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We study front propagation in one-dimensional spatially periodic media. Based on an optical feedback

with a spatially amplitude modulated beam, we set up a one-dimensional forced experiment in a nematic

liquid crystal cell. By changing the forcing parameters, the front exhibits a pinning effect and oscillatory

motion, which are confirmed by numerical simulations for the average liquid crystal tilt angle. A spatially

forced dissipative �4 model, derived at the onset of bistability, accounts qualitatively for the observed

dynamics.
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In nonequilibrium processes different extended states,
developing from bifurcations or phase transitions, can
coexist for the same values of parameters [1]. The coex-
istence is characterized by spatial domains, with interfaces,
or fronts, propagating between them. Thus, before a system
reaches an equilibrium state, the dynamics is characterized
by a rich and complex interface evolution. The concept of
front propagation, emerged in the context of populations
dynamics [2], has attracted, since then, a growing interest
in chemistry, physics and mathematics. In physics, fronts
play a central role in a large variety of situations, ranging
from reaction diffusion models, solidification processes,
flame propagation, to pattern forming systems (see, e.g.,
[3,4] and references therein). From the point of view of
dynamical systems theory in 1D spatial dimension, a front
is a nonlinear solution described in phase space as a
heteroclinic orbit linking two spatially extended states
[5]. One of the most studied fronts is that connecting a
stable uniform state with an unstable one, so called the
FKPP-front [6], whose propagation speed is not unique and
is fixed by the initial conditions [7]. Another well-known
type of front, the normal front, connects two stable uniform
states. The normal front appears inside the bistability
region and is characterized by a unique speed that is given,
if the system is variational, by the free energy difference
between the two states [8]. Therefore, the most favorable
state invades the less favorable one, and the front speed is
zero only at the Maxwell point, for which both states have
the same energy [9].

A fundamental issue in front dynamics is that of propa-
gation over periodic media. As firstly pointed out by
Pomeau [10], the presence of a spatial periodicity is ex-
pected to induce an energy barrier for the front propagation
to occur, so that the front speed should become zero for a
relatively large interval of parameters, so called the pin-
ning range. The pinning range has been discussed in sev-
eral physical contexts, such as pattern selection with
different symmetries in generalized Swift-Hohenberg
models, the crystallization kinetics of cellular patterns

and defect dynamics [11]. In the last two decades a lot of
theoretical efforts have been devoted to the understanding
of front dynamics inside and near the pinning range, where
front interactions have been identified as responsible for
the appearance of localized structures that are patterns ex-
tended over a limited space region [5,11–15]. However,
despite the large number of theoretical and numerical
studies, an experimental characterization of the pinning
range and relative front dynamics is not yet available. In
a bidimensional forced system, the anisotropy of the front
velocity has been shown [16]; nevertheless, the issue of the
existence of a pinning range was not addressed.
Experimentally, this question has a fundamental relevance
in numerous domains where front propagation is involved,
for example, in fluids [17] or in chemical reactions [18] for
the formation of nonlinear structures, in microfluidic chips
[19] for the process of drop coalescence, in the wetting of
microstructured surfaces [20], for controlling the motility
of bacteria [21] or the growth of self-assembly monolayers
[22].
In this Letter, we present what is, to our knowledge, the

first experimental characterization of the pinning range and
front propagation in 1D spatially periodic media. Based on
an optical feedback with a spatially amplitude modulated
input beam, we set up a 1D forced configuration in a
nematic liquid crystal cell. In a large region of parameter
space, the system exhibits fronts connecting two different
average orientations of the liquid crystal molecules. By
introducing the spatial forcing, the fronts exhibit a large
pinning effect, as well as spatially oscillating motion out-
side the pinning region. Theoretically, we derive a spatially
forced dissipative �4 model, which is valid close to the
onset of bistability and accounts analytically for the ob-
served dynamics. Numerical simulations of the average
liquid crystal tilt angle � exhibit a dynamical behavior in
good agreement with the experimental and analytical
results.
The experimental setup, schematically represented in

