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The effect of noise in a motionless front between a periodic spatial state and an homogeneous one is studied.
Numerical simulations show that noise induces front propagation. From the subcritical Swift-Hohenberg equa-
tion with noise, we deduce an adequate equation for the envelope and the core of the front. The equation of the
core of the front is characterized by an asymmetrical periodic potential plus additive noise. The conversion of
random fluctuations into direct motion of the core of the front is responsible of the propagation. We obtain an
analytical expression for the velocity of the front, which is in good agreement with numerical simulations.
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I. INTRODUCTION

The description of macroscopic matter—i.e., matter com-
posed of a large number of microscopic constituents—is usu-
ally done using a small number of coarse-grained or macro-
scopic variables. When spatial inhomogeneities are
considered these variables are spatiotemporal fields whose
evolution is determined by deterministic partial differential
equations �PDEs�. This reduction is possible due to a sepa-
ration of time and space scales, which allows a description in
terms of the slowly varying macroscopic variables, which are
in fact fluctuating variables due to the elimination of a large
number of fast variables whose effect can be modelized in-
cluding suitable stochastic terms, noise, in the PDE. The in-
fluence of noise in nonlinear systems has been the subject of
intense experimental and theoretical investigations in the last
decades �1–17�. Far from being merely a perturbation to the
idealized deterministic evolution or an undesirable source of
randomness and disorganization, noise can induce specific
and even counterintuitive dynamical behavior. The most
well-known examples in zero-dimensional systems are
noise-induced transitions �1,7,9� and stochastic resonance
�see the review in �2� and references therein�. More recently,
examples in spatially extended system were found, such as,
noise-induced phase transitions �3–5,12�, noise-induced pat-
terns �13–15�, stochastic spatiotemporal intermittency �16�,
and noise-induced traveling waves �17�. Here, we present
another robust effect of noise in extended systems: the mo-
tion of a static front connecting a stable homogeneous state
with a stable inhomogeneous (spatially periodic) state due to
additive noise. A first preliminary discussion of this effect
was done by the present authors in a recent Letter �18�, and
the aim of this article is to study and characterize the univer-
sal mechanism which is at the origin of the front motion in
the presence of noise.

The concept of front propagation emerged in the field of
population dynamics �19�, and the interest in this type of
problems has been growing steadily in chemistry, physics,
and mathematics. In physics, front propagation plays a cen-
tral role in a large variety of situations, ranging from reaction

diffusion models, to general pattern-forming systems �see the
review in �20� and references therein�. A front solution is a
solution which links spatially two extended states. One of the
most studied front solutions is the front connecting a stable
uniform state with an unstable one: the Fisher-Kolmogorov-
Petrovsky-Piskunov �FKPP� front �21�. The speed of propa-
gation of this type of front is not unique, and it is fixed by the
initial conditions �22�. Another well-known type of front, the
normal front, connects two stable uniform states. The speed
of this kind of front is unique, and for a variational system it
is proportional to the difference of free energy between the
two uniform states. In Fig. 1 the dashed curve represents the
typical behavior of the speed of a normal front as a function
of an arbitrary parameter. Note that the speed of the front is
zero only at the Maxwell point where both states have the
same energy. This picture is modified when one considers a
front connecting an spatially periodic state with a uniform
one, which is the case of interest for us here. In this case the
speed is zero not only in one point but in a whole interval of
variation of the relevant parameter, the pinning range �23�,
and additive noise will induce front motion �18�. In Fig. 1 the
solid line represents the typical speed of these fronts and the
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FIG. 1. �Color online� Speed of the front as function of one
parameter. The dashed curve depicts the typical behavior of the
speed of a normal front as function of arbitrary parameter, and the
solid curve represents the speed of a front that links a spatial peri-
odic state and uniform one. For the sake of simplicity the origin
represents the Maxwell point. The pinning range is depicted by the
interval between �a and �b.
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interval ��a ,�b� represents the pinning range. The effect of
additive noise on the speed of a “normal front” is just a
random fluctuation of its speed. On the other hand, the influ-
ence of multiplicative noise in a front, which will not occupy
us in this paper, has been extensively studied in the literature,
particularly concerning the issue of velocity selection �24�.

The paper is organized as follows. In Sec. II, we present
several examples of numerical observations of motion of
fronts induced by additive noise. In Sec. III, we use a proto-
type model which exhibits this type of front to derive an
adequate equation for the envelope of the front solution: an
amended amplitude equation, which includes a resonant term
coming from the additive noise whose origin is discussed in
Appendix A and also nonresonant terms. It turns out that the
contributions of the noise and of the nonresonant terms are
of the same kind, giving rise to an asymmetric potential with
denumerable stable equilibria in the equation for the core of
the front which is derived in Sec. IV. In this equation the
dominant contribution to the potential near threshold comes
from the noise term. In Sec. V, we obtain an analytical ex-
pression for the mean velocity of the front using Dinkyn’s
equation, which is proportional to Kramer’s rate in the weak-
noise limit. This expression is in good agreement with nu-
merical simulations. In Sec. VI, we summarize our results. In
Appendix A, we show that, as stated and used in the text in
Sec. III, noise is always resonant in the sense of the stochas-
tic normal form. In Appendix B, we give the technical details
involved in the derivation of the equation for the core of the
front. And finally in Appendix C, we show that the mean
value of the derivative of the phase remains bounded, which
is a necessary consistency condition of our approach.

II. NUMERICAL OBSERVATIONS OF ADDITIVE NOISE-
INDUCED FRONT PROPAGATION

In order to illustrate the generic nature of additive noise-
induced front propagation, we consider the effect of additive
noise over several dynamical systems which have fronts
linking a spatially periodic solution and a uniform one.

�a� Lifshitz normal form. A prototype model that exhibits
coexistence of a spatially periodic solution and a uniform
state is the Lifshitz normal form �25�

�tu = � + �u − u3 + ��xxu − �xxxxu + du�xxu + c��xu�2

+ ����x,t� �1�

This model describes the dynamics close to the confluence of
a bistability of homogeneous states and a spatial
bifurcation—that is, near a critical point of codimension 3,
called a Lifshitz point. Here, � is the bifurcation parameter,
� accounts for the asymmetry between the two homogeneous
states, and the term �xxxxu describes a superdiffusion, ac-
counting for the short-distance repulsive interaction, whereas
the terms proportional to d and c are, respectively, the non-
linear diffusion and convection, ��x , t� is a Gaussian white
noise with zero mean value and correlation ���x , t���x� , t���
=��x−x����t− t��, and � represents the intensity of the noise.
Recently, this model has been used to describe the complex
dynamics observed in a liquid-crystal light valve with optical

feedback �25�. In the region corresponding to the pinning
range of the above model, the system exhibits a motionless
front that connects the spatially periodic state with the uni-
form one �cf. Fig. 2�a��. When we consider the effect of
additive noise, we notice that it induces the invasion of one
of the states over the other one, or vice versa, depending on
the region of parameters we initially choose. This situation is
depicted in Fig. 2.

�b� Population dynamics. In order to take into account the
long-range effect of the environment one can consider non-
local models to describe the population dynamics. In this
type of models the emergence of self-organized structures
and patterns is well known �26,27�. A minimal model that
exhibits the coexistence of a spatial periodic state and a uni-
form one is the variational nonlocal Nagumo model �28�.

