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Transition from motionless to moving domain walls connecting two uniform oscillatory equivalent
states in both a magnetic wire forced with a transversal oscillating magnetic field and a paramet-
rically driven damped pendula chain are studied. These domain walls are not contained in the
conventional approach to these systems — parametrically driven damped nonlinear Schrödinger
equation. By adding in this model higher order terms, we are able to explain these solutions
and the transition between resting and moving walls. Based on amended amplitude equation, we
deduced a set of ordinary differential equations which describes the nonvariational Ising–Bloch
transition in unified manner.
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1. Introduction

Nonequilibrium processes often lead in nature to the
formation of spatially homogeneous states, oscilla-
tory states, patterns, waves, spatio-temporal chaos
state or localized structures with nontrivial dynam-
ical behaviors, to mention a few. Different states
frequently co-exist in the same region of parame-
ters at variance with equilibrium systems [Nicolis &
Prigogine, 1977]. The interaction of different states
is characterized by fronts or domain walls or defects,
which are interfaces between them [van Saarloos,
2003]. For example, bistable systems can exhibit
fronts connecting two homogeneous states. The
features and dynamics of such domain walls have
attracted attention across many areas of science,

including biology, chemistry and physics [Murray,
1989]. Generically, a front connecting two differ-
ent uniform states moves in such a way that the
more stable state invades the other [Residori et al.,
2004; Clerc et al., 2004]. In the case of one- or two-
dimensional gradient or variational systems and
small interface curvature, the front velocity is pro-
portional to the energy difference between the two
states. This velocity can be modified by the curva-
ture of the front, according to the Gibbs–Thomson
effect [Burton et al., 1951]. Changing parameters,
the metastable state — less stable state — becomes
energetically equivalent to the other state, thus the
front stops propagating; in particular, the system
is said to be at the Maxwell point [Goldstein et al.,
1991]. By further increment of the parameters, the
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front speed is reversed, that is, the most energeti-
cally favored state invades the less favored one.

The afore-mentioned scenarios change drasti-
cally, when one considers a system with discrete
symmetry — for instance the reflection sym-
metry — and when this system possesses two
equivalent homogeneous states. The domain walls
connecting such states are generically at rest as a
consequence to the discrete symmetry. Both states
are “energetically” equivalents. However, under
spontaneous breaking of symmetry these fronts can
hold nonzero asymptotic speed. A classical exam-
ple of such phenomenon is the so-called Ising–Bloch
Transition [Coullet et al., 1990] observed in fer-
romagnets [Bulaevsky & Ginzburg, 1964], liquid
crystal [Gilli et al., 1994], and chemical reactions
[Haim et al., 1996]. Gradient or variational systems
do not exhibit this phenomenon, since the front
speed is proportional to energy difference between
these equivalent states. The dynamics of a nongra-
dient system can always be discomposed into two
parts, a dissipative and a remnant; such that a
Lyapunov functional — Nonequilibrium potential —
characterizes the dissipative dynamics [Graham &
Tel, 1986]. The steady states of nonequilibrium sys-
tems minimize the nonequilibrium potential and
the remnant dynamics is responsible for nontriv-
ial dynamics of stationary states like oscillations,
chaos and so forth. Therefore, the front propagation
in the nonequilibrium Ising–Bloch transition is a
consequence of remnant dynamics [Barra et al.,
1996]. Due to the universal nature of walls prop-
agation linking two equivalent uniform states, the
transition between a resting to a moving front
is usually denominated nonvariational or nonequi-
librium Ising–Bloch transition [Michaelis et al.,
2001].

The aim of this article is to study the nonvari-
ational Ising–Bloch transition between two uniform
oscillatory equivalent state observed numerically in
both a magnetic wire forced with a transversal oscil-
latory magnetic field and a parametrically driven
damped pendula chain. These domain walls are not
contained in the conventional approach to these sys-
tems — the parametrically driven damped nonlin-
ear Schrödinger equation. Adding in this model the
higher order terms, we are able to explain these
states and the transition between resting and mov-
ing walls. Hence, using this amended amplitude
equations we recover the original dynamical behav-
ior of these systems. From the amended amplitude
equation, we derive a set of ordinary differential

equations which describe the nonvariational Ising–
Bloch transition in unified manner.

