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Universal shape law of stochastic supercritical bifurcations: Theory and experiments
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A universal analytical expression for the supercritical bifurcation shape of transverse one-dimensional (1D)
systems in the presence of additive noise is given. The stochastic Langevin equation of such systems is solved
by using a Fokker-Planck equation, leading to the expression for the most probable amplitude of the critical
mode. From this universal expression, the shape of the bifurcation, its location, and its evolution with the noise
level are completely defined. Experimental results obtained for a 1D transverse Kerr-type slice subjected to

optical feedback are in excellent agreement.
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In nature, most physical systems are subjected to fluctua-
tions. For a long time, the effects of these fluctuations were
either considered as a nuisance (degradation of the signal-to-
noise ratio) or ignored because it was not known how to
handle them. For three decades, a wealth of theoretical and
experimental research has shown that fluctuations can have
rather surprisingly constructive and counterintuitive effects
in many physical systems and that they can be figured out
with the help of different analysis tools. These situations oc-
cur when there are mechanisms of noise amplification or
when noise interacts with nonlinearities or driving forces on
the system. The most well-known examples in zero-
dimensional systems are noise-induced transition [1] and sto-
chastic resonance [2]. More recently, examples of spatially
extended systems are noise-induced phase transition, noise-
induced patterns (see [3] and references therein), noise-
sustained structures in convective instability [4], stochastic
spatiotemporal intermittency [5], noise-induced traveling
waves [6], noise-induced ordering transition [7], and front
propagation [8]. Among these effects, a direct consequence
of noise effects is the modification of the deterministic bifur-
cation shapes where the critical points and the physical
mechanisms are masked by fluctuations. It is important to
remark that the critical points generically represent a change
of balance between forces. Hence, the characterization of
noisy bifurcations is a fundamental problem due to the ubig-
uitous nature of bifurcations. For instance, the supercritical
bifurcations transform into smooth transitions between the
two states and the subcritical bifurcations experience hyster-
esis size modifications. In the absence of noise, the shape of
a bifurcation and its characteristics are given by the analyti-
cal solution of the deterministic amplitude equation of the
critical mode [9]. On the other hand, in the presence of noise,
no such analytical expression can be obtained from the sto-
chastic amplitude equation. In this latter situation, the below
and above bifurcation point regimes are usually treated sepa-
rately, but without continuity between their respective solu-
tions. For instance, in noisy spatially extended systems in
which the systems are characterized by the appearance of
pattern precursors below the bifurcation point and by estab-
lished patterns that fluctuate above this point [10], the pre-
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cursor amplitude [11], obtained from the linear study of the
stochastic equation, diverges at the bifurcation point and
does not connect to the “mean” amplitude of the fluctuating
pattern, obtained from the deterministic equation. To our
knowledge, no universal analytical expression of the critical
mode amplitude, describing the complete transition from be-
low to above the bifurcation point, exists for the supercritical
bifurcations in the presence of noise.

In this paper, we propose a universal description of the
supercritical bifurcation shapes of one-dimensional (1D)
transverse systems (either uniform or very slowly varying in
space) in the presence of noise that is also valid for the
second-order bifurcations of temporal (zero-dimensional)
systems. More precisely, we give a unified analytical expres-
sion for the most probable amplitude describing the super-
critical bifurcations in the presence of noise, including the
noise level and the deterministic bifurcation point location.
The systems under study are described by stochastic partial
differential equations (SPDEs) of the Langevin type [12]
(first order in time and with linear noise terms) involving
additive white noise. First, we reduce the SPDE to an ordi-
nary differential equation (ODE) for the amplitude of the
critical mode. Second, we solve the Langevin ODE describ-
ing the stochastic dynamics by using a Fokker-Planck equa-
tion for the probability density of the critical mode ampli-
tude. Then, from the stationary distribution of this amplitude,
we deduce the bifurcation shape by means of the most prob-
able value of the pattern amplitude. Finally, the comparison
with experimental results obtained in a Kerr-type slice sub-
jected to 1D optical feedback is given and leads to an excel-
lent agreement.

