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Abstract

Solitary wave solutions exhibited at the onset of the phase transition in fluidized granular matter are perused. In the

quasi-sonic limit the system is modeled by two Korteweg de Vries equations. We study the solitary wave interactions in

order to understand the rich dynamics exhibited by the fluidized granular system at the onset of the gas–liquid phase

transition.

r 2006 Elsevier B.V. All rights reserved.
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Granular matter, when fluidized by continuous energy injection exhibits a variety of phenomena that
resemble those of molecular fluid-like waves propagation, pattern formation, and phase transition, to mention
a few. The main difference with molecular fluids is that, at collisions, grains dissipate kinetic energy into the
internal degrees of freedom of the grains. Hence, energy must be supplied continuously to sustain a fluidized
regime. Experimentally, energy is usually injected through vibrating walls or by the gravitational field.
Recently, it has been shown that a fluidized granular system in two spatial dimensions with a vibrating wall
and without gravity exhibits a phase separation [1–4], analogous to the spinodal decomposition of the
gas–liquid transition in the van der Waals (VdW) model [5]. Molecular dynamics simulations of a granular
system at the onset of phase transition reveal a rich dynamical behavior characterized by appearance,
coalescence, and disappearance of bubbles (or clusters). The mechanism for this phase separation is triggered
by a negative compressibility [1,2].

A continuous or macroscopic description of granular flows is still an open question. There are several
models with different approximation schemes that produce different hydrodynamic models. Nevertheless,
using simple generic arguments, independent of the specific macroscopic model, in Refs. [1,2] it is shown that a
fluidized granular system that exhibits phase separation can be described, close to the critical point, in good
detail by the VdW normal form. This model shows that the appearance, coalescence, interaction, and
disappearance of bubbles is mediated by nonlinear waves.
e front matter r 2006 Elsevier B.V. All rights reserved.
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Our aim will be to identify and characterize the solitary waves of the VdW model, and to study their
interactions in order to understand the rich dynamics that the fluidized granular system exhibits at the onset of
the phase transition. In the quasi-sonic limit the system can be well described by two Korteweg de Vries
equations.

The VdW normal form is [1,2]

qttu ¼ qxxðeuþ u3 � qxxuþ nqtuÞ, (1)

where u is the field that describes the correction to the critical average vertical density, x the coordinate that
describes the horizontal direction of the granular system, e the bifurcation parameter which is proportional to
the compressibility coefficient, and n the effective viscosity. The two first terms in the right-hand side give
account of the pressure around the critical average vertical density. The term with high spatial derivative
depicts the interface tension [2].

Solitary wave solutions: The inviscid VdW model has the form qttu ¼ qxxðeuþ u3 � qxxuÞ. In the moving
framework, z ¼ x� ct, the previous model reduces to a Newton type equation

d2u

dz2
¼ ðe� c2Þuþ u3 � l,

where l is an integration constant related to the total mass, compatible with periodical or zero flux boundary
conditions. The equilibrium fixed points ðu0Þ of this system satisfy l ¼ ðe� c2Þu0 þ u3

0. It is easy to show that,
when jljo2ðc2 � eÞ=3

ffiffiffi
3
p

and eoc2, this cubic equation has three real solutions, otherwise it just has one
solution. In the first case, two of them are hyperbolic fixed points, while the other is a center fixed point. Then,
Newton type equations in general, have a homoclinic loop, which corresponds to a traveling solitary wave of
the inviscid VdW model. To have a solitary wave solution, we must impose

u2
0 þ eoc2ov2s � 3u2

0 þ e. (2)

Hence, the wave speed is bounded. vs is the sound speed about the homogeneous state u0, therefore the solitary

waves are subsonic. Due to the symmetry of l!�l and u!�u, we will suppose without loss of generality
l40. In that case, the homoclinic orbit lies below the negative state u0o0 (the lowest fixed point). And we
have bright solitary wave solutions

u ¼ u0 þ
2ð3u2

0 þ e� c2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðc2 � u2

0 � eÞ
q

Cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3u2

0 þ e� c2Þ
q

ððx� x0Þ � ctÞ
h i

� 2u0

. (3)

In the opposite case, lo0, we have dark solitary wave solutions, which hold up the upper fixed point. In the
limiting case, l ¼ 0, there are two heteroclinic connections. Hence, we have kink or anti-kink solutions. Fig. 1
illustrates the solitary wave solution.
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Fig. 1. Bifurcation diagram of VdW model and solitary waves: (a) bifurcation diagram, (b) three different solitary waves supported by the

same homogeneous state.
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The amplitude of the solitary wave decreases with the speed and has the analytical expression

2ð3u2
0 þ e� c2Þ=ð�2u0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðc2 � u2