The manuscript is organized as follows. In
Sec. 2, the nonvariational Ising–Bloch transition in
parametrically driven magnetic system and damped
pendula chain is described. In Sec. 3 is proposed
an amended amplitude equation, which describes
in unified manner the nonvariational Ising–Bloch
transition exhibited by parametrically driven sys-
tems. A simple differential ordinary equations is
deduced in Sec. 4, to explain the Ising–Bloch transi-
tion. Finally, the conclusions are presented in Sec. 5

2. Moving Domain Walls in
Parametrically Driven Systems

In this section, we expose our theoretical model
of moving domain wall for two different quasi-
reversible prototype systems: parametrically driven
magnetic system and vertically driven pendula
chain.

2.1. Parametrically driven
magnetic system

A one-dimensional easy-plane ferromagnetic like
CcNiF3 or TMMC or Ni80Fe20 is described by
the well-known Landau–Lifshitz–Gilbert equation,
which in dimensionless form may be written as
[Barashenkov et al., 1991]

∂tM = M × Mzz − β(M · ẑ)(M × ẑ)
+M × H − αM× Mt (1)

where M stands for the unit vector of the magne-
tization, β > 0 is the easy-plane anisotropy con-
stant, ẑ ≡ (0, 0, 1) denotes the unit vector along
the hard axis, and α is the relaxation constant.
Let us consider an external magnetic field H =
(H0 + h0 sinωt)x̂, which has both a constant and
a periodic forcing with amplitude h0 and fixed fre-
quency ω. Figure 1 depicts the set up of the system
under study.

A trivial state of Eq. (1) is the homogeneous
magnetization M = x̂. When the magnetic wire
is forced close to the double of the natural fre-
quency ω = 2(ω0 + ν) (ω0 ≡ √

H0(β + H0) in
units of the gyro-frequency, where 2ν is the detun-
ing parameter) the homogeneous magnetization
becomes unstable at h2

0/4ω
2
0 = α2 +4ν2/(β +2H0)2

for small {ν, h0, α} — Arnold’s tongue. This bifur-
cation gives rise to a uniform or synchronized pre-
cession motion of the magnetization around the
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(a)

(b)

Fig. 1. Schematic representation of the parametrically
driven magnetic wire and the different states exhibited by the
set-up. (a) The homogeneous precession, and (b) the domain
wall that links two uniform precessions.

easy axis x̂ in the yz-plane with frequency ω0 [Clerc
et al., 2008]. Figure 1(a) depicts the uniform pre-
cession for the corresponding magnetization field
and Fig. 2(a) shows numerical simulation of these
state for model (1). Due to the reflection symmetry
M = (Mx,My,Mz) → (Mx,−My,−Mz) of Eq. (1),
there is another uniform precession solution out of
phase in π. Hence, we can expect to find solutions

Fig. 2. Density plot of spatio-temporal diagram of the Mz

component of magnetization obtained from the Landau–
Lifshitz–Gilbert Eq. (1) inside Arnold’s tongue for β = 20,
H0 = 1, h0 = 0.57, ω = 2(

p
H0(H0 + β) + ν), ν = −0.057

and α = 0.05. (a) Homogeneous state, and (b) Kink state
between two synchronized precessions shifted by π.