Fig. 1(a), comprises a liquid crystal light valve (LCLV)
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with optical feedback. The LCLV is made of a thin nematic
liquid crystal (LC) layer inserted in between a glass plate
and a photoconductive wall over which a dielectric mirror
is deposed. An externally applied V0 voltage induces an
electric field in the direction into which molecules tend to
orientate. When reflected by the mirror after passing
through the LC layer, light gets a phase shift �’ that is a
function of the LC orientation angle, which, as we will see
below, depends on the intensity Iw on the photoconductor.
The input laser beam, � ¼ 632 nm, is enlarged up to a
diameter of 1 cm and collimated. A spatial light modulator
(SLM) controls the intensity profile at the entrance of the
feedback loop, which contains a polarizing beam splitter
(PBS), a mirror (M) and is closed by a fiber bundle (FB).
Three lenses (L) of the same f ¼ 25 cm focal length, and
placed at focal distance from their respective cofocal
planes, ensure a self-imaging configuration, for which the
intensity distribution at the SLM is exactly imaged on the
LCLV and the rear side of the FB and the front side of the
LCLV are conjugate planes. By doing this, the diffraction
length in the feedback loop is set to zero, a condition that,
together with the polarization interference introduced by
the PBS, enables us to have fronts between stable homo-
geneous states [23]. In the transverse plane, these states
appear with different intensity levels, and fronts between
them can easily be observed as ‘‘black or white’’
interfaces.

The SLM consists of a liquid crystal display, one inch
diagonal size, with a 1024� 768 pixels, each coded in
8 bits of intensity level, and interfaced to a personal com-
puter. By using a dedicated software, intensity masks are
produced in order to control the front dynamics and impose
a quasi-unidimensional spatially periodic forcing. A zero-
level intensity is set everywhere except on a narrow chan-
nel of 150 �m width and 2.5 mm length. In the channel,
the intensity is set either to a uniform level A or spatially
modulated with an amplitude B and wavelength p. The
general expression for the input beam profile is IinðxÞ ¼
Aþ B sinð2�x=pÞ, where both A and B can be controlled

by changing the transmittance of the SLM. In the set of
measurements here presented we have fixed A ¼
0:9 mW=cm2 and B ¼ 0:1 mW=cm2. We first study the
front dynamics of the unforced system. As the voltage V0 is
varied as a control parameter, we identify the bistable
region, where two different molecular orientation states
coexist. In this region, the more stable state tends to invade
all the available space, developing an expanding or retract-
ing front. By recording with a CCD camera the interface
evolution over the channel, we have measured the front
speed v, which is plotted in Fig. 1(b) as a function of V0.
Two successive snapshots of an expanding front are shown
in the inset. The front speed grows linearly with V0 and
changes its sign at the Maxwell point. The front is motion-
less only at the Maxwell point while retracting, respec-
tively, expanding on the left, right of this point, as expected
from the theory [9].
The above scenario is drastically modified when the

system is spatially forced, so that the uniform states trans-
form into patterns. In this case, the front either propagates
by periodical leaps or stays motionless in a large region of
parameters. In Fig. 2(a) the average front velocity hvi is
plotted against V0 for a forcing wavelength p ¼ 115 �m.
We can note that a large pinning range exists, where the
front velocity is zero. Outside, but close, to the pinning
range the front propagation is characterized by periodical
leaps. For larger values of V0 the front speed oscillates
regularly. Three successive snapshots of an expanding spa-
tially modulated front are shown in the inset of Fig. 2(a).
Correspondingly, a transverse section of the front profile is
displayed in Fig. 2(b). In Fig. 2(c) three spatio-temporal
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FIG. 2 (color online). (a) Average front velocity hvi against the
voltage V0 in the forced experiment, p ¼ 115 �m; the blue
(dark gray) shaded area is the bistable region, the yellow (light
gray) shaded area is the pinning range; the solid red line is
Eq. (4) with �þ ¼ 5:72. In the inset: three successive snapshots
(top t ¼ 0, middle t ¼ 3:2, bottom t ¼ 6:4 s) of an expanding
front. (b) A typical transverse front profile; g.v. are gray values.
(c) Space-time diagrams of the front evolution in regions 1, 2
and 3.
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FIG. 1 (color online). (a) Schematic experimental setup.
(b) Front velocity v against the voltage V0 in the unforced
experiment; the blue shaded area is the bistable region, points
are experimental data, the dashed line is a theoretical fit. In the
inset: two successive snapshots (top t ¼ 0, bottom t ¼ 4 s) of an
expanding front.
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diagrams are shown, obtained from the front evolution in
region 1, retracting front; region 2, the pinning range; and
region 3, expanding front. As a consequence of the spatial
forcing, the front is pinned over a large range of parameter,
confirming the prediction of Pomeau [10] that an energy
barrier has to exist when the front propagates over a
spatially structured state.

