
another at xo+2nπ/q, where n is an integer. A front
in the transversal direction can be created connect-
ing two of these interfaces, transversal front. The
inset in Fig. 3 shows a profile of two of these fronts.
Notice that the core of transversal front exhibits
spatial damping oscillation, which is a consequence
of the slowest spatial mode of the flat interface with
a well-defined wave number close to q. Since we
numerically only consider periodic boundary condi-
tions in the y-direction, there is always more than
one transversal front. The velocity of the transversal
front depends on the value of ε, for some values the
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Fig. 3. Spatiotemporal diagram of the interface shown in
the inset of model (9) by ε = −0.186, η = 0.2. The interface
connects the homogeneous state (1) with the stripe state (2).

front goes to the right or to the left, and for the oth-
ers the front is motionless. In the one-dimensional
systems this front velocity is a consequence of the
relative stability between the two states connected
by the front. However, in our two-dimensional sys-
tem, the two states are always equivalent, because
one is only the x-direction translation in 2nπ/q to
the other. The difference between the two states is
that one has more stripes than the other, then the
front velocity is a consequence of the relative stabil-
ity between the stripe pattern and the homogeneous
state.

Figure 3 depicts the spatio-temporal evolution
of the two transversal fronts. The inset figure shows
the transversal interfaces at a given time for ε =
−0.186. Initially, the fronts are far from each other
and the interaction between them is neglected, then
the front speed must be the velocity of a single
transversal front in an infinity system. When the
fronts are nearby, the interaction becomes more
and more important. Then the dynamics is medi-
ated by the front interaction. At the end, they
arrive at a stable localized state, which is stabi-
lized by the interaction between the fronts [Coullet,
2002; Clerc & Falcon, 2005]. It is important to note
that these localized structures are a consequence
of the spatial transversal damped oscillation, which
generates alternative attractive and repulsive front
interaction and then one expects a rich family of
localized structures [Clerc et al., 2005a]. The evolu-
tion position of the left front is depicted in Fig. 4.

5 10 15 20
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60

70

80

90

� ��
�

�

�

Fig. 4. Position of the left transversal front of model (9)
by ε = −0.186, η = 0.2. The inset figures depict the front
solutions in the respective given time.

The evolution position of the right front is exactly
symmetrical to the left one.

The average speed of the left front is depicted
in Fig. 5 for different values of ε when the fronts
are far from each other. As we have mentioned,
the right front speed is minus the left front speed
(v right = −v left = −v). Hence, the velocity of the
distance or width between the fronts is minus the
double of this velocity (∆̇ = −2v , where ∆ rep-
resents the distance between the fronts). Figure 5
shows an interval of zero velocity, which repre-
sents stable localized structures, localized structures
range, around the Maxwell point of the transver-
sal patterns (ε ≈ −0.184), which is different from
the Maxwell point between the stripes and the
homogeneous state (ε = −0.1875). The localized
structures range is −0.18416 < ε < −0.18374.
For ε < −0.18416 the velocity of the left front is

-0.186 -0.185 -0.184 -0.183 -0.182

-3

-2

-1

0

1

2

3

ε

υ ��
��

�

Fig. 5. Transversal front speed for model (9) by η = 0.2. The
continuous lines are the fitting (11). Inset figures stand for
transversal front propagation for the respective ε parameter.
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negative, that means the homogeneous state invades
the stripe state. For ε > −0.18374 the velocity is
positive and the stripe pattern invades the homo-
geneous state. This process stops when the fronts
arrive at the next localized structure range of the
smaller localized structure, and if there is no stable
localized state for this value of ε, the invasion will
continue in the orthogonal direction. In Fig. 5 the
points are the numerical solution of the model (9)
and the continuous line is the fitting

v = γ (ε − εM )

√
1 −

(
εc

ε − εM

)2

, (11)

obtained from the fronts interaction [Rojas, 2005],
where γ = 0.165, εM = −0.18395, and εc = 2.1 ×
10−4. The fitting (11) is in quite good agreement

with the numerical results. Because in the pinning
range the fronts are stationary, there exists a infin-
ity of localized state of quantized sizes [Clerc & Fal-
con, 2005].

5. Localized Structures

The previous section shows that there is a region
in the parameters space where the fronts interac-
tion gives motionless fronts, the localized structures
range. Since the fronts exhibit transversal spatial
oscillations at the interface (see inset pictures in
Fig. 5), the interaction between the fronts alternate
from attractive to repulsive depending on the dis-
tance between them. Hence, there is a discrete fam-
ily of localized structures of quantized sizes [Coullet,
2002]. The first four elements of this family are
depicted in Fig. 6 for ε = −0.184. Figure 6(a) shows

(a) (b)

(c) (d)

Fig. 6. Localized states for η = 0.2 and ε = −0.184: (a) LS1, (b) LS2, (c) LS3, and (d) LS4.
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-0.186 -0.185 -0.184 -0.183

15.6

15.7

15.8

15.9
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Fig. 7. Amplitude of the localized structure LS1 for differ-
ent values of the parameter ε with η = 0.2. The inset figure
shows this localized structure and their respective amplitude
aLS.