Fig. 3. Density plot of spatio-temporal diagram of Mz for
Bloch type wall exhibited by Landau–Lifshitz–Gilbert Eq. (1)
with β = 6, H0 = 1.125, h0 = 0.775, ω = 2(

p
H0(H0 + β) +

ν), ν = −0.05 and α = 0.09.

that link these two uniform precessions — kink or
domain wall solutions. Figure 2(b) displays the typ-
ical domain wall for parametrically driven mag-
netic system and the components of the magnetic
field obtained from the Landau–Lifshitz–Gilbert
model (1). In a large region of parameters space,
these domain walls are motionless — Ising type
wall. However, a decrease in the detuning parame-
ter, inside the Arnold’s tongue, produces the motion
of the interfaces — Bloch type wall. Depending on
the initial condition, the interface propagates to the
right or the left, because the initial condition breaks
the spatial reflection symmetry (x → −x). Fur-
ther decreasing of the detuning increases the wall
speed. Figure 3 illustrates the typical Bloch wall
observed in model (1) and the characteristic spatio-
temporal dynamics exhibited by this moving front.
For a large negative detuning the uniform proces-
sions become unstable, then the moving interfaces
become also unstable. It is important to note that
the Ising and Bloch type walls are spatial sym-
metric and asymmetric solutions with respect to
the wall core, respectively. Hence, Bloch type walls
have well-defined chirality since the integration of
My(x, t) around wall core is not null at variance of
the Ising type wall [Coullet et al., 1990].

2.2. Vertically driven pendula chain

To emphasize the robust nature of nonvariational
Ising–Bloch transition, we consider a parametrically
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driven damped pendula chain, which is modeled in
the continuum limit by

θ̈(z, t) = −(ω2
o + γ sin(ωt)) sin(θ) − µθ̇ + k∂zzθ,

(2)

where θ(z, t) is the angle formed by the pendulum
and the vertical axis in the z-position at time t; ωo is
the pendulums’ natural frequency, and {µ, k, γ, ω}
are the damping, elastic coupling, amplitude and
frequency of the parametric forcing, respectively.

A simple homogeneous state of Eq. (2) is θ = 0,
which represents a uniform vertical oscillation of
pendula. When the pendula chain is forced close
to the double of the natural frequency — ω =
2(ω0+ν), where 2ν is the detuning parameter — the
vertical solution becomes unstable at ν2 + µ2/4 =
γ2/16 for small {ν, γ, µ} — Arnold’s tongue. This
bifurcation gives rise to a uniform attractive peri-
odic solution, so the pendula chain oscillates uni-
formly (θ(t + T ) = θ(t) where T ≈ 2π/ω0). Due
to the reflection symmetry — θ → −θ — there
is another uniform oscillation out of phase in π.
Hence, we expect to find again a solution that
connects these two spatially uniform oscillations:
kink or wall solutions. Figure 4 depicts the domain
wall solution exhibited by the model (2). Similar
dynamics behavior to those exhibited by the domain
walls in parametrically driven magnetic wire is now
observed in parametrically driven damped pendula
chain. That means, inside of first Arnold’s tongue
and large detuning, domain walls are motionless;
next, decreasing the detuning the Ising type walls

θ(x,t)

x

Space

Ti
m

e

Fig. 4. Density plot of spatio-temporal dynamics of θ(x, t)
for Bloch type wall exhibited by parametrically driven
damped pendula chain Eq. (2), with ω0 = 1.0, ω = 2(ω0 +ν),
ν = −0.06, and µ = 0.2. Inset picture is an instantaneous
profile of the field θ(x, t).

become unstable and give rise to moving inter-
faces with a well-defined speed. The interface speed
increases when the detuning decreases.

In brief, parametrically driven systems such
as magnetic or mechanic can exhibit a nonvaria-
tional Ising–Bloch transition. In the next section,
we present a unified treatment of this phenomenon.