The experimental behavior is confirmed by numerical
simulations of the model for the LCLV with optical feed-
back, which consists in a relaxation equation for the aver-
age liquid crystal tilt angle �ðx; tÞ, 0 � � � �=2, coupled
with an equation for the feedback light intensity Iw [23,24].
In the case of zero diffraction length in the feedback loop,
the equation for Iw can easily be solved, and the full LCLV
model reads as

�LC@t� ¼ l2@xx�� �þ
8<
:
0 VLC <VFT

�
2 ð1�

ffiffiffiffiffiffiffiffiffiffiffi
VFT

VLCð�Þ
q

Þ VLC � VFT
;

(1)

where x is the transverse direction of the LC layer, �LC ¼
30 ms the LC relaxation time, l ¼ 30 �m the electric
coherence length and VLCð�Þ � �V0 þ �Iw the effective
voltage applied to the liquid crystals, with VFT ¼ 3:2 Vrms

the threshold for the Fréedericksz transition, �� 0:3 the
overall impedance of the LCLV dielectric layers and ��
5:5 V cm2=mW a phenomenological parameter summariz-
ing, in the linear approximation, the response of the photo-
conductor. The light intensity reaching the photoconductor
is Iw ¼ Iin½1þ cosð�’Þ�, where �’ ¼ 	cos2� is the
overall phase shift experienced by the light traversing the
LC layer, 	 ¼ 2kd�n with d ¼ 15 �m the thickness of
the nematic layer, �n ¼ 0:2 the LC birefringence and k ¼
2�=� with � ¼ 632:5 nm.

For uniform Iin and by increasing V0, the above model
Eq. (1) exhibits several bistability branches and, in the
bistability regions, the front solutions display a velocity
increasing linearly with V0, in agreement with the experi-
mental observations for the unforced system. When we
introduce a small spatial forcing, IinðxÞ ¼ ½Aþ
B sinð2�x=pÞ�, B � 0, the uniform equilibria become pe-
riodic states and numerical simulations of the front dynam-
ics show a large pinning range as in the experiment. In
Fig. 3 we report experimental and numerical spatio-
temporal diagrams showing the front evolution in region
3, starting from a local initial condition and at different
forcing wavelengths. In the simulations the forcing pa-
rameters are A ¼ 1, B ¼ 0:2 and the other parameters
are set to the same values as in the experiment. When we
increase the forcing wavelength p, the pinning range in-
creases whereas the average front speed decreases.
Moreover, the upper states show larger amplitude modu-
lations, an effect that results from the nonlinear depen-
dence of the spatial forcing in VLC [25], and which appears
also in the experiment [see Fig. 2(b)].

Close to the point of nascent bistability, Iin � Ic, V0 �
Vc and � � �0, we can reduce the above model, Eq. (1), to

a forced dissipative �4 model, which reads as [26]

�@t� ¼ �þ "���3 þ l2@xx�þ ðbþ c�Þ sin
�
2�x

p

�
;

(2)

where � is the order parameter, which is related to the
average director tilt by the expression �� �0þ�=

½2	cos2�0 cotð	cos2�0Þþ ð4þ	2 sin2�0Þ=3� 2=ð�=2�
�0Þ2�1=2. The unforced system (b ¼ c ¼ 0) describes an
imperfect extended pitchfork bifurcation [4] and has a
motionless front solution at the Maxwell point, � ¼ 0.
This front, whose expression is �kðx� x0Þ ¼
	 ffiffiffi