(a) (b)

(c) (d)

Fig. 8. Unstable localized states for η = 0.2 and ε = −0.1865.

the smallest localized structure of the family which
has one oscillation, Figs. 6(b)–6(d) have two, three,
and four oscillations respectively. We introduce the
following notation, LSn stands for the localized
structure with n oscillations.

The smallest localized structure LS1 [Fig. 6(a)]
is the most stable in the family, because the interac-
tion between the fronts is the strongest. Almost all
the elements in the family only exist in the localized
structures range. However, the smallest one has the
largest domain, −0.1861 < ε < −0.1820. We have
defined the amplitude of localized structure (aLS)
as the longitudinal distance between the minimum
and the asymptotic value of the interface (see inset
in Fig. 7). For different values of ε in this inter-
val, the amplitude aLS is different, this is shown in
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(e) (f)

Fig. 8. (Continued )

Fig. 7. Numerically we observe that this amplitude
has a minimum for ε = −0.1844.

The localized structure LS1 is unstable out-
side of the interval −0.1861 < ε < −0.1820. Also,
Fig. 5 shows that for ε < −0.18395 the homo-
geneous state is more stable than the stripe pat-
tern and for ε > −0.18395 the stripe pattern is
more stable than the homogeneous state. Then, for
ε < −0.1861 the localized structure LS1 is unob-
served and the homogeneous state invades the stripe
pattern. These remarks are consistent with Fig. 7,
which shows a divergence of the amplitude when
ε → −0.1861. Figure 8 shows the evolution of this
instability for ε = −0.1865, which is consistent
with the earlier observation: the homogeneous state
invades the other state, increasing continuously the
amplitude of the localized state LS1, which is now
unstable. The growth of the amplitude is not a
straight line, it increases by steps as depicted in
Fig. 9. These steps are results of the ghosts of the
other localized structures LS1 [Strogatz, 1994]. It is
important to remark that similar wedge type prop-
agation is observed in subcritical Swift–Hohenberg
equation.

For ε > −0.1820, the localized structure LS1

is also unobservable. However, the stripe pattern is
more stable than the homogeneous state, then the
stripe pattern invades the other state. Figure 7 does
not reflex this feature, because one expects that
the amplitude must decrease continuously when ε
increases from −0.1861 to −0.1820 and that there is
an inflexion point near the respective Maxwell point
(εM = −0.18395). However, this is not the case,
Fig. 7 shows that when ε → −0.1820 the amplitude

of transversal localized structure increases and the
slope goes to zero. This behavior could be a conse-
quence of a saddle-node bifurcation of the localized
state. Figure 10 shows the evolution of this insta-
bility. We observe that the evolution is governed
by the maxima in the transversal interface, they
grow continuously invading the homogeneous state.
Figure 11 shows the evolution of the maximum of
the transversal interface. It is not a straight line
again, this evolves by steps which are related to the
ghost of the complement localized structures [Stro-
gatz, 1994].

Numerically by changing the initial condition,
we observe similar localized structures to those
shown in Fig. 6 with a maximum in place of a min-
imum (Fig. 12). We call this localized structure as
complement localized structure LSc

1, because this is
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Fig. 9. The position of the minimum of the localized state
for model (9) with η = 0.2 and ε = −0.1865.
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(a) (b)

(c) (d)

(e) (f)

Fig. 10. Unstable localized state for η = 0.2 and ε = −0.182.
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Fig. 11. The position of the minimum of the localized state
for model (9) with η = 0.2 and ε = −0.1865.

�

�

Fig. 12. Localized structure LSc
1 for ε = −0.186 and

η = 0.2.

a simple mirror reflection symmetry of the localized
structure LS1.

6. Conclusions

Systems with coexistence between stable stripe
pattern and uniform states can exhibit interfaces
connecting these states. Recently in [Clerc et al.,
2007], it is shown that in anisotropic systems
flat interface linking stripe pattern with uniform
state is transversal stable. However, interfaces in
isotropic systems can present a wealthy and unex-
pected transversal dynamics like: spatial instabil-
ity, embroideries, zigzag instability, front propaga-
tion and localized states. In order to clarify the

complex dynamics exhibited by these interfaces,
we have studied them using a prototype model,
the amending Newell–Whitehead–Segel amplitude
equation. This model accounts for the complex
transversal dynamics at the interface, including
front propagations, transversal embroideries, lock-
ing phenomena, and transversal localized struc-
tures. However, the depinning effect, nucleation of
convex–concave disclination pairs and labyrinthic
pattern — which has been reported in the super-
critical Swift–Hohenberg model [Hagberg et al.,
2006] — are not contained in the amended ampli-
tude Swift–Hohenberg equation (9). To describe
these rich phenomena the fixed coordinate system
x, y used in Eq. (9) must be promoted to the local
direction of the stripe pattern and change the sign of
high nonlinearity in order to describe the dynamics
observed in the bent stripe. Work in this direction
is in progress.
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