3. Unified Description of
Parametrically Driven Instability

To account for the dynamics exhibited by both pre-
vious systems, we consider the time reversal limit
perturbed with small injection and dissipation of
energy: the quasi-reversal limit [Clerc et al., 1999a,
1999b, 2001]. In this limit the dynamics of our
prototype systems can be described by the para-
metrically driven damped nonlinear Schrödinger
equation:

∂τA = −iνA − i|A|2A − i∂2
xA − µA + γA, (3)

where A is the envelope of the uniform oscillation,
and {ν, µ, γ} stand for the detuning between the
natural and the twice forcing frequencies, the damp-
ing and the forcing, respectively. For example, the
quasi-reversal limit of model (2) is described by the
perturbed Sine–Gordon equation with γ ∼ ν ∼ µ ∼
ε, where ε is an arbitrary small scale ε � 1. Con-
sidering the following ansatz

θ(z, t) = 2
√

ε

ωo
A(τ, x)ei(ωo+ν)t − 2

√
ε

ωo

{
A3(τ, x)

48

+
iγ

16ω2
0

A(τ, x) − iγε

8ω3
0

|A(τ, x)|2A(τ, x)
}

× e3i(ωo+ν)t + c.c + h.o.t, (4)

where τ = εt, x =
√

2εω0/kz are slow variables,
in Eq. (2); after straight-forward calculation the
amplitude A satisfies Eq. (3). The explicit terms
of the above equation are of order ε3/2 and h.o.t.
are at least of order ε5/2. In a similar manner,
we can deduce the amplitude equation (3) from
model (1). This model has been used intensively
to describe patterns and solitons in several sys-
tems such as: vertically oscillating layer of water
[Zhang & Viñal, 1995], localized structures in non-
linear lattices [Denardo et al., 1992], and the Kerr
type optical parametric oscillator [Longhi, 1996], to
mention a few.

The parametrically driven damped nonlin-
ear Schrödinger equation has the homogeneous
state, A = 0, which represents θ(x, t) = 0 and
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M(x, t) = x̂, respectively. Inside the Arnold’s
tongue this model also has the uniform states

A± = ±
(

1 + i

√
µ − γ

µ + γ

)
x0,

where x0 ≡
√

(γ − µ)(−ν +
√

γ2 − ν2)/2γ. These
three states merge together through a pitchfork
bifurcation at γ2 = µ2 + ν2, with ν > 0. The |A±|
represents, respectively, the amplitude of the homo-
geneous oscillations for the pendula chain and the
magnetic forced wire. However, these uniform states
are linear unstable fixed points for the parametri-
cally driven damped nonlinear Schrödinger equa-
tion. Also, they are marginal for ν = 0, that is,
whatever perturbations of the form A = A± +
a0e

λt+ik (a0 � 1) satisfy λ(k) ≤ 0 and there are

critical wave numbers kc = ±
√
−ν + 2

√
γ2 − µ2 for

which λ(kc) = 0. At this surface in the parameters
space (ν = 0), we observe numerically that the uni-
form state is nonlinearly stable; however, kink states
which connect these states are unstable. Hence, the
model (3) does not account for features of homoge-
nous oscillation and consequently it is unable to
describe domain walls observed in the original sys-
tems. Since all these solutions asymptotically con-
verge to the uniform states, the stability of these
particle type solutions depend on the steadiness of
these uniform states.

To describe the domains walls exhibited by the
pendula chain and the magnetic forced wire under
study, it is required to consider higher order terms
in the amplitude equation (3), since the addition
of these terms may restore the features of the uni-
form states and the particle type solutions. In the
parameters region where the uniform state |A±| is
marginal (ν = 0), we expect that any small cor-
rections of the amplitude equation can render this
state linear stable or unstable. Consequently, when
we consider the higher order terms the amplitude
equation reads:

∂tA = −iµA − iA|A|2 − ∂2
xA − νA + γA

+ ib|A|4A − δ|A|2A + αA3. (5)

Let us denominate Eq. (5) as Amended ampli-
tude equation, where {δ, α} account for nonlin-
ear forcing terms, which are proportional to the
amplitude of the forcing and b stands for the non-
linear response in frequency and this parameter is
order one. For example, in the parametrically driven

Fig. 5. Spatio-temporal diagram of Bloch type solution
exhibited by model (5) with γ = 0.8, µ = 0.2, ν = −0.07,
b = 0.167, δ = 0.3 and α = 0.233.

damped pendula chain these parameters are

b ≡ 1
6ω0

, δ ≡ 3γ
8ω2

, and α ≡ 7γ
24ω2

.