Let us consider a 1D extended system that exhibits a su-
percritical spatial bifurcation described by

dyii = f(ih, 0, pu}) + 7ol (x.1), (1)

where u(x,1) is a field that describes the system under study,
f is the vector field, {u} is a set of parameters that charac-

terizes the system, 7, is the noise level intensity, and {(x,?)

is a White Gaussian noisg with zero mean value and correla-
tion (J'(x,0) I (x",t"))=88(t' —1) 8(x' —x).
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FIG. 1. Averaged Fourier transform modulus S(k) of the field w
for the supercritical Swift-Hohenberg equation (2) with g=1 ob-
tained below the bifurcation point. The inset corresponds to an in-
stantaneous snapshot of S(k,?).

We assume that the associated deterministic system
(70=0) possesses a stationary state 1, that satisfies

fi,, 0., {u})=0. Above a set of critical values {u,}, the de-
terministic system exhibits a spatial instability such that u
reads 1(x,1)=uy+e O+ *G,  where (k) is the linear growth
rate, k is the wave number of the instability, and i is the
eigenvector associated with this critical mode. Close to {u.},
for N(k) <O (i.e., ug is stable), the profile of \ already dis-
plays two maxima for non-null wave numbers close to the
critical ones *k.. Hence, below the bifurcation point, when
noise is present, among all the excited spatial modes, the
ones associated with the maximum growth rate (k= *k,_)
will rule the dynamics. The dynamical behavior of the sys-
tem will then be characterized by pattern precursors as illus-
trated in Fig. 1. It shows the instantaneous S(k,?) and aver-
aged S(k)=(S(k,)), moduli of the Fourier transform of the
field 1, also called the structure factor, for the supercritical
Swift-Hohenberg equation [3] below the deterministic
threshold. We can remark that the maxima of the function,
both instantaneous and averaged, already give the incoming
critical wave numbers k.= = 1 (Fig. 1).

To describe the stochastic supercritical bifurcations of Eq.
(1) type in a unified description close to the instability
threshold, we consider the example of the stochastic super-
critical Swift-Hohenberg model [3] for pattern formation
which reads

&tw =pw = W3 - (axx + qZ)ZW + \“yyo-Og(x’t) » (2)

where w(x,1) is in general a real field. u—g* is the bifurca-
tion parameter, ¢ is the transverse wave number of periodical
solutions, £(x,?) is a Gaussian white noise with zero mean
value and correlation ({(x,){(x",1"))=8(x—x")8t-1"), and
g, represents the intensity of noise. A trivial uniform station-
ary state of the deterministic model of Eq. (2) is w(x,#)=0.
This state is stable for ©<<0 and exhibits a supercritical spa-
tial instability for u=0, which gives rise to the appearance of
a pattern for u>0. In order to describe the appearance of
pattern formation, we consider the small bifurcation param-
eter ¢ such that e=u<<1. The transverse domain of the sys-
tem is taken to be finite, of size L, and for the sake of sim-
plicity we consider periodic boundary conditions w(x
=-L/2,t)=w(x=L/2,1). To capture the dynamics of Eq. (2)
we introduce the ansatz
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7) .. al) _
= &;—)Equ + L/g)e_qu + U(a,aax)9 (3)

W /
V3 v

where ¢g=~2mn/L for wide enough L, a(T) is the space-
independent amplitude of the critical mode ¢, and U(a,a,x)
is a small correction function including high-order terms in
a,a. This ansatz is restricted to the single amplitude a(7) of
the most unstable wave vector g=k,. It is clear that to de-
scribe the full spatial variation of a(x,T) we should consider
more critical wave vectors as shown in Refs. [13,14]. How-
ever, in this paper, we derive in a first step an analytical
expression of the most probable value of a(T). We will show,
with the help of numerical simulations, that the plot of the
most probable value of a(x,T) is in very good agreement
with the one of the most probable value of a(T) based on a
single wave vector approximation. The “taking into account”
of more wave vectors would lead to a functional amplitude
for the stationary probability density of a and is out of the
scope of this paper. Work in this direction is in progress.