�tu�x,t� = �xxu + u�� − u��1 − u� + u3

− u�x,t��
�

u�x�,t�2f	�x,x��d2x�, �2�

where u�x , t� is the local density and � is the adversity pa-
rameter which accounts for the complications of develop-
ment of the species under study. The adversity characterizes
the equilibrium point and can always be chosen to satisfy
0
�
1 without loss of generality. The function f	�x ,x�� is
the influence function, characterized by a range 	 and nor-
malized in the domain � under study. For simplicity, we
consider the environment to be homogeneous and isotropic.
Then f	�x ,x��= f	�x−x��, with f	�z� even, and
	�f	�x ,x��dx�=1. In the extreme local limit 	→0, one has
f	�x ,x��=��x−x��, and Eq. �2� reduces to the Nagumo model
�26�. Let us now consider the simple influence functions
f	�z�=��	+z���	−z� /2	, where ��z� is the Heaviside func-

FIG. 2. �Color online� Spatiotemporal evolution of Eq. �1�, with
time running up. The gray scale is proportional to field u. The
inset is the initial condition. The parameters have been chosen as
�=−0.044, �=−0.0126, �=−1.0, c=0.177, and d=0.2 �a� �=0.0,
and �b� �=0.9.
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tion. The dynamics is described by the parameters 
� ,	 and
Eq. �2� can be written as

�tu = −
�F�u�
�u

,

where the Lyapunov functional F�u� has the form

F�u� = �
�
�1

2
��xu�2 +

�

2
u2 −

�� + 1�
3

u3�dx

+
1

4
�
�
�
�

u2u�2f	�x,x��dxdx�.

Hence, the dynamics of model �2� is of the relaxation type
and the stationary states are local minima of F�u�.

The model �2� exhibits a motionless front that connects
the spatially periodic state with the uniform one �cf. Fig.
3�a��. Note that these motionless front solutions are not the
global minimum of the Lyapunov functional F�u�; however,
they are local minima of this functional and the population
only can spread if one adds energy to the system. For in-
stance, if we consider the effect of additive noise, the peri-
odic population state can invade the unpopulated state
�u=0�. In Fig. 3, we depict the spread of population due to
the presence of additive noise in the variational nonlocal
Nagumo model.

�c� Subcritical Swift-Hohenberg equation. A prototype
model used in pattern-forming system is the Swift-
Hohenberg equation �20�. Initially, this model was used to
describe the onset of Rayleigh-Bénard convection �20�. From
the point of view of dynamical systems theory, this model
describes the confluence of a subcritical stationary and a spa-
tial bifurcation. Generalizations of this model have been used
intensively to account for pattern formation in several sys-

tems �see the review in �20� and reference therein�. We shall
consider here the subcritical Swift-Hohenberg equation,
which exhibits the coexistence between a uniform state and
an spatially periodic one. In the presence of additive noise
this equation reads

�tu = �u + �u3 − u5 − ��xx + q2�2u + ����x,t� , �3�

where u�x , t� is an order parameter, �−q4 is the bifurcation
parameter, q is the wave number of the periodic spatial so-
lution, � is the control parameter of the type of bifurcation
�supercritical or subcritical�, ��x , t� is a Gaussian white noise
with zero mean value and correlation ���x , t���x� , t���=��x
−x����t− t��, and � represents the intensity of the noise. In
the pinning range of the model above the system exhibits a
motionless front that connects the spatially periodic state
with the uniform one �cf. Fig. 4�a��. When one considers the
effect of additive noise, depending where is the control pa-
rameter inside the pining range, it induces on average that
one of the states invades the other one. This situation is
shown in Fig. 4, and in Fig. 5 we show the speed of the front
of this model �3� with and without additive noise.

FIG. 3. �Color online� Spatiotemporal evolution the population
density u�x , t� for the model �2�, with time running up, �=0.35,
	=4% of total system size, system size400 points, �a� without
noise, and �b� with additive noise. The gray scale is proportional to
the population density.

FIG. 4. �Color online� Spatiotemporal evolution of Eq. �3�, with
time running up. The gray scale is proportional to field u. The inset
is the initial condition. The parameters have been chosen as
�=1.0, q=0.7, �a� �=−0.16 and �=0.0, �b� �=−0.16 and �=0.4,
and �c� �=−0.177 and �=−0.16.

FIG. 5. �Color online� Mean velocity of the front with and with-
out noise. The thick and dashed curves are the average velocity of
the front of Eq. �3� for �=−0.16, �=1.0, q=0.7, �=0.0, and
�=0.01, respectively.
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In brief, we have considered three different dynamical
systems, which exhibit a motionless front solution linking a
spatially periodic state and a uniform one. When additive
noise is taken into account generically one state starts to
invade the other one by means of a noise-induced front
propagation. In order to figure out the mechanism of this
propagation in the next section we shall study in detail the
dynamics of the subcritical Swift-Hohenberg equation with
additive noise at the onset of spatial instability.

III. AMPLITUDE EQUATION AND EVOLUTION OF THE
CORE OF THE FRONT

In order to understand the mechanism through which ad-
ditive noise induces front propagation, we consider a proto-
type model that exhibits this type of front, the subcritical
Swift-Hohenberg equation with noise, Eq. �3�. This model
reads

�tu = −
�F
�u

+ �����x,t� , �4�

where the free energy has the form

F =� dx�−
�� − q4�u2

2
−
�u4

4
+

u6

6
− q2��xu�2 −

��xxu�2

2
� .

Hence, the dynamics of the above model is characterized
by the minimization of this free energy. In Fig. 6, we show
the typical bifurcation diagram observed in the subcritical
Swift-Hohenberg model. Note that the system exhibits
coexistence between different homogeneous states and the
spatial periodic one. For small � and �, the system shows
spatially periodic solutions with small amplitude �propor-
tional to ���, and consequently the amplitude equation will
be an adequate framework for our study. The free energy has
a local potential

V�u� = −
�� − q4�u2

2
−
�u4

4
+

u6

6
,

which characterizes the stability properties of the uniform
states.

A. Amplitude equation

In the limit of small �, we look for a solution u�x , t� in

Fourier modes putting u=A0eiqx+A0
¯ e−iqx+¯, with A0 of or-

der �1/2. Replacing in the subcritical Swift-Hohenberg equa-
tion �3�, we find that A0 satisfies

�A0 + 3�A02A0 − 10A04A0 = 0. �5�

For small and negative � and −9�2 /40���0 �cf.
Fig. 6�, the system exhibits coexistence between a stable
homogenous state u=0 and a periodic spatial one:

u=��
�2�1+�1+40� /9��cos�q�x−x0���+o��5/2�, where x0

is an arbitrary number, related to the symmetry of translation.
In this region of the space of parameters, we find then a front
solution between these two states. This type of solution is a
heteroclinic curve of the spatial dynamical system ��tu=0�
associated with the above model �29�. A front between an
homogeneous and a spatially oscillating state can be de-
scribed by an envelope A�X ,T�, which is introduced through
the ansatz

u = A�X = �1/2x,T = �t�eiqx + c.c. + W�X,T� , �6�

where W�X ,T� is a small function of the order of �5/2,
A��1/2, and ���1/2. Introducing the above ansatz in Eq.
�3�, linearizing in W, and considering the dominating order
��5/2�, we obtain

��x
2 + q2�2W = ��A + 3�A2A − 10A4A�eiqx�4�q2�XXA

− ��TA�eiqx + ��A3 − 5A2A3�ei3qx − A5e4iqx

+
��
2
���x,t�e−iqx + c.c.,

where the self-adjoint operator L= ��x
2+q2�2 has a nontrivial

kernel characterized by the eigenfunctions 
eiqx ,e−iqx�. Tak-
ing W=0 at this order we obtain an equation for A�X , t�
which contains nonresonant terms

�tA�X,t� = ��A + 3�AA2 − 10AA4 + 4�q2�XXA

+
��
2
���x,t�e−iqx� + ��A3 − 5A4Ā�e2iqx − A5e4iqx.

