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 A B S T R A C T

Translational coupling takes place when the dynamics of a state variable at a given position 
depend on the state variable at a translated position, as occurs in optical experiments that 
present misaligned feedback. This article investigates analytically and numerically the effects of 
translational coupling on the dynamics of a spatially extended dissipative 𝜙4 system. We predict 
a translational-coupling-induced Andronov–Hopf instability with non-zero wavenumber. The re-
sulting unidirectional waves are characterized using a Ginzburg–Landau equation. The analytic 
solution for this wave shows excellent agreement with the numerical results. For larger values 
of the coupling parameter, secondary instabilities occur, resulting in spatiotemporal chaotic 
dynamics. Beyond the dynamics of uniform equilibria and waves, this system exhibits fronts 
with nonreciprocal propagation. The front speed as a function of the translational coupling 
parameter is obtained by analytical approximations and numerical simulations, showing good 
agreement between the two methods. Increasing the translational coupling values, the domains 
at each side of the front core exhibit a rich self-organization that goes from regular to chaotic 
waves. Finally, numerical bifurcation diagrams are presented.

1. Introduction

When driving mechanisms counterbalance energy losses, macroscopic systems can exhibit a variety of responses, including 
nonlinear waves, fronts, complex oscillations, and localized structures [1–6]. These paradigmatic examples of robust phenomena 
exhibit universal features even if emerging in very different physical settings, such as mechanical [7–10], magnetic [11–14], and 
optical [15–18] systems. This article focuses on dissipative waves and fronts. The first state typically results from an Andronov–Hopf 
instability with non-zero wavenumber of a homogeneous stationary state [19], where the wave number and frequency depend on 
the parameters of the system. Furthermore, the wave amplitude reflects the competition between energy injection and dissipation, 
as typically accounted for by the Ginzburg–Landau equation [20]. Fronts [1], or domain walls, are another self-organization 
phenomenon, corresponding to the frontier separating two domains with different equilibria [20]. While fronts are spatially extended 
objects, in most instances, their core behaves as particle-type solutions [1,21,22]. Fronts are particularly promising for technological 
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applications, such as magnetic systems at the nanoscale [23] or driven optical media [24], where localized states can be information 
carriers. Domain walls naturally propagate when one of the domains is stable and the other is unstable, resulting in the invasion 
of the stable domain [25]. An extensive characterization of these fronts, along with the propagation mechanisms in terms of front 
pulling and pushing, is available in the literature [1]. Another case is that of fronts connecting stable states, or bistable fronts, where 
domain-wall propagation occurs if there is an energy difference between domains, resulting in the invasion of the energetically 
favorable state [26,27]. Several bistable models have been employed to characterize this dissipative self-organization [1].

Beyond characterizing waves and fronts, the control of their propagation via engineering coupling mechanisms is a central focus 
in the study of non-equilibrium systems [28–31]. While most studies focus on local interactions [32], this article considers the less-
explored translational coupling. An experimental example of translational coupling is a liquid-crystal light valve with optical feedback, 
where a light beam can excite a liquid crystal layer and be re-injected with a lateral displacement. In systems with translational 
coupling, the evolution of the state variable 𝑢(𝑥, 𝑡), at the space and time coordinates 𝑥 and 𝑡, depends on 𝑢(𝑥−𝐿, 𝑡), i.e., 𝑢 interacts 
with itself after a translation parameterized by the externally tunable control parameter 𝐿 [33–36].

This article studies the effect of translational coupling in waves and fronts, and it is organized as follows. Our motivations are to 
study translational coupling in a reaction–diffusion-type model, which has not been investigated before; we also aim at predicting 
the emergence of complex wave and front dynamics in systems with translational coupling. In Section 2, we propose a reaction–
diffusion-type model with bistability and translational coupling and solve its homogeneous stationary states in Section 3, finding 
an Andronov–Hopf instability. In Section 4, we use weakly nonlinear analysis to characterize the dynamics of the wave envelope, 
obtaining a Ginzburg–Landau equation. Comparisons of the analytic solution of this Ginzburg–Landau equation and the numerical 
results show excellent agreement. A secondary instability of the waves creates a complicated chaotic dynamics that we characterize 
numerically. In Section 5, we focus on front dynamics, and find analytically and numerically the translational-coupling-induced 
speed. As it occurs with the unidirectional waves, increasing the translational coupling parameter results in secondary instabilities 
that induce chaotic dynamics. Finally, in Section 6, we present our conclusions and remarks.