The extra terms in Eq. (5) are order ε5/2 and
the dominating terms are of order ε3/2. For small
detuning, we observe numerically that the amended
amplitude equation (5) has stable uniform solutions
close to A+ or A−, and in this parameters region
Eq. (5) exhibits stable solutions connecting these
states — kink or Ising type solutions.

Figure 5 shows these wall type solutions.
Numerically, we observe that inside the Arnold’s

Fig. 6. Bifurcation diagram of amended amplitude equa-
tion (5). The gray and dark gray areas stand for the Arnold’s
tongue and the region of moving walls or Bloch type solu-
tion (BTS). The dashed and continuous lines Arnold’s tongue
represent the nonvariational Ising–Bloch transition and the
spatial instability of the uniform non-null states.
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Fig. 7. Velocity of Bloch type wall as a function of detuning
for amended amplitude equation (5). The dot points are the
numerical wall speed obtained by γ = 0.6, µ = 0.2, b = 0.167,
δ = 0.225 and α = 0.175. The continuous curve is obtained
using the square root law.

tongue the Ising type walls are motionless for pos-
itive detuning and small forcing. Nevertheless, for
negative detuning in a large region of parameters
inside Arnolds tongue, these interfaces become a

Fig. 8. Spectrum of linear operator which characterizes the linear stability of the Ising type wall of the model (5) with
γ = 0.6, µ = 0.2, ν = −0.06, b = 0.167, δ = 0.225 and α = 0.175. Inset figures are the real part of the eigenfunctions of the
respective critical modes.

moving wall (see Fig. 6). Decreasing the detuning,
the wall speed increases as square root law of detun-
ing minus a critical value of it. Figure 7 depicts
the wall speed as a function of the detuning. The
dashed line in Fig. 6 accounts for the transition
between motionless to moving interface, nonvaria-
tional Ising–Bloch transition. This dashed curve has
been computed numerically by determining the ori-
gin of square root law for wall speed.

4. Wall Speed Model

To understand the mechanism of the nonequi-
librium Ising–Bloch transition, we compute the
spectrum — set of eigenvalues — of the linear oper-
ator (which is denominated L(x)) that describes the
dynamics of small perturbation around the Ising
type wall close to the transition. The lack of an ana-
lytical expression for the Ising type wall only allows
us to compute numerically the spectrum, and their
respective eigenfunctions.

The typical spectrum observed near and below
the transition is shown in Fig. 8. Due to the transla-
tion invariance symmetry, x → x+x0, the spectrum
always has an eigenvalue at the origin of complex
plane and its respective eigenfunction is denomi-
nated as Goldstone mode. Inset figure in Fig. 8
depicts this mode. This mode characterizes the fact
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that an infinitesimal spatial translation of the Ising
type wall is also a solution. When the parameters
are changed further more close to transition, then
there is an eigenvalue with zero imaginary and real
negative part which move to the origin of complex
space. This eigenvalue and its respective eigenfunc-
tion are depicted in Fig. 8 by a triangle and the
lower inset picture. Note that this eigenfunction is
an asymmetrical function with respect to the spa-
tial center — core of the kink. At the transition,
this eigenvalue collides with the eigenvalue related
to Goldstone mode at the origin of complex plane.

