
Comment on ‘‘Asymptotics of Large Bound States of
Localized Structures’’

In a recent Letter by Kozyreff et al. [1], the authors
analyze stationary fronts connecting uniform and spatially
periodic states. They claim that the size of the resulting
localized patterns and their properties cannot be predicted
by weakly nonlinear methods since they have their origin
in exponentially small terms which do not appear in any
polynomial order of the spatial unfolding of the usual
normal forms [2]. They propose a different expansion
and derive the snaking bifurcation curve and other sta-
tionary properties, repeating our previous results [3,4],
where we used weakly nonlinear analysis with some slight
modifications. The argument in [1] is that it is a separation
of spatial scales which leads to the elimination of the scale
of the pattern in the amplitude equation and hence cannot
explain a situation where this scale plays a role, which is
what happens around the core of the front and it would be
nonsense to study the core using usual normal forms unless
we make modifications incorporating the lost scale. These
modifications appear in [3,4] as an external periodic forc-
ing that explains the core dynamics and the interaction of
two cores, which we show is at the origin of the existence
of a whole family of stationary localized structures. It is
this last stationary property which has been reobtained in
[1], but our old work clearly shows that weakly nonlinear
methods suitably modified can completely solve the prob-
lem contrarily to the claim in [1].

We can summarize our approach as follows: the original
physical equation for ~u�x; t� has the stable solution ~u � 0
and we write ~u � A�X; T�eiqxû� c:c:� h:o:t:, where X
and T are suitable scaled variables, in the coexistence
region near the bifurcation point where the spatially peri-
odic solution of wave vector q appears. The modifications
to the normal form is the incorporation of nonresonant
terms which are �n;mamnA

m �Aneiqx�m�n�1�, where amn are
calculable coefficients and we call the result the amended
normal form [4]. These extra terms break the parasite
constant phase invariance of the normal form leaving the
real invariance A! Aei�, x! x� �=q. From the
amended equation, we derive dynamical equations for the
core of the front and for their interactions, which give us
the sizes and properties of all these localized structures
near a bifurcation point. Using dynamical systems theory
the previous stationary results were first obtained in
Refs. [5] in 1D.

Finally, we remark that we can avoid the use of the
amended normal forms which are an intermediate step to
obtain the dynamics of the cores. To illustrate this, we
consider the supercritical Swift-Hohenberg equation close
to the Maxwell point, @tu � ��3=16� ��9�2u=10�
�u3 � u5 � �@xx � q

2�u, where q is the typical wave num-

ber of the pattern exhibited by this model [q�O�1�], �
controls the shift at the Maxwell point and ��
28 exp��q24�=
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�=3� 1. In order to describe the lo-

calized patterns we introduce the following ansatz:
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c:c:, where ���� stands for the distance between the cores
of the fronts, that is, the size of the localized patterns. We
assume that ���

��������
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p
ln��� � 1. � is an arbitrary phase

and w1�x; t;�� is a small correction function. We obtain at
first order in � the solvability condition
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3�. The oscillatory form of the right-hand side shows
that the system has several equilibria—the localized pat-
terns—obtained from _� � 0 (an analogous expression has
been derived in [1]), and one can determine the size,
existence, and stability of all of them. When � is changed
the equilibria states change and one trivially deduces the
snaking bifurcation curve [3]. It is important to note that a
similar expression to _��t� has been deduced to localized
peaks nucleating over a pattern of lower amplitude [6]. In
summary, all stationary and dynamical properties of local-
ized patterns can be predicted by means of weakly non-
linear analysis.
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