In this equation the terms in square brackets �¯�, except the
noise term, are the ones in the usual normal form, which is
obtained from the solvability condition for W in the previous
equations—i.e., that the right-hand side is orthogonal to the
kernel L= ��x

2+q2�2. The noise term is included there since it
is always resonant in the sense that it cannot be removed by

FIG. 6. �Color online� Bifurcation diagram of the subcritical
Swift-Hohenberg model �3�; the horizontal axis represents the con-
trol parameter and the vertical one represents the maximum value of
the absolute value of the equilibrium state. As solid lines are de-
picted the stable states and as dashed lines the unstable ones. The
model �3� exhibits the coexistence between two uniform states and
spatial periodic one. In the insets are illustrated the local potentials
V�u� for negative, zero, and positive �, respectively.
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a stochastic nonlinear and nonsingular close to the identity
change of variables as we discuss in Appendix A following
Refs. �33–37�, and the rest of the terms are the nonresonant
terms up to this order which can be eliminated by a deter-
ministic nonlinear and nonsingular close to the identity
change of variables. Defining

A�x,t� =�3�

10
B�y,��, x =

2�10q

3�
y, t =

10

9�2� ,

the envelope equation reads

��B�y,�� = 	B + BB2 − BB4 + �yyB

+ � 1

9�̃
B3 −

1

2
B4B̄�e2iqy/��� −

1

10
B5e2iqy/���

+
���

2��2
e−iqy/�����y,�� , �7�

where the new noise � is proportional to �� and has mean
value zero and correlation ���y ,����y� , t���=��y−y����t− t��.
One has

	 =
10�

9�2 , � = ���̃, � =
3�̃

2�10q
, � =

101/4102

81�̃4 .

If in the above amplitude equation we eliminate all the terms
with an explicit dependence on the spatial variable y, we
obtain the normal form without noise:

��B�y,�� = 	B + BB2 − BB4 + �yyB = −
���B,B̄�

�B̄
, �8�

which is variational, as indicated, with the functional

��B,B̄� = −� dy�	B2 +
1

2
B4 −

1

3
B6 − �yB2� .

By minimizing this free energy functional, we find that the
system has five uniform states, three of which are stable: B

=0 and B±= ±��1+�1+4	� /2 �cf. Fig. 6�. It is then straight-
forward to show that the previous equation �the normal form
without noise� has front solutions connecting two homoge-

neous stable states, B=0 and B=B±= ±��1+�1+4	� /2,
when − 1

4 
	�0, and these fronts will be stationary only
when the free energy for both states is the same—i.e., when
the system is in the Maxwell point. As already stated all the
terms which were eliminated to arrive at Eq. �8� are nonreso-
nant �except the noise term�, in the sense that they can be
eliminated by a nonlinear and nonsingular change of vari-
ables near the bifurcation point �33�, and hence are usually
neglected. As we shall see these terms can give an explana-
tion to the locking phenomena and the pinning range �31�.
Nevertheless, it should be pointed out that if we include only
the noise term which is always resonant �34–37� �Appendix
A�, this would be enough to explain the locking phenomena,
the pinning range, and the motion of the front, since this term

dominates the similar terms coming from the nonresonant
terms near the bifurcation point �see Eq. �12��. The nonreso-
nant terms and the noise term give exponentially small con-
tributions due to the fast oscillating exponentials and can be
treated perturbatively in the amplitude equation.

We can calculate the Maxwell point from ��B , B̄�, and we
obtain 	M =−3/16. We put now 	=	M +�	 in the complete
equation for B�y ,��, which we treat as the variational part in
the Maxwell point plus small terms which can be treated as
perturbations. One has

��B�y,�� = �−
3

16
B + BB2 − BB4 + �yyB�

+ ��	B + � 1

9�̃
B3 −

1

2
B4B̄�e2iqy/���

−
1

10
B5e4iqy/��� +

���
2�2

e−iqy/�����y,��� ,

where the small terms are inside the curly brackets 
¯� and
they include the noise term. The unperturbed equation for
B�y ,�� at the Maxwell point has the exact stationary front
solutions

B�±��y − y0� = R0
�±��y − y0�ei�,

where � is an arbitrary constant phase, y0 stands for the
position of the core of the front, and R0

�±��y−y0� is given by

R0
�±��y − y0� =� 3/4

1 + e±�3/4�y−y0� .

From now on, we shall work with the front R0
�+��y−y0�

which goes from zero at y=−� to the value �3/4 at y= +�
and we shall simply write R0 for this solution which is de-
picted in Fig. 7. We put B�y ,��=R�y ,��ei��y,�� in the com-
plete equation for B�y ,��, and we obtain

FIG. 7. Motionless front solution of Eq. �8�, computed at the
Maxwell point. As the vertical axis is represented the modulus of
amplitude B as a function of the position. y0 represents the position
of the core of the front.
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��R�y,�� + i����y,��R�y,��

= �−
3

16
R + R3 − R5 + �yyR�

+ �2i�yR�y� + iR�yy� − R��y��2�

+ ��	R + � 1

9�̃
R3e2i� −

1

2
R5e4i��e2iqy/���

−
1

10
R5e4i�e4iqy/��� +

���
2�2

e−iqy/�����y,��� .

B. Nonresonant terms

In order to solve the above equation we make the ansatz

R�y,�� = R0�y − y0���� + �̃�„y,y0���… ,

��y,�� = �̃�1„y,y0���… ,

where �̃ is a small parameter, and we have promoted the
coordinate y0 of the core of the front to a function of time
y0���. We replace our ansatz in the previous equation, where
we assume that the small terms in the square brackets are
O��̃� as well as the time derivative dy0��� /d�� ẏ0, and we
equate the real and imaginary parts at O��̃�, obtaining the
equations

− R0y„y − y0���…ẏ0

= �̃L�y − y0�� + �	R0„y − y0���…

+ � 1

9�̃
R0

3 −
1

2
R0

5�cos�2q
y

���
�

−
1

10
R0

5cos�4q
y

���
� +

���
2�2

cos�q
y

���
���y,��

�9�

and

d

dy
�R0„y − y0���…2�1y�

= − � 1

9�̃
R0

4 −
1

2
R0

6�sin�2q
y

���
� −

1

10
R0

6sin�4q
y

���
�

−
���
2�2

R0„y − y0���…sin�q
y

���
���y,�� , �10�

where

R0y�y� �
dR0

dy
, R0yy�y� �

d2R0

dy2 , �1y � �y�1„y,y0���…

and

L�y − y0� � −
3

16
+ 3R0�y − y0�2 − 5R0

4 + �yy

is the operator obtained through linearization of the varia-
tional equation for B�y ,�� around the front. The function
R0(y−y0���) satisfies the equation

−
3

16
R0 + R0

3 − R0
5 + �yyR0 = 0.

Taking the derivative with respect to y one shows

L�y − y0�R0y�y − y0� = 0.