Subsequently, the mechanism of the Ising–
Bloch transition is that an asymmetrical spa-
tial mode becomes unstable, namely, the system
exhibits a spontaneous breaking of symmetry [Coul-
let et al., 1990]. This transition is characterized by
two critical modes, the asymmetrical and the sym-
metric Goldstone modes, where these modes are
related to the chirality and wall speed. To describe
the wall dynamic close to the transition of model
(5), we use the following ansatz

A(x, t) = |AIsing(x − P (εt))〉 + εχ(εt)|Aas(x − P )〉
+ |W (x, P, χ)〉, (6)

where |AIsing(x − P )〉 is the Ising type solution,
which is known only numerically, P stands for
the position of the core of the Ising type wall,
that is |AIsing(0)〉 = 0, |Aas(x − P )〉 is the criti-
cal mode of the square of the linear operator L,
which is obtained using the standard Jordan con-
struction (L2|Aas〉 = 0 and L|Aas〉 = |∂zAIsing〉),
χ(t) accounts for the amplitude of asymmetrical
part (chirality), |W 〉 is a small complex correction
function (|W | � 1) whose temporal dependence
is implicit through the variable {P,χ} and ε is an
arbitrary small scale (ε � 1) which is square order
of bifurcation parameter of the transition. Figure 9
shows the two eigenfunctions of the operator L2, the
lower inset picture is |Aas〉, confirming the Jordan
construction.

Notice that the above ansatz is based on the
standard parameter variation method. Replacing
the above ansatz in the amended amplitude equa-
tion (5) and linearized in |W 〉 formally one obtains

−εṖ |∂zAIsing(z)〉 + ε2χ̇|Aas(z)〉
= L|W 〉 + H(χ, z, ε), (7)

where z ≡ x − P (t) is an auxiliary variable, the
upper dot means temporal derivative and H is a
complex function. As result of spatial reflection
symmetry (z → −z) and spatial invariance the

function H is an odd function of chirality and is
independent of P , this implies that

H(χ,Z, ε) = εχH1(z) + ε3χ3H3(z) + · · · .
Introducing the inner product

〈f |g〉 ≡
∫ ∞

−∞
fgdx,

the linear operator L is not self-adjoint (L 	= L†).
In order to solve Eq. (7) we should characterize the
kernel of the adjoint of operator L (L†). Numer-
ically, we can compute the eigenvalues and eigen-
functions of L†. Figure 10 shows the spectrum and
the eigenfunctions of the critical modes of the L†.
The only element of the kernel of L† is |A+〉, which
is illustrated in Fig. 10 (upper) for a given param-
eter. Then using this eigenfunction one obtains the
following solvability condition to dominate order
in ε

Ṗ =
〈A+(z)|H1(z)〉

〈A+(z)|∂zAIsing(z)〉χ.

To obtain an equation for the chirality, one can
apply the linear operator L to Eq. (7) and read

ε2χ̇L|Aas(z)〉 = L2|W 〉 + LH(χ, z, ε),

where by definition L|Aas(z)〉 = |∂zAIsing(z)〉 (Jor-
dan base). Thus, one can again apply the solvability
condition and obtain

χ̇ =
〈A+(z)|LH1(z)〉

ε〈A+(z)|∂zAIsing(z)〉χ

+ ε
〈A+(z)|LH3(z)〉

〈A+(z)|∂zAIsing(z)〉χ
3,

where the first term on the right is proportional to
the bifurcation parameter of the transition, that is,
this coefficient is zero at the transition. Scaling

χ =

√
−ε

〈A+(z)|∂zAIsing(z)〉
〈A+(z)|LH3(z)〉 χ′

and introducing the constant

c ≡ 〈A+(z)|H1(z)〉
〈A+(z)|∂zAIsing(z)〉

∗
√

−ε
〈A+(z)|∂zAIsing(z)〉
〈A+(z)|LH3(z)〉 ,

η ≡ 〈A+(z)|LH1(z)〉
ε〈A+(z)|∂zAIsing(z)〉
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Fig. 9. Spectrum of the square of linear operator (L2) of the model (5) with γ = 0.6, µ = 0.2, ν = −0.06, b = 0.167, δ = 0.225
and α = 0.175. Inset figures are the real part of the eigenfunctions of the respective critical modes.

one obtains the following set of equations for the
critical modes

Ṗ = cχ′,
(8)

χ̇′ = ηχ′ − χ′3.