0 � eÞ
q

Þ. When the speed gets near to the sound speed, the solitary wave

tends to the homogeneous state u ¼ u0. On the other hand, when the wave speed decreases until u2
0 þ e, the

solitary wave tends to the symmetric homogeneous state u ¼ �u0. The previous analysis is valid only in the

parameter region where there is no phase separation (e4� u2
0, cf. Fig. 1). In the coexistence region,

�3u2
0oeo� u2

0 (see Fig. 1), the lower limit of speed exists no more. In this case, when the speed tends to zero

the solitary wave tends to an unstable bubble. This solution is the nucleation barrier between the

homogeneous state and the phase separation one. In the spinodal decomposition region, eo� 3u2
0 (see Fig. 1),

there is no solitary wave solution. However, in a state composed of one or more bubbles, there are regions in
space where they are almost homogeneous. Then, we locally have a stable homogeneous state, which can
support solitaire waves (cf. Fig. 2). These waves are well approximated by (3).

Quasi-sonic solitons: If we consider the solitary wave speed near the sound speed, c ¼ vs � w (w=vs51), and
u0�Oð1Þ, then we can approximate (3) by

u� u0 ’ �
vsw

u0
Sech2

ffiffiffiffiffiffiffi
vsw

2

r
fx� ðvs � wÞt� x0g

� �
. (4)

It is a typical soliton solution of Boussinesq or Korteweg de Vries equation, with the standard relation
between its width (s) and its amplitude (A): s / 1=

ffiffiffiffi
A
p

where u0 is fixed.
Considering the change of variables: T ¼ v2s t, X ¼ vsx and u ¼ u0 þ ðv

2
s=3ju0jÞv; and defining b ¼ v2s=9u2

0, we
can rewrite the inviscid VdW model as

qTT v ¼ qXX ðv� v2 þ bv3 � qXX vÞ.

Taking as inspiration the KdV relation between the width and the amplitude, we can introduce the scaling
x ¼ wðX � TÞ; y ¼ wðX þ TÞ; t ¼ w3T ; v ¼

P1
n¼1w

2nvn; where w�Oð
ffiffiffiffi
w
p
Þ . The first order in w gives us the wave

equation

qyxv1 ¼ 0¼)v1 ¼ f ðxÞ þ gðyÞ,

that has the D’Alembert solution shown above. At second order we have

4qyxv2 ¼ qx½�2qt þ 2f qx þ qxxx�f þ qy½2qt þ 2gqy þ qyyy�gþ 2ðqy þ qxÞ
2fg,

which is a linear inhomogeneous equation for v2. In order to have a bounded solution for v2, we impose
(solvability conditions)

�2qtf þ 2f qxf þ qxxxf ¼ 0,

2qtgþ 2gqygþ qyyyg ¼ 0.
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Fig. 2. Spatio temporal evolution of the VdW model at the onset of the phase transition, with time running up. The gray scale is

proportional to the field u, with darker regions representing denser regions in the system. The inset figures illustrate two different

snapshots before and after solitary wave emission.
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Hence, we have two uncoupled KdV equations, which are associated to right and left moving frameworks with
sound speed, respectively. The difference in sign guarantees that their solutions move against the sound
velocity, that is, they are subsonic. The solitons (4) are exact solutions of these KdV equations. The advantage
of having these KdV approximations consists in having a well-known integrable system [6]. For instance, when
two solitons, at the same moving framework, collide, they just undergo a change in their phases. Then, they
are genuine solitons, in the sense that they preserve their structure after a collision.

Left– right soliton interaction: Up to first order in w, the left-waves do not interact with right-waves. To study
the interaction between these waves, we must solve the next order. After imposing the solvability condition, we
have

v2 ¼
1

2
ðqygÞ

Z
dx f

� �
þ 2fgþ ðqx f Þ

Z
dy g

� �� �
.

Note that we have the freedom of an arbitrary integration constant. We can solve this ambiguity as in
perturbation QuantumMechanics theory, that is, imposing that the higher order corrections are orthogonal to
the first one (i.e., do not contain any D’Alembert solution). Therefore, if we choose g and f as soliton profile
(cf. Eq. (4)), then, as a consequence of the second-order correction v2, we can infer that at soliton collision, the
field u is higher and thinner than the superposition of both solitons. After the collision the solitons lose their
reflection symmetry with respect to the maximum.

When the viscosity n is taken into consideration the solitary waves become unstable and they exhibit
diffusive behavior. However, for small viscosity the decay time is small enough for the solitary waves to
mediate the interaction between the bubble at the onset of phase transition. The experimental and numerical
(molecular dynamics simulations) study of the solitary waves close to the phase transition is in progress.

The simulation software DimX developed in the laboratory INLN in France has been used for all the
numerical simulations. M.G.C. acknowledges the support of FONDECYT projects 1051117. M.G.C and D.E.
thank the support of FONDAP Grant 11980002, and ring program ATC15 of Programa Bicentenario.
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