2. Model

Out-of-equilibrium systems exhibit multiple stable solutions. A simple equation displaying bistability is the 𝜙4-model. Let us start 
reviewing the dissipative 𝜙4−model, also known as the extended Pitchfork normal form, a paradigmatic reaction–diffusion equation 
with bistability and parity symmetry.

Consider a scalar real-valued field 𝑢 = 𝑢(𝑥, 𝑡) that evolves according to the spatially extended Pitchfork normal form, which is a 
type of reaction diffusion equation [2] 

𝜕𝑡𝑢 = 𝜖𝑢 − 𝑢3 +𝐷𝜕𝑥𝑥𝑢, (1)

where 𝜕𝑡 and 𝜕𝑥𝑥 are the temporal partial derivative and the Laplacian operator, respectively, and 𝐷 is a diffusion constant. Reaction–
diffusion equations describe many systems, including liquid-crystal light valves (see [28] and references therein), where 𝑢(𝑥, 𝑡)
represents the average tilting angle of the liquid-crystal molecules with respect to a privileged axis.

In Eq. (1), there are three uniform equilibria (time-independent solutions), the simplest of them is 𝑢∗0 = 0. Expanding around the 
𝑢∗0 equilibrium, 𝑢(𝑥, 𝑡) = 𝑢∗0 + 𝛿𝑢, with |𝛿𝑢| ≪ 1 being a small perturbation satisfying the linear equation 

𝜕𝑡𝑢 = 𝜖𝛿𝑢 +𝐷𝜕𝑥𝑥𝛿𝑢, (2)

whose solution is 
𝛿𝑢(𝑥, 𝑡) =

∑

𝑘
𝐴(𝑘)𝑒

(

𝜖−𝐷𝑘2
)

𝑡+𝑖𝑘𝑥, (3)

where 𝐴(𝑘) is the initial-condition-dependent amplitude of the 𝑘−th mode. In Eq. (3), the time evolution of each Fourier mode 
depends on 𝜖 − 𝐷𝑘2. If there is at least one value of 𝑘 such that 𝜖 − 𝐷𝑘2 > 0, then the perturbation grows exponentially and 𝑢∗0 is 
an unstable solution. On the other hand, if 𝜖 − 𝐷𝑘2 < 0 for all 𝑘, then the 𝑢∗0 attracts nearby orbits in the phase space. Since the 
uniform mode (𝑘 = 0) has the largest growth rate, the 𝑢∗0 = 0 is linearly stable if 𝜖 < 0, and linearly unstable for 𝜖 > 0. For 𝜖 > 0, 
two stable equilibria emerge, 𝑢∗± = ±

√

𝜖. These states are connected by the 𝑢 → −𝑢 symmetry of the system and correspond to the 
minima of the functional

𝑉 [𝑢] = ∫ 𝑑𝑥

[

− 𝜖𝑢2

2
+ 𝑢4

4
+

𝐷
(

𝜕𝑥𝑢
)2

2

]

,

whose functional derivative, 𝛿𝑉 ∕𝛿𝑢, governs the dynamics of 𝑢 via the relaxation equation 

𝜕𝑡𝑢 = − 𝛿𝑉
𝛿𝑢

. (4)

For simplicity, model (1) does not include a so-called imperfection parameter 𝜂 [37], which would break the 𝑢 → −𝑢 symmetry, 
𝜕𝑡𝑢 = 𝜂 + 𝜖𝑢 − 𝑢3 + 𝐷𝜕𝑥𝑥𝑢. The presence of 𝜂 would create an energy imbalance between the equilibria 𝑢∗±, thereby obscuring the 
effects of translational coupling on the propagation of dissipative structures.

