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Abstract

The existence, stability properties, dynamical evolution and bifurcation diagram of localized

patterns and hole solutions in one-dimensional extended systems are studied from the point of

view of front interactions. An adequate envelope equation is derived from a prototype model

that exhibits these particle-like solutions. This equation allows us to obtain an analytical

expression for the front interaction, which is in good agreement with numerical simulations.

r 2005 Published by Elsevier B.V.

PACS: 47.54.+r; 45.70.Qj

Keywords: Fronts; Patterns; Localized structures
Non-equilibrium processes often lead by nature to the formation of spatial
periodic structures developed from a homogeneous state through the spontaneous
breaking of symmetries present in the system [1,2]. In the last decade localized
patterns or localized structures have been observed in different experiments: liquid
crystals [3], gas discharge systems [4], chemical reactions [5], fluids [6], granular
media [7], and nonlinear optics [8,9]. One can understand these localized patterns as
patterns extended only over a small portion of an extended system. From the point
of view of dynamics, the localized patterns in one-dimensional spatial systems are
see front matter r 2005 Published by Elsevier B.V.
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homoclinic connections for the stationary dynamical system [10]. Recently, a
geometrical interpretation of the existence, stability properties, and bifurcation
diagram of localized patterns in one-dimensional extended systems has been
given [11].

The aim of this paper is to describe how one-dimensional localized patterns and
hole solutions arise from front interactions. From a prototype model that exhibits
localized patterns and hole solutions, the subcritical Swift–Hohenberg equation, we
deduce an adequate equation for the envelope of these particle-like solutions. This
model has a front solution that connects a stable homogeneous state with a stable
spatially periodic one. Due to the oscillatory nature of the front interaction, which
alternates between attractive and repulsive, we can infer the existence, stability
properties, dynamical evolution and bifurcation diagram of localized patterns and
hole solutions. Hence, we reobtain the bifurcation diagram of localized patterns and
hole solution deduced from the horseshoe behavior of the attractive and repulsive
manifold of ordinary differential equations [11].

Let us consider a prototype model that exhibits localized patterns and hole
solutions in a one-dimensional extended system, the subcritical Swift–Hohenberg
equation [12] is

qtu ¼ eu þ nu3 � u5 � ðqxx þ q2Þ
2u , (1)

where uðx; tÞ is an order parameter, e� q4 is the bifurcation parameter, q is the wave-
number of periodic spatial solutions, and n is the control parameter of the type of
bifurcation, supercritical or subcritical. This model describes the confluence of a
stationary and a spatial subcritical bifurcation, when the parameters scale as u�e1=4,
n�e1=2, q�e1=4, qt�e and qx�e1=4 (e51). It is often employed in the description of
patterns observed in Rayleigh–Benard convection and pattern-forming systems [2].
In Fig. 1 we show typical localized patterns, hole solutions, and motionless front
solutions obtained from this model. For small and negative n, and 9n2=40oeo0, the
system exhibits coexistence between a stable homogeneous state uðxÞ ¼ 0 and a

periodic spatial one uðxÞ ¼
ffiffiffi
n

p
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cosðqxÞÞ þ oðn5=2Þ. In this

parameter region, one finds a front between these two stable states (cf. Fig. 1). In
order to describe the front, localized patterns and hole solutions, we introduce the
ansatz
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where Aðy; tÞ is the envelope of the front solution, w1ðx; y; tÞ is a small correction
function of order e, and fy; tg are slow variables. Note that in this ansatz we
consider that q is order one, or larger than the other parameters. Introducing the
above ansatz in Eq. (1) and linearizing in w1, we find the following solvability
condition:

qtA ¼ �A þ jAj2A � jAj4A þ qyyA þ
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Fig. 1. Particle-type solutions appearing in the subcritical Swift–Hohenberg equation. The parameters

have been chosen as � ¼ �0:16, n ¼ 1:00, and q ¼ 0:70. (a) Localized pattern, (b) shortest localized

pattern, (c) hole solution and (d) front solution.
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where � � 10e=9n2, and a � 3n=2
ffiffiffiffiffi
10

p
q. The terms proportional to the exponential

are non-resonant, that is, one can eliminate these terms by an asymptotic
change of variables. Furthermore, they have rapidly varying oscillations in the limit
� ! 0. Hence, one usually neglects these terms. Note that the above envelope
equation is a universal model, close to a spatial bifurcation, of a system that exhibits
coexistence between a homogeneous state and a spatially periodic one. In general,
one can use an ansatz similar to (2) and noting that the envelope satisfies
independently the symmetries fx ! �x;A ! Āg and fx ! x þ xo;A ! Aeiqxog one
derives Eq. (3).

When one considers only the resonant terms, that is, when all spatial-forcing terms
are neglected, it is straightforward to show that the system has a front solution

between two homogeneous states, 0 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�

p
Þ=2

q
, when �1=4o�o0. This

front propagates from the global stable (global minimum) to a metastable one (local
minimum). At the Maxwell point, where the equilibrium states have the same energy,
the front is motionless. This point is reached at �M ¼ �3=16, where the front
solution has the form

aðyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=4

1þ e
ffiffiffiffiffiffi
3=4

p
ðy�yoÞ

s
eiy ,

where yo is the front’s core position, and y is an arbitrary phase.
To describe a localized pattern exhibited by (1) as the interaction of two fronts, we

must then consider the non-resonant terms in the envelope equation (3). We consider
all these terms as perturbations because they have rapidly varying oscillations. Close
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to the Maxwell point, we use the ansatz