The amplitude a, slow time T=et, and U(a,a,x) are of
the order of €2 , g, and &7, respectively. Introducing the
ansatz (3) into Eq. (2), we obtain at order &°

eqr g
(axx + 42)2U= {— (970 + ea— |a|2a}? — _/_e—lqu
V3 3V3
+oplx0) + cc., (4)

where “c.c.” means “complex conjugate.” The linear opera-
tor (d,+¢%)?* is a self-adjoint with inner product (f|g)
=1 X2 fg, and it is not invertible because (d,+g¢*)%e™
=0. In order to have solutions for U, we multiply the right-
hand side of Eq. (4) by e™%*/L, integrate in whole domain,
and impose that it be equal to zero (Fredholm alternative or
solvability condition). Hence, we obtain the amplitude equa-
tion

dra=sa—|afPa+\p&(D), (5)

where =30, and

1 (L2 A
1) =+ {(x, T)e™""dx,

L) 1
with correlation (£(T)&(T"))=0 and (&(T)ET"))=&T"-T). It
is important to note that the dynamics close to supercritical
spatial bifurcation is described by Eq. (5) [9].

The general way of obtaining a solution of the Langevin
equation (5) is by use of a Fokker-Planck equation which
provides us with a deterministic equation satisfied by the
time-dependent probability density P(a,a;T) [12] of the am-
plitude a, which reads

&TP=¢9Q{—811+ |a|2a+g&5}P+c.c. (6)

The associated stationary probability density of the modulus
of a is
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FIG. 2. Stationary probability distribution P(|a|) for different
values of the bifurcation parameter €. From left to right, &
=-1,0,0.17,0.5,1. »=0.1.

2 4
Py(|al,e,m) = O(e, p)|alelele™~a72m], (7)

where Q(s,7])EZV’Ee‘Sz’Zﬂ/erfC(—%)\e’%. This stationary
probability density is shown in Fig. 2 for different values of
the bifurcation parameter &. The probability density function
is not symmetrical with respect to its maximum so that the
most relevant quantity for characterizing P,(|a|,&,») is its
maximum and not its mean value as usually calculated, e.g.,
in experiments. The value of |a| corresponding to the maxi-
mum of P(|al,e,7) occurs at the expectation value ||

given by
g+ \Ve2+27
|amax| = f (8)

The comparison of this analytical expression with the nu-
merical simulations performed on Eq. (5) is depicted in Fig.
3. It clearly shows a very good agreement between the nu-
merical values of |a,,,| obtained from the numerical simula-
tions of the stochastic supercritical Swift—-Hohenberg equa-
tion (2) and its analytical values [formula (8)]. Thus, the plot
of |an.| gives the searched for supercritical bifurcation
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FIG. 3. Influence of the noise level 7 on the shape of the im-
perfect supercritical bifurcation. The squares and circles are ob-
tained from the numerical simulations of the stochastic Swift—
Hohenberg equation (2) with g=1 and a noise intensity,
respectively, 0p=0.001 and 07=0.01. The solid curves correspond
to the analytical expectation value |a,,| of Eq. (8); the correspond-
ing mean-square fit values are 7Y"=0.0035 and #"1=0.032 (in
accordance with the relation 7=30y).
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FIG. 4. Bifurcation diagrams of the amplitude of the critical
mode obtained for different solutions of Eq. (5)—namely, the de-
terministic value, the expectation value ||, and the linear and
nonlinear mean values {|a|)jineqr and {|a|)noniinears T€SPECtively (see
text for value definitions).