The operator L�y−y0� is self-adjoint in the scalar product


f�y�,g�y�� =� dyf�y�*g�y� ,

where f�y�* stands for the complex conjugate of f�y�. We
multiply the equation for y0��� by R0(y−y0���), and we inte-
grate over y. We obtain the solvability condition �putting �̃
=1�

− 
R0y,R0y�d�y0���

= 
R0y,L�� + �	
R0y,R0�

+� dyR0y„y − y0���…� 1

9�̃
R0

3 − R0
5�cos�2q

y

���
�

−
1

10
� dyR0yR0�y − y0����5cos�4q

y

���
�

+
���
2�2 � dyR0y„y − y0���…cos�q

y

���
���y,�� .

�11�

One has 
R0y ,R0y�=3/4=1/a and 
R0y ,R0�=3/8. On the
other hand, since L is self-adjoint, one has 
R0y ,L��
= 
LR0y ,��=0 and we obtain an equation for y0��� of the
form ���̃�a��� /2 �2�

ẏ0��� = A„y0���… − ��̃� dyR0ycos�q
y

���
���y,�� ,

�12�

with

A�y0���� � −
3

8
a�	

+ a� dy�R0y�−
1

9�̃
R0

3 + R0
5�cos�2q

y

���
��

+
a

10
� dyR0yR0„y − y0���…5cos�4q

y

���
� .

In the equation for y0��� the product of a function of the
stochastic process y0��� with the white noise ��y ,�� is not
defined due to the singular properties of the noise. We define
it considering ��y ,�� as the limit of a physical noise with
time correlation proportional to a symmetric function ����
−��� of width �, where � is much smaller than the charac-
teristic times of variation of the macroscopic physical vari-
ables, which tends to ���−��� when � tends to zero. This
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leads to the Stratonovich interpretation for the undefined
product �38�. In Appendix B we show that this gives a
supplementary drift which is added to A(y0���) and we trans-
form the noise term to obtain �neglecting an exponentially
small contribution to the last term�

ẏ0��� = A„y0���… +� �̃

2a
����

−
�̃

2
� dyR0yR0yycos�2q

y

���
� ,

where ���� is a Gaussian white noise of zero mean value and
correlation �����������=���−���. If we make the change of
variables y�=y−y0��� in the last integral and in the integrals
in the definition of A(y0���), we obtain the equation �see
Appendix B for the calculation�

d�y0��� = −
3

2
a�	�K1

2 + K2
2cos�2q

y0���
���

+ ��
+� �̃

2a
���� + e−c2q/��, �13�

where c��4� /3�. In the last equation K1 and K2 are not
exponentially small �for small �� and we have neglected a
term O�e−c4q/���. We have

K1 = ec2q/���Re�K� −
9�̃

128

q

���
ImI� ,

K2 = ec2q/���Im�K� +
9�̃

128

q

���
ReI� ,

cos � =
K1

��K1�2 + �K2�2
,

sin � =
K2

��K1�2 + �K2�2
, �14�

with

K = a� dy�−
1

9�̃
R0y�y�R0�y�3 +

1

2
R0y�y�R0�y�5�ei2qy/���

=O�e−c2q/��� ,

and

I =� dy
e−2��3/4�y

�1 + e−��3/4�y�3
ei2qy/��� = O�e−c2q/��� .

We have obtained then in Eq. �13� our final equation for the
core of the front which tells us that the coordinate y0��� of
the core is a stochastic diffusion process defined by this
equation. In the next section, we shall study Eq. �13� and
show that it is at the origin of the motion of the front. We
take care now of Eq. �10� which involves the phase �1.
There is no solvability condition here, and we have then to
show that �1 can be calculated and is bounded. Since

R0y(y−y0���) vanishes for y→−�, we integrate Eq. �10�
from −� to y to obtain

R0„y − y0���…2�1y„y,y0���…

= �
−�

y

dy��−
1

9�̃
R0„y� − y0���…4 +

1

2
R0

6�sin�2q
y�

���
�

+ �
−�

y

dy�
1

10
R0„y� − y0���…sin�4q

y�

���
�

+
��̃
a
�

−�

y

dy�R0„y� − y0���…sin�q
y�

���
���y�,�� .

In the last term of this equation, we have the same problem
as in Eq. �11�—i.e., an undefined product of a function of the
process y0��� with the white noise ��y ,�� which we interpret
in the Stratonovich sense. After a long calculation done in
Appendix C, we obtain

R0„y − y0���…2�1y

= −
1

16�̃
S�1�

„y − y0���…cos�2q
y0���
���

− ��1��
+

27

128
S�2�

„y − y0���…cos�2q
y0���
���

− ��2��
+

27

640
S�3�

„y − y0���…cos�2q
y0���
���

− ��3��
−

9�̃

256a
I„y − y0���…cos�2q

y0���
���

− ��
+

��̃
a ��

−�

y

dy�R0„y� − y0���…

�sin�q
y�

���
���y�,���

�1�0�

,

where �1�0� in the noise term means that in a time discreti-
zation y0��� has to be evaluated at the beginning of the time
interval �prepoint discretization� �38�, which corresponds to
the Ito prescription, and consequently the mean value of this
term vanishes. It is shown in Appendix C that for all values
of y one has that S�j�(y−y0���) is bounded by O����, j
=1,2 ,3, while I(y−y0���)� is bounded by an exponentially
small quantity. If we take then mean value of the above
equation, we conclude that �R0(y−y0���)2�1y� remains
bounded everywhere.

IV. EVOLUTION OF THE CORE OF THE FRONT

The evolution equation �13� for the core of the front can
be written in the form
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ẏ0 = −
�U�y0�

�y0
+� �̃

2a
����

= � + � cos� 2q

���
y0��� + �� +� �̃

2a
���� , �15�

where the potential has the expression

U�y0� =
3

2
a�	y0 − b sin�2q

y0

���� ,

with ��− 3
2a�	, ��e−c2q/�����K1�2+ �K2�2, and b� ���

2q �.
Due to the interaction of the large scale with the small

scale underlying the spatial periodic solution, the dynamics
of the core of the front is modified with terms which are
exponentially small and periodic in space. The above deter-
ministic system is characterized by the spatial periodic state
invading the homogeneous one with a well-defined velocity
when ��0 and � � �. Increasing �, the system exhibits a
simultaneous transition to infinite saddle nodes for �− 
��  = �. For ���− and � � �, the system has an infi-
nite number of stable equilibria. Each equilibrium point rep-
resents a static front with different bumps �see Fig. 8�. In-
creasing further �, all critical points disappear by the saddle
node when ��0 and �+  ��  = �. For ���+ the homo-
geneous state invades the spatial periodic one with a well-
defined velocity. Therefore, for �−����+ �pinning range�
the system exhibits the locking phenomena.

We now consider the effect of noise in Eq. �15�. Due to
the asymmetry of the potential, the system does not have a
global stationary state and continuously converts the random
fluctuations in directed motion of the front; i.e., the noise
induces front propagation. This type of phenomena is well
known as a Brownian motor �32�. One can easily understand
the origin of this phenomena: if initially y0 is inside the basin
of attraction � of a fixed point; the front just fluctuates
around the fixed point during a time of the order of the mean
first passage time to ��; the border of �; after this time the
system makes a transition to the basin of attraction of the
nearest stable fixed point separated from the first one by the
lowest-energy barrier. This behavior is repeated in this new
basin of attraction, and the final result is a directed motion of
the front. Since the energy thresholds for jumping to the right
or to the left are different, the probability of jumping to
the side with the highest-energy threshold will be exponen-

tially small with respect to the probability of jumping to the
other side and this determines the direction of motion of the
front.