ALPðy; tÞ ¼ a�ðy � y1ðtÞÞ þ aþðy � y2ðtÞÞ �

ffiffiffi
3

4

r
þ rðy1; y2; y; tÞ

" #
eiyðy1;y2;y;tÞ ,

where fr; yg are small correction functions, which are of order d� � ð�� �MÞ and
y24y1. Introducing the above ansatz in Eq. (3), linearizing in fr; yg and after
straightforward calculations, we obtain the following solvability condition for the
distance between the fronts:

dD
dt

¼ f ðDÞ � �aD exp �

ffiffiffi
3

4
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where D � y2 � y1, a ¼ 27
ffiffiffi
3

p
=64 and b ¼ 64

ffiffiffi
3

p
q2 expð�q4p=

ffiffi
�

p
Þ=3�. In Fig. 2, we

display the interaction between two fronts. It is important to notice that in one-
dimensional extended systems, the dependence of the front interaction on the front
distance (D) is purely exponential [2]. In the present case, the linear and periodic
dependence on D is a consequence of the interaction (contained in the non-resonant
terms) of the large scale with the small scale of the underlying spatially periodic
solution. The system has several equilibria, f ðDn

Þ ¼ 0, that are stable if f 0
ðDn

Þo0.
Thus, the existence and stability of localized patterns are given by the oscillatory
nature of the front interaction. As is illustrated in Fig. 2, each region of attractive
and repulsive interaction is separated by localized patterns. It is also important to
notice that the larger equilibrium (D�) represents localized patterns with a larger
number of bumps.
f (∆)

∆

|δε|<β

δε<β

Fig. 2. Oscillatory interaction force f ðDÞ. The inset figures show the stable localized patterns observed at

the Maxwell point. The lengths of these localized patterns are represented by the stars. The dashed lines

represent the effective abscissas that determine the size of localized patterns when e is changed.
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In order to understand the bifurcation diagram of localized patterns, we consider
the effect of changing the bifurcation parameter �. Modifying � is equivalent to
moving the abscissa on the graph of front interaction (cf. Fig. 2). First, we consider
the case jd�j4b and d�o0; the interaction is always attractive, that is, there is no
equilibrium. Hence, if one takes into account a front that connects the homogeneous
state with the spatially periodic state, then the spatially periodic state invades the
homogeneous one. On increasing �, one finds the first equilibrium point D ¼ 1 for
d� ¼ d�� � b and d�o0. Here, the system has a motionless front between the
spatially periodic state and the homogeneous one. This front remains stationary until
jd�jpb; therefore, this front is motionless in a parameter range. This phenomenon is
well-known as the Locking phenomenon and the interval jd�jpb is the denominated
pinning range [13]. For d�4b, the front propagates from the spatially periodic state
to the homogeneous one. In Fig. 3, the thick solid line shows the velocity of front
propagation as a function of the bifurcation parameter.

Increasing d� from d��; we observe that the equilibria, that is, localized patterns,
appear by successive saddle-node bifurcations each time with a length smaller than
the previous one, i.e., the localized patterns appear by pairs, one stable and another
unstable, and each time with a smaller number of bumps. This sequence of
bifurcations is illustrated in Fig. 3 by the points ca

i . For small, d� and close to the
Maxwell point, the system has an infinite number of localized patterns with all the
possible number of bumps. The lengths of the localized patterns are roughly
multiples of that of the shortest localized state (one bump). In contrast, for jd�j4b,
the localized patterns disappear by saddle-node bifurcations and with increasing d�
the larger localized patterns disappear one after the other. Hence, the shortest
localized state is the last to disappear. In Fig. 3 the sequences of these bifurcation are
represented by the points cd

i .
Model (1) has different particle-like solution fronts, localized patterns and holes.

These solutions are displayed in Fig. 1. From the front interaction the hole solutions
de+
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Fig. 3. Speed of the front and bifurcation diagram of the localized patterns and hole solutions as a

function of the bifurcation parameter. The thick solid line indicates the front velocity. ca
i and cd

i (ha
i and hd

i )

represent the bifurcation points where the localized patterns with (hole solutions without) i-bumps appear

and disappear, respectively.
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can be understood as the complementary of localized patterns, because these solutions
can be described in terms of the front as

Aholeðy; tÞ ¼ ðaþðy � y2ðtÞÞ þ a�ðy � y2ðtÞÞ � rðy1; y2; y; tÞÞe
iyðy1;y2;y;tÞ ,

where this solution asymptotically converges to a spatially periodic state. We obtain
the same expression for interaction (4) by replacing a by �a. Therefore, for these
solutions, on increasing e we obtain a bifurcation diagram similar to that of localized
patterns but inverted, that is, the first hole appearing and disappearing by saddle-
node bifurcation is the shortest one. Successively, the holes with larger length appear
one after the other. Then, the solutions with shorter length disappear sequentially
one after the other. In Fig. 3 this sequence of bifurcations is indicated by the points
fha

i ; h
d
i g.

It is important to remark that the bifurcation diagram shown in Fig. 3 has been
deduced from geometrical arguments based on the horseshoe behavior of the
attractive and repulsive manifolds of an ordinary differential equation [11]. Adding
to the previous results, the front interaction also allows us to predict the dynamical
evolution of localized structures. In the pinning range, the front solution is
motionless. Recently, it has been shown that additive white noise induces front
propagation close to the pinning range [14]. The mean velocity of the front is zero
only in the Maxwell point, that is, at the Maxwell point the front core describes a
Brownian motion.

In conclusion, we have shown on the basis of the front interactions the existence,
stability properties, dynamical evolution and bifurcation diagram of localized
patterns and hole solutions in one-dimensional extended systems.
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