shape in the presence of noise. As this latter expression in-
cludes the noise level 7, we can easily follow the continuous
deformation and evolution of the bifurcation shape with the
level of noise as can be seen in Fig. 3. Finally, when the
bifurcation parameter & is driven far from 0 (|e|>1), this
expectation value converges to zero (V=7/2¢) for negative
values of & and to Ve for positive values, then coinciding
exactly with the values of the amplitude a for the determin-
istic case of Eq. (5). Thus, the expression of |a,,/| is the
relevant one to describe the noisy supercritical bifurcations
including the noise level and the bifurcation point location
(£=0) of systems satisfying Eq. (1).

Let us now discuss the choice of |a,,,,| for describing the
noisy supercritical bifurcation against other quantities such
as, for instance, the averaged value of a. If we neglect the
nonlinear term in the Langevin equation (5), one can perform
a linear stability analysis that provides us with the linear
mean value of the amplitude modulus, {|a|};eq=\—T7/4¢.
Note that this value diverges at the bifurcation point and is
only valid for <0 (Fig. 4). The nonlinear mean value
{|al)nontinear is computed numerically from the time average
of a. All the linear mean, nonlinear mean, expected, and
deterministic values of the critical mode amplitude are re-
ported in Fig. 4 for comparison. The interesting region is
located in the vicinity of the bifurcation point (¢=0) where
the behaviors of the different curves strongly differ. The lin-
ear mean value and the deterministic value do not correspond
to a realistic physical behavior since the amplitude never
diverges at threshold and we are considering a noisy system
respectively. Only the nonlinear mean and expected values
can mimic the supercritical bifurcation in presence of noise.
However, as we have mentioned earlier, due to the asymme-
try of P,(|a|,e, ), the most probable and relevant value for
describing the evolution of the amplitude versus the control
parameter is the expectation value |a,,y|.

Regardless of the sign of &, the width of the stationary
probability distribution decreases as || increases far from 0
(Fig. 2). Tt is maximum when & corresponds to a change in
the dynamics of the system. The dynamics is then character-
ized by large amplitude fluctuations coinciding with a mini-
mum of Py(|anm,|) versus €. In the case of Fig. 5 this intrinsic
bifurcation point occurs at &.,;,~0.1 which is shifted from
the deterministic bifurcation point £=0. This shift reminds us
of bifurcation postponements as in [15]. A straightforward
calculation gives
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FIG. 5. Evolution of Py(|am.y|) versus & for 7=0.03 (o
=0.01) showing a minimum at the intrinsic bifurcation point &y,
~0.1.

Emin(7) = 0.55\7.

Thus, the plot of P(|ay,|) provides us with the intrinsic
bifurcation point location which corresponds to the relevant
location for the change in the dynamical regime of the sto-
chastic system.

In addition to the very good agreement between the ana-
lytical expression of |a,,,,| and the numerical simulations, we
checked the assumption on the restriction to the single most
unstable wave vector g=k, in the ansatz (3). We performed
a space and time extraction of the critical mode amplitude
a(x,T) by the well-known Hilbert transformation. We got for
each time T the spatial profile a(x,T) [Fig. 6(c)] of w(x,T)

@ >
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FIG. 6. (a) Comparison of the stochastic bifurcation shapes ob-
tained from a space-independent amplitude a(7) [Eq. (3)] and from
a space-dependent amplitude a(x,T) for =0.03. (b) Spatial evolu-
tion of w?(x,T) versus time T and (c) its corresponding amplitude
a(x,T). Space and time are, respectively, the horizontal and vertical
axes.
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[Fig. 6(b)]. Then, we plotted the stationary probability den-
sities to extract the corresponding values of the expectation
value |a,,|. Figure 6(a) depicts the stochastic bifurcation
then obtained from a(x,T) together with that obtained from
a(T). The two shapes give quite the same values of 7: 0.032
with the first method and 0.028 with the Hilbert treatment.
Thus, the single wave vector approximation in the ansatz (3)
is a good assumption and the analytical expression of ||
is relevant to describe the shape of the SPDE (2).