V. MEAN VELOCITY OF THE FRONT: ANALYTICAL
RESULTS

From the above analysis, we can estimate the mean ve-
locity of the core of the front:

�v� =
����

q
� 1

�+
−

1

�−
� ,

where ���� /q is the distance between the two successive
fixed points and 
�− ,�+� are the escape times to move to the
basins of attraction of the left or right fixed point, respec-
tively. To calculate these escape times, we use Dynkin’s
equation or mean first passage time �MFPT� equation
�39,40�. This equation describes the evolution of the stochas-
tic variable first passage time �FPT� ��� ,�� ;x0�, for a given
domain � with boundary �� and initial condition x0. The
mean first passage times to each side of the basin of attrac-
tion where x0 lies are called 
�− ,�+�, or escape times.
Dynkin’s equation for Eq. �15�� is �39,40�

�̃

4a

d2�

dy0
2 −

�U�y0�
�y0

d�

dy0
= − 1, �16�

with boundary condition ��a��=��b���0, where a� and b�
are two successive maxima of the potential �cf. Fig. 8�. In-
tegrating this equation, we compute the escape times. They
have the expression

� 1

�+
−

1

�−
�−1

=
2

�
�

c�

b��
c�

y

e2�U�y�−U�z��/�dydz

−
2

�
�

c�

a��
c�

y

e2�U�y�−U�z��/�dydz��c�

a�
e2U�y�/�dy

�
c�

b�
e2U�y�/�dy� ,

�17�

where c� is a maximum of the potential U�y0� �see Fig. 8�
and, in this case, �� �̃ /4a. In the limit of weak noise, the
expression for the mean velocity is

�v� =
2��

qa��yyU�a���yyU�c��
e−�U�c��−U�a���/�

��1 −��yyU�c��
�yyU�b��

e−�U�b��−U�c���/�� .

From the above expression one can find that in this limit
the velocity is proportional to Kramer’s rate. Numerically,
we have measured the front velocity for different values of
the noise intensity and we obtain good agreement with the
theoretical prediction, as is shown in Fig. 9. It is important to
remark that U�y0� is a function of the noise intensity. For
finite noise intensity this dependence is dominant in the

FIG. 8. �Color online� Schematic representation of the potential
U�y0�, when 0����− and � � �. 
a� ,b� ,c�� are fixed points.
The insets represent two equilibrium states of Eq. �3�.
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terms K1 and K2, in the limit of �→0. Hence for finite noise
intensity one only needs to consider the terms coming from
the noise to explain the locking phenomena and the induced
front propagation.

VI. DISCUSSION AND CONCLUSION

In order to understand the mechanism of noise-induced
front propagation we have considered the subcritical
Swift-Hohenberg equation. This model allows us to obtain
analytical expressions for the mean velocity of the front. For
an arbitrary model it is thorny to obtain explicit formulas
for the front velocity, since in general we do not have
access to explicit expressions of spatial periodic solutions.
Given a system that exhibits locking phenomena between
a spatial periodic state and a homogeneous state, we expect
to find, close to a spatial bifurcation, an amended envelope
equation since the spatial periodic solutions in the onset
of the bifurcation are harmonic and coexists with the
homogeneous state. Hence, one can use an ansatz similar to
Eq. �6�, and noticing that the envelope satisfies the symme-

tries 
x→−x ,A→ Ā� and 
x→x+x0 ,A→Aeiqx0� �31�, we can
conclude that the amplitude equation has a form similar to
Eq. �7� with real coefficients which can be written in the
form

��A = f�A2�A + �yyA + �
m,n

gmnAmĀneiq�1+n−m�x/�, �18�

where the terms which have explicit exponential are non-
resonant and rapidly varying in space. However, it is pre-
cisely due to these terms that we can explain the locking
phenomena �30,31�. In the presence of additive noise in the
original problem, we shall have an additive noise in Eq. �18�,
since noise is always resonant �cf. Appendix A� and the final
equation will be of the form of Eq. �7�, and once again the
noise term will give the dominant contributions to the lock-
ing effect and to the motion of the front. We can conclude
then that the noise induces front propagation due to the
asymmetry of the core of the front potential and the lack of a
global stationary state. Another way to understand this phe-
nomenon is that noise prefers to create or remove a bump,
because the necessary perturbations to nucleate or destroy a
bump are different.

The existence, stability properties, and bifurcation dia-
grams of localized patterns in the pinning range in one-
dimensional extended systems have recently been studied
�29,41�, from a dynamical point of view and front interac-
tion, respectively. When we consider the effects of noise on
these solutions, we expect, due to our previous discussion,
propagation of the interface of these localized patterns. In
Fig. 10 we show, in one and two extended dimensions, the
noise-induced propagation of one state into the other. In one
spatial dimension, one can then understand the localized pat-
tern solutions as the interaction of two fronts �41�. In two-
dimensional spatial systems, the understanding of the phe-
nomena is in progress.

From the above results, one realizes that the localized
patterns are unstable in nature—that is, in the presence of
noise. The velocity of propagation of the interfaces and
fronts is proportional to Kramer’s rate. Therefore, experi-
mentally, one can observe these localized patterns, when
noise is weak enough, for long intervals of time, as meta-
stable states.

In summary, we have studied the effect of internal noise
in a motionless front that links a periodic spatial state with a
homogeneous one. Noise induces front propagation; that is,
one extended state invades the other one. In order to explain
the mechanism of this phenomenon we have consider a pro-
totype model of pattern forming, the subcritical Swift-
Hohenberg equation with noise. From this model, we deduce
an amended amplitude equation for the envelope and the
core of the front. The equation of the core of the front is
characterized by an asymmetrical periodic potential plus ad-
ditive noise. The conversion of random fluctuations into di-
rect motion of the core of the front is responsible for the
propagation. We have obtained an analytical expression for
the speed of the front, which is in good agreement with
numerical simulations.
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face of localized patterns. �a� Numerical simulations of the gener-
alized Swift-Hohenberg model in one-extended system with addi-
tive noise. The inset is the initial condition. �b�, �c�, and �d� are
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APPENDIX A: STOCHASTIC NORMAL-FORM
THEORY

We have stated in the text that noise is always resonant in
the reduction to normal forms in the neighborhood of an
instability. The discussion will follow closely the previous
works. If we have a dynamical system

�tU�t� = F„U�t�,
���… + ��H„t,U�t�… , �A1�

where

U�t� = �
�=1

N

U��t�e�,

F„U�t�,
���… = �
�=1

N

F�„U�t�,
���…e�,

H„t,U�t�… = �
�=1

N

H�„t,U�t�…e�

is a noise term, 
���= 
�1 , . . . ,�q� is a set of control param-
eters, and �� is a parameter measuring the intensity of the
noise. Let E be the linear space of dimension N spanned by

the basis vectors �e1 , . . . ,eN� and U�0��
���� a fixed point of

Eq. �A1� for ����, where � is a domain in the space of

parameters 
���= 
�1 , . . . ,�q�. If we linearize the deterministic

part �tU=F of Eq. �A1� around U�0��
���� putting U=U�0�

��
����+V, we find a linear equation for V of the form

�tV = �̂�
����V . �A2�

The solution U�0��
���� is stable if all the eigenvalues of the

operator �̂�
���� have negative real parts. If we move �� in �

and arrive at a critical point ���c� in the space of parameters �
���c���, � the closure of �� where the elements of a set of
eigenvalues �	1 , . . . ,	m� have zero real parts, while the rest
of the eigenvalues �	m+j , j�1�have negative real parts such
that Re 	 j �d , j�m+1, where d is a fixed quantity, then

the solution U�0��
���� has lost its stability and the operator

�̂�
����� L̂�0� has two invariant subspaces, the critical sub-
space E�0� and the stable space E�−�. Let
� �1� , . . . , �n� , �n+1� , . . . , �N�� be the Jordan basis of E asso-

ciated with the operator L̂�0�.One has L̂�0� ���=��=1
N L��

�0� ���,
�=1,2 , . . . ,N, where L��

�0� is a Jordan matrix. The critical
subspace E�0� is spanned by � �1� , . . . , �n�� and E�−� by