"
p

tanh½ ffiffiffiffiffiffiffiffiffiffiffiffi
"l2=2

p ðx� x0Þ�, connects asymptotically the
state

ffiffiffi
"

p
with � ffiffiffi

"
p

. Close to the Maxwell point the front
speed increases linearly with �, which is qualitatively
consistent with the experimental behavior. When we in-
troduce the spatial forcing (b� c � 0), the uniform states
become periodic with an amplitude proportional to B and a
wavelength p. The front solution connecting the spatially
periodic states exhibits a pinning range. Figure 4 and the
inset depict the observed pinning range for the full LCLV
model, Eq. (1), and for the �4 model, Eq. (2), respectively.
To study analytically the effect of the forcing, we con-

sider the ansatz �ðx; tÞ ¼ �k½x� x0ðtÞ� þ wðx; x0Þ, where
x0 is the position of the front core. After straightforward
calculations, we derive the solvability condition [27]

_x 0 ¼ � 3�ffiffiffiffiffiffi
2"

p � 
ðpÞ sin
�
2�

p
x0 þ �

�
; (3)

from which we see that the front speed has a constant term,
first right-hand side, and a spatially oscillating part, second

right-hand side, with 
ðpÞ ¼ 2�2cosechð ffiffiffi
2

p
�2=pÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9b2p2 þ 2c2�2
p

=2p3 and tan� ¼ ffiffiffi
2

p
c�=3bp. The front

is motionless in the range of parameters for which the first
term is smaller than the amplitude of the periodic term,
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FIG. 3. Spatio-temporal plots of fronts propagating from a
local initial condition at increasing forcing wavelength. Top:
experiment, p ¼ (a) 115, (b) 173, (c) 230, (d) 280, (e) 345 �m.
Bottom: numerical simulations, p ¼ (f) 0.025, (g) 0.05, (h) 0.1
Lx, with Lx ¼ 800 the number of integration points.
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which defines the pinning range �� � � � �þ, the criti-
cal values being �	 � 	 ffiffiffiffiffiffi

2"
p


ðpÞ=3. Outside this region,
the front propagates with a spatially oscillating speed.
In order to compute the average front speed we can inte-
grate the above Eq. (3), and obtain x0ðtÞ ¼ x0ðt0Þ þ
p=2� arctan½tanðp=2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9�2=
22" � 1
p

tÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� þ 


ffiffiffiffiffiffi
2"

pq
=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3� � 

ffiffiffiffiffiffi
2"

pq
�. From this expression we derive the aver-

age front speed [27]

�
dx0
dt

�
¼ 3

ffiffiffi
2

p
2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð�	

�
Þ2

s
: (4)

For j�j< j�	j the above formula is imaginary, i.e., the
front speed is zero, whereas close to �	, it recovers the
dynamical behavior expected for the pinning-depinning
transition [28] (saddle-node bifurcation), with the front

speed increasing as the square root of �, hdx0=dti �
	3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�� �	Þ�	
p

. For large �, the average front speed
behaves as a linear function of �. In Fig. 4, hdx0=dti is
plotted as a solid curve and compared with the numerical
results for the full LCLV model, Eq. (1) and with the
numerical results for the forced dissipative �4 model,
Eq. (2) in the inset, respectively. We see, from comparison,
that the �4 model is a qualitatively good description of the
spatially driven front propagation and pinning effect.

In conclusion, we have shown the existence of a large
pinning range and characterized the front dynamics in a
LCLV experiment with spatially modulated optical feed-
back. Such an ability to control front propagation could be
extended to other systems, thus opening the way to control
front dynamics and localized states in structured or peri-
odic media, as well as allowing the verification of several
theoretical conjectures on front interactions, snaking bifur-
cations, and noise induced propagation.

M.G. C. acknowledges the FONDECYT Project
No. 1090045, and FONDAP Grant No. 11980002.
R. G. R. thanks the FONDECYT Project No. 11080286.

R.G. E. thanks the financial support Becas de Estadı́as
Cortas de Investigación de la Universidad de Chile. U. B.
and S. R. thanks the ANR-07-BLAN-0246-03, turbonde.

[1] G. Nicolis and I. Prigogine, Self-Organization in Non-
equilibrium Systems (J. Wiley & Sons, New York, 1977).

[2] R. A. Fisher, Ann. Eugenics 7, 355 (1937); A.
Kolmogorov, I. Petrovsky, and N. Piskunov, Bull. Univ.
Moskow Ser. Int. Sec. A 1, 1 (1937).