In order to completely validate the universal law of Eq.
(8), we have applied our analysis to experiments realized on
anoisy 1D transverse system known to exhibit a supercritical
bifurcation at the onset of roll pattern formation. The system
is a nematic liquid-crystal (LC) slice subjected to optical
feedback (cf. inset of Fig. 8) based on the well-known feed-
back optical system [16,17]. The corresponding stochastic
model reads [4]

Jt = (O — D+ [FI? + Rle (X F)? +\og,  (9)

where u(x,?) stands for the refractive index of the nonlinear
nematic LC layer, 7 and x are the time and transverse space
variables scaled with respect to the relaxation time 7 and the
diffusion length /,, and R is the mirror intensity reflectivity.
o=d/ky where d is the slice-mirror distance and k is the
optical wave number of the field. F is the forward input
optical field; its transverse profile is accounted for using
F(x)=F, exp(=x*/w?) for a Gaussian pump beam of radius
w. { and 7, are the noise source and level, respectively, as
defined in Eq. (1). The Kerr effect is parametrized by y
which is positive (negative) for a focusing (defocusing) me-
dium.

Equation (9) is similar to Eq. (1) and leads to an ampli-
tude equation [Eq. (24) in Ref. [18]] which is the same as the
deterministic part of Eq. (5). The spatial variations of the
pumping beam around its maximum are slow (less than 10%
for a domain width L including fewer than ten rolls) due to
the high transverse aspect ratio (2wk./27=30). Thus, the
conditions are fulfilled to apply the previous analysis to our
experimental noisy system in order to describe its supercriti-
cal bifurcation. Figure 7 shows probability density functions
calculated from experimental spatiotemporal diagrams for a
transverse domain width L around the center of the Gaussian
pumping beam. In Fig. 8 we have plotted the experimental
recordings of the amplitude expectation value |a,,,,| together
with its analytical expression [Eq. (8)]. We can see that
the analytical expression fits very well the experimental val-
ues. It provides us with the deterministic threshold 7
=151 W cm™. The intrinsic bifurcation point &,,;, could not
be located from P,(|a,|) since this latter does not depict a
clear minimum due to the Gaussian profile of F(x). The
analysis was performed on many regions of spatial width L
ranging from very limited transverse extensions close to the
center of the pump profile to the full width of the transverse
profile. The results always led to the same bifurcation shape.
So the universal amplitude expression of Eq. (8) is valid and
relevant to describe the supercritical spatial bifurcation shape
of our noisy system and more generally to describe the su-
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FIG. 7. Right: Spatiotemporal diagrams built from experimental
roll patterns. Left: Experimental probability amplitude histograms
and corresponding probability density functions [Eq. (7)]. (a) I
=108 W/cm?, (b) I=154 W/cm?, and (c) =180 W/cm?.

percritical bifurcations of 1D systems in presence of noise
even with nonuniform transverse profiles, assuming that they
vary very slowly in space.

In conclusion, we have given an universal amplitude
equation for 1D systems in the presence of noise. From this
equation, we have derived an analytical expression for the
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FIG. 8. Experimental bifurcation diagram for the optical feed-
back system. The dots are the experimental measured values of
|amax] and the solid curve its fitted analytical value [Eq. (8)]. The
dashed line is the corresponding deterministic bifurcation deduced
from the fit. The inset is a schematic sketch of the experimental
setup. LC, liquid-crystal layer; M, feedback mirror; F, input optical
field; B, backward optical field; d, feedback length.

amplitude expectation value that fully describes the noisy
supercritical bifurcations. The agreement with experiments
carried out for a 1D pattern-forming system is excellent. This
amplitude equation can be applied to any second-order tran-
sition of noisy temporal systems.
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