� �n+1� , . . . , �N��. In the L̂�0�-invariant subspace E�0�the opera-

tor L̂�0� has all its eigenvalues with zero real part

�	1 , . . . ,	m�, m
n, and L̂�0� ���=��=1
n J�� 

���, �

=1,2 , . . . ,n, where J�� is an nxn Jordan matrix, and J��
=L��

�0�, 1
� ,�
n. If X=��=1
N X� 

����E,we define the op-
erators P�0� projecting on E�0� and P�−� projecting on E�−� by

P�0�X = �
�=1

n

X� 
���, P�−�X = �

�=n+1

N

X� 
���. �A3�

If we are in a neighborhood of the critical point ���c�, we put

��=���c�+���, U�t�=U�0��
���c���+V, and then Eq. �A1� �with-
out the noise term� is written as

�tV = �L̂�0�V + N�0��V�� + �D + L̂�1�V + N�1��V�� , �A4�

where the terms in the first set of square brackets on the

right-hand side are of order zero in 
���� and in ��, and the
terms in the second set of square brackets of order 1 �or

more� in the unfolding parameters 
���� and zero in ��. If
D=0, where D is a constant vector belonging to E, the fixed

point U�0��
���c��� is persistent in a neighborhood of 
���c��,
L̂�j�V are linearterms in V, and N�j��V� are nonlinear in V
�j=1,2�. In order to construct the normal form of Eq. �A4�
we make the ansatz

V = �U�1,0��A�� + U�2,0��A�� + ¯ �

+ �U�0,1��A�� + U�1,1��A�� + ¯ � , �A5�

where �X��n1,n2� stands for the part of X which is of polyno-

mial order n1 in A�= �A1 , . . . ,An�, order n2 in the unfolding

parameters 
����, and zero in ��. In Eq. �A5� we have

U�1,0��A��=��=1
n A� 

��� and the normal form is the “ simplest”

equation involving only the critical variables A�

= �A1 , . . . ,An�. As shown and discussed in detail in �42�.The

ansatz �A5� leads to self-contained equations for A� �the nor-
mal form� which are

�tA� = �f�
�1,0��A�� + f�

�2,0��A�� + ¯ �

+ �f�
�0,1��A�� + f�

�1,1��A�� + ¯ � , �A6�

where f�
�1,0��A��=J��A�. Adding the noise term in Eq. �A1� to

Eq. �A4� we obtain

�tV = �L̂�0�V + N�0��V�� + �D + L̂�1�V + N�1��V��

+ �G˜�t� + Ŝ�t�V + N�2��t,V�� , �A7�

where G˜�t� is an additive noise, Ŝ�t�V a linear multiplicative
noise, etc., and the added terms are of order ��. In order to
obtain the stochastic unfolding we change the ansatz �A5�
adding in the right-hand side a third set of terms

V = �U�1,0��A�� + U�2,0��A�� + ¯ �

+ �U�0,1��A�� + U�1,1��A�� + ¯ �

+ �U�0,0,1��t� + U�1,0,1��t,A�� + ¯ � , �A8�

where the notation �X��n1,n2,n3� stands for the part of X which
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is of polynomial order n1 in A�, n2 in 
����, and n3 in ��. The
normal form �A6� will be now ��=1,2 , . . . ,n�

�tA� = �f�
�1,0��A�� + f�

�2,0��A�� + ¯ �

+ �f�
�0,1��A�� + f�

�1,1��A�� + ¯ �

+ �f˜�
�0,0,1��t� + f˜�

�1,0,1��t,A�� + ¯ � , �A9�

We remark that the ansatz �A7� can be derived from a gen-
eral stochastic nonlinear change of variables; i.e., the coeffi-
cients of the change of variables are now stochastic pro-
cesses �43� in a similar way to what is done for the unfolding
of the parameters or for the unfolding due to the addition of
periodic perturbations to the original equation �44�.

The problem now is to calculate the stochastic terms of
the ansatz �A9�—i.e.,

U�j,0,1��t,A�� = �
�=1,. . .,N
�i=1,. . .,n

U�1
. . .�j;�

�t�A�1 . . . A�j ���,

�A10�

and the new random terms

f˜�
�j,0,1��t,A�� = �

�i=1

n

f˜�;�1¯�j
�t�A�1

¯ A�j �A11�

in the stochastic normal form. We call ! and " the left- and
right-hand sides of Eq. �A7�. Then we have

!�0,0,1� � ��tV��0,0,1� = ��tA���0,0,1��U�1,0��A��
�Aa

+ �̂ tU
�0,0,1��t�

= f˜�
�0,0,1��t� ��� + �̂ tU

�0,0,1��t� , �A12�

where �̂t stands for the time derivative with respect to the
explicit time dependence—i.e., the one in the random func-
tions and not the one in 
A��t��—and

"�0,0,1� = L̂�0�U�0,0,1��t� + G˜�t� . �A13�

Then !�0,0,1�="�0,0,1� gives �putting G˜�t�=��G�t�, f˜�
�j,0,1�

=��f�
�j,0,1�� gives

��̂ t − L̂�0��U�0,0,1��t� = ��G�t� − �
�=1

n

��f�
�0,0,1��t� ���.

�A14�

Projecting with P̂0 �L̂0
�0�= P̂0L̂�0�P̂�0�� we obtain

��̂ t − L̂0
�0��P̂0U�0,0,1��t� = P̂0

��G�t� − �
�=1

n

��f�
�0,0,1��t� ���.

�A15�

Since L̂0
�0�has eigenvalues with zero real part, the linear sto-

chastic differential equation �A13� has no stationary solution.
One has G�t�=��=1

N G��t� ���, P0G�t�=��=1
n G��t� ���, and if

we assume that the random functions 
G��t� ,�=1, . . . ,n� are
�-correlated white noises with zero mean and correlations

�G��t�G��t���=�����t− t��, then Eq. �A13� is a Markov pro-

cess whose conditional probability density P�P̂0U�0,0,1��t�
=X  P̂0U�0,0,1��0�=X�0�� has no limit when t→�, and then
one has no stationary probability and no stationary state. We

solve then Eq. �A15� choosing P̂0U�0,0,1��t�=0 and conse-
quently

f�
�0,0,1��t� = G��t�, � = 1,2, . . . ,n . �A16�

This equation tells us that additive noise is always reso-
nant as stated in the text. We can go to higher-order polyno-

mial orders in A� and the conclusion will be the same. Let us
calculate the terms in the linear stochastic unfolding; for this
we need the projection P−U�0,0,1��t� on the stable subspace
E−. We project Eq. �A14� with P− to obtain

�̂ t − L̂−
�0�P̂−U�0,0,1��t� = P−

��G�t�; �A17�

Since all the eigenvalues of L̂−
�0�� P−L̂P− have negative real

parts, this linear equation has can be solved for P̂−U�0,0,1��t�
and we can go to the next order in ��. One has

!�1,0,1� � ��tV��1,0,1�

= ��tA���1,0,1��U�1,0��A��
�A�

+ �̂ tU
�1,0,1��t,A��

+ f�
�1,0��U�1,0,1��A��

�A�

+ ��tA���0,0,1��U�2,0�

�A�

,

�A18�

"�1,0,1� = L̂�0�U�1,0,1��t,A�� + N2
�0��V = U�1,0��A��,V = U�0,0,1��t�…

+ N2
�0�
„V = U�0,0,1��t�,V = U�1,0��A��… + Ŝ�t�U�1,0��A�� .