The coefficients {c, η} can be computed numerically
for the specific values of the parameters. Hence, wall
speed (Ṗ ≡ v.) is proportional to the chirality and
the chirality exhibits a stationary pitchfork bifur-
cation at η = 0. Subsequently, for negative η, an

Fig. 10. Spectrum of the operator (L†) of the model (5) with γ = 0.6, µ = 0.2, ν = −0.06, b = 0.167, δ = 0.225 and α = 0.175.
Inset figures are the real part of the eigenfunctions of the respective critical modes.
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initial asymmetric wall moves some transient and it
becomes a motionless interface. On the contrary, for
positive η, an initial asymmetric wall moves some
transient to become a moving domain wall with
well-defined velocity Ṗ = v = c

√
η. Depending on

the form of the initial condition the wall propagates
to the left or to the right. Using the above equation
we can obtain the following equation for speed

v̇ = ηv − v3

c2
. (9)

This equation has been obtained in the reaction–
diffusion model [Elphick et al., 1995], and nonlinear
optics [Michaelis et al., 2001]. However, it is impor-
tant to note that the nonvariational Ising–Bloch
transition is characterized by the two-order param-
eter {P,χ′}. The model (8) describes a stationary
bifurcation with two modes and one eigenfunction,
which is denoted in the Anorld notation as 02 insta-
bility [Arnold, 1983]. In the special case of c = 0 —
there is an stationary bifurcation characterized by
two different eigenfunctions — the system exhibits a
Ising–Bloch transition, however the Bloch type wall
is motionless. This is the classical case observed in
magnetic system, where the transition is in equilib-
rium [Coullet et al., 1990].

5. Conclusions

In the last decades several parametric systems have
been studied experimentally and theoretically. The
theoretical model most considered is the paramet-
rically driven damped nonlinear Schrödinger equa-
tion, however this approach cannot describe the
features of the uniform oscillations observed in a
parametrically driven magnetic wire and a verti-
cally driven pendula chain. Amending this model
with high order terms, one can recover the features
of these states. Hence, the stability property of these
states is given by high nonlinearities.

The non-null uniform states exhibited by the
amended amplitude equation are equivalent states.
Then we expect to observe a motionless domain
wall between them. However, due to the nonvari-
ational nature of the model (5) and the sponta-
neous spatial breaking of symmetry this amended
model exhibits a nonvariational Ising–Bloch tran-
sition. Thus, this system exhibits moving domain
walls. Close to this transition, we have derived a
simple set of ordinary differential equations for the
position and chirality — amplitude of asymmetric
modes — of the domain walls, Eq. (8). This set of

Fig. 11. Spatio-temporal diagram of moving localized
domain exhibited by model (5) with γ = 0.8, µ = 0.2,
ν = −0.07, b = 0.167, δ = 0.3 and α = 0.233.

equations allows us to understand in a simple man-
ner the Ising–Bloch type transition.

Parametrically driven systems like magnetic
wire forced with a transversal oscillatory magnetic
field and vertically driven damped pendula chain
close to the strong parametric resonance — sys-
tems forced with the double of natural frequency —
are described by amended parametrically driven
damped nonlinear Schrödinger equation (5). Hence,
these systems exhibit a nonvariational Ising–Bloch
transition. Moreover, we find a strongly agreement
with the numerical simulations.

In addition, Ising wall exhibits a well-defined
spatial damping oscillation (cf. Fig. 11). It is well
known that the nature of the kink and anti-
kink interactions alternates between attractive and
repulsive [Clerc et al., 2005] when the walls have
spatial damped oscillation. Therefore, it is expected
to find a family of localized states with thickness
roughly multiples of the characteristic length of the
damped spatial oscillation present in the kink solu-
tion. Inside Bloch type solution region these local-
ized domains become moving (cf. Fig. 11). Study
and applications of these localized domains are in
progress.
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