[3] J. S. Langer, Rev. Mod. Phys. 52, 1 (1980).
[4] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851

(1993).
[5] W. van Saarloos and P. C. Hohenberg, Physica

(Amsterdam) 56D, 303 (1992).
[6] P. Collet and J. P. Eckmann, Instabilities and Fronts in

Extended Systems (Princeton University Press, Princeton,
1990).

[7] W. van Saarloos, Phys. Rep. 386, 29 (2003).
[8] M.G. Clerc et al., Eur. Phys. J. D 28, 435 (2004).
[9] R. E. Goldstein et al., Phys. Rev. A 43, 6700 (1991).
[10] Y. Pomeau, Physica (Amsterdam) 23D, 3 (1986).
[11] See, e.g., L.M. Pismen, Patterns and Interfaces in

Dissipative Dynamics (Springer Series in Synergetics,
Berlin Heidelberg, 2006), and references therein.

[12] P. Coullet, C. Riera, and C. Tresser, Phys. Rev. Lett. 84,
3069 (2000).

[13] M. Tlidi, Paul Mandel, and R. Lefever, Phys. Rev. Lett. 73,
640 (1994).

[14] M.G. Clerc and C. Falcon, Physica (Amsterdam) 356A,
48 (2005).

[15] J. Burke and E. Knobloch, Phys. Rev. E 73, 056211
(2006).

[16] J. Armero et al., Europhys. Lett. 33, 429 (1996); J. Armero
et al., Phys. Rev. E 56, 5405 (1997).

[17] T. Epstein and J. Fineberg, Phys. Rev. Lett. 92, 244502
(2004).

[18] V. Petrov, Q. Ouyang, and H. L. Swinney, Nature
(London) 388, 655 (1997).

[19] A. R. Thiam, N. Bremond, and J. Bibette, Phys. Rev. Lett.
102, 188304 (2009).

[20] M. Sbragaglia et al., Phys. Rev. Lett. 99, 156001 (2007).
[21] C. Douarche et al., Phys. Rev. Lett. 102, 198101 (2009).
[22] J. F. Douglas et al., Proc. Natl. Acad. Sci. U.S.A. 104,

10 324 (2007).
[23] S. Residori, Phys. Rep. 416, 201 (2005).
[24] M.G. Clerc, A. Petrossian, and S. Residori, Phys. Rev. E

71, 015205(R) (2005).
[25] U. Bortolozzo, M.G. Clerc, and S. Residori, Phys. Rev. E

78, 036214 (2008).
[26] The coefficients are � � 2�

�2VFT
½1� cosð	cos2�0Þ�ð�=2�

�0Þ3½�Iin � �Ic þ �ð1� cosð	cos2�0ÞðV0 � VcÞÞ�, " �
12

�2VFT
½ð�=2 � �0Þ2ðV0 � VcÞ� þ 12

�2VFT
½ð�2VFT

12 � ð�=2 �
�0Þ2ÞðIin � IcÞ=Ic�, b � 2�B

�2�VFT
½1� cosð	cos2�0Þ� �

ð�=2� �0Þ3, c � B
Ic
½1� 12V0

�2VFT
ð�=2� �0Þ2�.

[27] R. Rojas, Ph.D. thesis, University of Nice-Sophia
Antipolis, 2005, http://tel.archives-ouvertes.fr.

[28] N. Dirr and N.K. Yip, Interfaces and Free Boundaries 8,
79 (2006).

7.1 7.2

-0.06

-0.04

-0.02

0.02

0.04

0.06

7.0
0

V0 (V)<
dx

0/
dt

>
 (

a.
u.

)

0.1 0.2 0.3-0.1-0.2
η

0.2

0.1

-0.1

0

<
dx

0/
dt

>
 (

a.
u.

)

FIG. 4 (color online). Bifurcation structure of the average front
speed hdx0=dti for the full LCLV model, Eq. (1); a.u. are
arbitrary units. In the inset, the average front speed for the �4

model, Eq. (2), is plotted against �. Points are numerical
simulations, solid lines are theoretical fits with Eq. (4). The
forcing parameters are A ¼ 1, B ¼ 0:2, p ¼ 0:05 Lx.
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