�A19�

Then !�1,0,1�="�1,0,1� gives �f�
�1,0�=J��A��

��̂ t + J��A� �

�A� − L̂�0��U�1,0,1��t,A��

= I�1,0,1��t,A�� − �
�=1

n

f�
�1,0,1��t,A�� ���, �A20�

with I�1,0,1��t ,A��=� �=1,. . .,n
�=1,. . .,N

I��
�1,0,1��t�A� 

���. The operator on

the right-hand side is �̂t+#�L̂�0�� where #�L̂�0���J��A� �

�A�

− L̂�0� is the homological operator and I�1,0,1��t ,A�� can be read
directly from Eqs. �A18� and �A19�. Projecting Eq. �A20�
with P̂0we obtain

��̂ t + J��A� �

�A� − L̂0
�0��P̂0U�1,0,1��t,A��

= P̂0I�1,0,1��t,A�� − �
�=1

n

f�
�1,0,1��t,A�� ���. �A21�

Then, since �J��A� �

�A� − L̂0
�0�� has eigenvalues with zero real

part, we have the same situation as in Eq. �A15� and we must
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solve �A21� putting P̂0U�1,0,1��t ,A��=0 and then

f�
�1,0,1��t,A�� = �

�=1,. . .,n
�=1,. . .,n

I��
�1,0,1��t�A�. �A22�

This equation is the analog of Eq. �A16� for linear multipli-
cative noise, and once again we find that we have to keep all
the noise terms. For a complete discussion of the stochastic
center manifold see �37�.

APPENDIX B: DERIVATION OF THE EQUATION
FOR THE CORE OF THE FRONT

We call M the noise term in Eq. �12�, where the product
of the function of the stochastic process y0��� with the white
noise ��y ,�� is interpreted in the Stratonovich sense. We dis-
cretize the variable y as 
yj =�j , j�Z�, i.e., yj −yj−1=�, and
then the discrete form of the noise correlation is
���yl ,����yl� ,����=��yl−yl�����−���=

�l,l�
� ���−���. We define

�̃l�����1/2��yl ,��, which has correlation ��̃l����̃l������
=�l,l����−���. With this, M can be written in the form

M = ��̃��
l

al„y0���…
�̃l���
��

, �B1�

with

al„y0���… � �− 1�R0y„yl − y0���…cos� qyl

���
� , �B2�

and Eq. �12� takes the form

ẏ0��� = A„y0���… + M � A„y0���… + ��̃��
l

al„y0���…�̃l��� .

�B3�

If we discretize the time � as � j =�j, j�Z, �=� j −� j−1, we
can write Eq. �B3� for the variables y0�� j�=y0,j. Defining
�y0,j =y0,j −y0,j−1,

�y0,j = �A�y0,j−1� + ��̃��
l

al�y0,j−1 +
1

2
�y0,j��wlj ,

�B4�

where we have discretized al(y0���) in the midpoint of the
interval �tj−1 , tj� due to the Stratonovich prescription. In Eq.
�B4� one has �wlj �wlj −wlj−1, wlj =wl�� j�, where 
wl��� , l
�Z� are independent Wiener processes defined by dwl���
= �̃l���d�, and consequently �wlj�wl�j =��l,l�. Since �y0,j is
of order �1/2, we obtain up to order � the expression

�y0,j = �A�y0,j−1� +
��̃�

2 �
l

al��y0,j−1��y0,j�wlj

+ ��̃��
l

al�y0,j−1��wlj , �B5�

where the prime denotes derivative with respect to the argu-
ment. Using the fact that �wlj is of order �1/2, the dominant
term in the latter equation is

�y0,j = ��̃��
l

al�y0,j−1��wlj . �B6�

Replacing expression �B6� in the right hand side of equation
�B5� and using �wlj�wl�j =��l,l� we obtain

�y0,j = ��A�y0,j−1� +
�̃�

2 �
l

al��y0,j−1�al�y0,j−1��
+ ��̃��

l

al�y0,j−1��wlj . �B7�

The stochastic differential equation for y0��� is now written
in the prepoint discretization �Ito prescription�. The noise
term is a sum of independent white noises
��̃��lal�y0,j−1��wlj which can be replaced by a white noise
��̃�̃���� with

�̃ = ��
l

al„y0���…2

=
1

2
�

−�

�

dyR0y„y − y0���…2�1 + cos� 2qy

���
�� ,

and ���� is a white noise of zero mean and correlation
�����������=���−���. The contribution of the cosine in the
integral gives an exponentially small contribution of order
O�e−c2q/�1/2

� with c= 2�
�3�

, and consequently we approximate

�̃ by

� =
1

2
�

−�

�

dyR0y„y − y0��…�2 = 1/2a .

On the other hand, the second term on the right-hand side of
Eq. �B7� is

�

2 �
l

al�y0,j−1�al��y0,j−1�

=
1

4
�

−�

�

dy�1 + cos� 2qy

���
�� d

dy
R0y�y − y0����2.

�B8�

Since 	−�
� R0yR0yy =0, we can finally write the stochastic dif-

ferential equation for y0��� in the form

ẏ0��� = A„y0���… +
�̃

4
�

−�

�

dyR0y�y�R0yy�y�cos�2q„y + y0���…
���

�
+� �̃

2a
���� . �B9�

After doing all the integrals in Eq. �B9�, we obtain the fol-
lowing equation:
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ẏ0��� = −
3a�	

2
+ Re�K�cos�2qy0���

���
�

− Im�K�sin�2qy0���
���

� + Re�J�cos�4qy0���
���

�
− Im�J�sin�4qy0���

���
� −

�̃

4�Re�S�cos�2qy0���
���

��
− Im�S�sin�2qy0���

���
� +

��̃
4
���� , �B10�

where S=− iq
���

9
64I, I and K are defined in expressions �14� in

the text, and J is defined by

J �
a

10
�

−�

�

dyR0y�y�R0�y�5e4qy0���/���.

We show below that K�O�e−c2q/���, I�O�e−c2q/���, and
J�O�e−c4q/���; consequently, we can neglect in Eq. �B10�
the terms proportional to J. We obtain

ẏ0��� = −
3a�	

2
+ e−c2q/���K1cos�2qy0���

���
���

+ K2sin�2qy0���
���

�� +
��̃
4
���� , �B11�

where K1 and K2 are of order 1 and defined in the text.
Finally Eq. �B11� coincides with Eq. �13� in the text. We
obtain now the estimates for the oscillatory integrals K , I,

and J. We define Ĩ �� is a positive number�,

Ĩ � �
−�

�

dy
e−�y

�1 + e−�y�nei$y/�.

Using the contour � in Fig. 11, we consider the integral in
the complex plane I. We call IL the integral over �1:

IL = lim
L→�

�
−L

L

dx
e−�x

�1 + e−�x�nei$x/� = Ĩ .

The explicit calculation of the integral over the contour �
gives, in the limit L→�, the result

I = �1 − e−2$�/���IL. �B12�

The residue theorem gives I=2�i��0�, where ��0�

�e−$�/��P� i$
�

� is the residue in the pole z= i� /� and
P�i$ /�� is a polynomial with maximum degree �2n−3�. We

obtain then for Ĩ the final result

Ĩ = e−$�/��P� i$

�
� + O�e−2$�/��� . �B13�

APPENDIX C: PHASE OF THE CORE OF THE FRONT
REMAINS BOUNDED

We shall study here the stochastic process R0(y
−y0���)2�1y(y ,y0���), which involves the derivative of the
phase �1(y ,y0���), and prove that the mean value of �R0

2�1y�
is bounded for all values of �. The value of R0

2�1y is given by
Eq. �10� in the text, and we can see there that we have in the
last term an undefined product of a function of y0��� with the
noise ��y ,��. As explained before we have to interpret this
product with the Stratonovich prescription. We write this
noise term as

��̃
4 Q, with

Q = �
−�

y

dy�R0„y� − y0���…sin� qy�

���
���y�,�� . �C1�

We proceed as in Appendix B and we use the same notation.
The discretized version of Eq. �C1� involves using the mid-
point discretization for the � dependence in y0��� due to the
Stratonovich prescription. Then R0(y−y0,j−1���+ 1

2�y0,j)
=R0(y−y0,j−1���)+ 1

2�y0,j)+ 1
2�y0,jR0�(y−y0,j−1���), and one

has

Q = �1/2�
l

R0�yl − y0,j−1�sin� qyl

���
��̃l,j��1�0�

+ �1/2�
l

1

2
R0y�yl − y0,j−1�sin� qyl

���
��y0,j

�wlj

�
,

�C2�

where �0 stands for the prepoint discretization. Replacing
�y0,j using Eq. �B6� and the correlation of the Wiener pro-
cesses, we obtain Q=Q1+Q2 with

Q1 = −
��̃
2
�

−�

y

dy�R0y�y� − y0���…2sin� 2qy�

���
� , �C3�

Q2 = �
−�

y

dy�R0„y� − y0���…sin� qy�

���
���y�,���1�0�.

�C4�

We replace now in expression �6� for R0
2�1y the last term

��̃
a Q using Eqs. �C3� and �C4� and we perform in all the

integrals �except in Q2� the change of variables y=y�
−y0���. The final result is

FIG. 11. �Color online� Contour of integration � on the complex
plane.
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R0„y − y0���…2�1y„y,y0���… = −
1

16	�Im�S�1�
„y − y0����cos�2q

y0���
���

� + Re�S�1�
„y − y0���…sin�2q

y0���
���

��
+

27

128
ImS�2�

„y − y0���…cos�2q
y0���
���

� + Re�S�2�
„y − y0���…sin�2q

y0���
���

��
+

27

240�Im S�3�
„y − y0���…cos�4q

y0���
���

� + Re S�3�
„y − y0���…sin�4q

y0���
���

��
−

9�̃

256a�Im I„y − y0���…cos�2q
y0���
���

� + Re�I„y − y0���…sin�2q
y0���
���

��
+
�̃1/2

a
�

−�

y

dy�R0„y� − y0���…sin�2q
y

���
��y�,����0

, �C5�

where �j=1,2�

S�j�
„y − y0���…�

−�

y−y0���

dy�
1

�1 + e−��3/4�y��1+j
ei2qy�/��1/2

,

S�3�
„y − y0���… = �

−�

y−y0���

dy�
1

�1 + e−��3/4�y��3
ei4qy�/��1/2

,

I„y − y0���… = �
−�

y−y0���

dy�
e−2��3/4�y�1

�1 + e−��3/4�y��1+j
ei2qy�/��1/2

.

�C6�

We remark that I(y−y0���) is bounded and moreover �see
Appendix A�. Expression �C5� can be written in the form

R0„y − y0���…2�1y„y,y0���…

= −
1

16	
S�1�

„y − y0���…cos�2q
y0���
���

− ��1��
+

27

128
S�2�

„y − y0���…cos�2q
y0���
���

− ��2��
+

27

240
S�3�

„y − y0���…cos�4q
y0���
���

− ��3��
−

9�̃

256a
I„y − y0���…cos�2q

y0���
���

− ��
+
�̃1/2

a
�

−�

y

dy�R0„y� − y0���…sin� 2qy�

���
���y�,���0

�C7�

where, for j=1,2 ,3,

cos���j�� =
Im
S�j��y − y0�����

S�1��y − y0����
, �C8�

sin���j�� =
Re
S�j��y − y0�����

S�1��y − y0����
; �C9�

and the same formulas can be written for 
cos��� , sin����
replacing S�j��y−y0���� by I�y−y0����. We prove now that the
functions S�j��y−y0���� are bounded. These integrals are of
the type

where n�= �m�+n�+1� /2 is always an entire number, ��

= �m�−n�−1�q /�, �=��, and the integrals S˜ comes from a
nonresonant term �see Eq. �4� in the text� of the form

cm�n�A
m�Ān�ei�m�−n�−1�q/�. The functions S�1��y−y0����, S�2��y

−y0����, and S�3��y−y0���� correspond to �m�=3,n�=0,��
=2q /��, �m�=4,n�=1,��=2q /��, and �m�=5,n�=0,��

=4q /��, respectively. Rescaling S˜
�y−y0����= 4
�3

S�ỹ− ỹ0����
=�3

4 �y−y0�����, we have

S„y − y0���… = �
−�

ỹ−y0
˜���

dy�
ei�y�/�

�1 + e−2y��n
, �C11�

where �= 4
�3
��. To calculate S we use the contour � of Fig.

2.
Using the theorem of residues,

J = �
�

dz
ei�z/�

�1 + e−2z�n = 2���0�, �C12�

where ��0��e−��/2� is the residue at the pole z= i� /2 of the
integrand. The sum of the integrals over �1 and �2 gives
S(y−y0���)�1−e−��/2��, and the integral over �2 has the
value iei�(y−y0���)M, with

M = �
0

�

dy
e�y/�

�1 + e−2iy−2�ỹ−y0
˜�����n

. �C13�
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A short calculation gives, for the modulus of M, the
bound

M 
 �
0

�

dy
ei�y/�

�1 + e−2�ỹ−y0
˜�����n

=
�

2

1 − e−��/�

�1 + e−2�ỹ−y0
˜�����n

.

�C14�

We have then from Eq. �C10�

S˜„ỹ − ỹ0���… =
2�i��0�

1 − e−��/� − i
ei�„ỹ−y0

˜���…

1 − e−��/�M . �C15�

Since M is bounded by O��=��� according to Eq. �C14�,
we conclude from Eq. �C15� that it is bounded by a quantity
of O���� for al values of ỹ. If we take the mean value of
�R0

2�1y� in Eq. �C5�, the last term vanishes due to the �1�0�
discretization and all the other terms are bounded due to Eq.
�C15� and the bound O�e−c2q/��� �6,45�.
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