Eq.  (1) exhibits solutions where the states 𝑢∗− = −
√

𝜖 and 𝑢∗+ =
√

𝜖 inhabit in different domains separated by a front. This solution 
reads 

𝑢Kink (𝑥) =
√

𝜖 tanh
(√

𝜖 𝑥
)

, (5)

2𝐷

2 
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Fig. 1. Eigenvalue as a function of the wavenumber, 𝜆0 (𝑘), of the 𝑢∗0 = 0 solution of Eq. (6), in the interval −2 ≤ 𝑘 ≤ 2 for 𝐿 = 2 and 𝐷 = 1. The 
real part of the eigenvalue Re[𝜆0 (𝑘)] = 𝜖 cos(𝑘𝐿) −𝐷𝑘2 is negative for 𝜖 < 0 but reaches a zero for 𝑘 = 0 and 𝜖 = 0. Further increasing 𝜖 results 
in larger positive 𝜆0 (0) values. The right panel shows the imaginary part of the eigenvalue, Im[𝜆0 (𝑘)] = −𝑖𝜖 sin(𝑘𝐿). Note that Im[𝜆0 (0)] = 0, 
indicating that the leading mode is stationary even if 𝐿 ≠ 0.

which is also known as kink solution. The kink satisfies 𝑢Kink → ±
√

𝜖 for 𝑥 → ±∞. Given the 𝑥 → −𝑥 symmetry, an anti-kink solution 
defined as 𝑢Anti−Kink (𝑥) = 𝑢Kink (−𝑥) also exists.

2.1. Translational coupling

Let us introduce the translational coupling parameter 𝐿 in the reaction part of Eq. (1),

𝜕𝑡𝑢(𝑥, 𝑡) = 𝜖𝑢(𝑥 − 𝐿, 𝑡) − 𝑢3(𝑥 − 𝐿, 𝑡) +𝐷𝜕𝑥𝑥𝑢(𝑥, 𝑡). (6)

This equation preserves the 𝑢 → −𝑢 symmetry of the Pitchfork normal form, but breaks 𝑥 → −𝑥 invariance, producing 
nonreciprocal behaviors. For the sake of simplicity, the parameter 𝐿 enters only in the reaction part of the equation. In contrast, 
the Laplacian represents local (nearest-neighbor) coupling due to, e.g., local transport governed by Fick’s law.

The rest of this article is devoted to the systematic study of model Eq. (6) via analytical approximations and numerical methods. 
For the latter, Eq. (6) was integrated using finite differences for the spatial discretization and a fourth-order Runge–Kutta algorithm 
for the temporal evolution. Periodic and null-flux boundary conditions were employed for waves and fronts, respectively, in 
combination with a third-order extrapolation at the domain boundaries. The spatial and temporal step sizes used to discretize the 
system are 𝛥𝑥 = 0.1 and 𝛥𝑡 = 0.005.

3. Homogeneous stationary states

The values of the 𝑢∗0 = 0 and 𝑢∗± = ±
√

𝜖 equilibria remain unaltered by 𝐿. However, their stability has to be inspected since 
Eq. (4) is no longer valid. Writing 𝑢(𝑥, 𝑡) = 𝑢∗0 + 𝛿𝑢(𝑥, 𝑡) with |𝛿𝑢(𝑥, 𝑡)| ≪ 1 being a small perturbation, 

𝜕𝑡𝛿𝑢(𝑥, 𝑡) ≈ 𝜖𝛿𝑢(𝑥 − 𝐿, 𝑡) +𝐷𝜕𝑥𝑥𝛿𝑢(𝑥, 𝑡), (7)

whose solution reads 𝛿𝑢(𝑥, 𝑡) =
∑

𝑘 𝐴(𝑘)𝑒𝜆0(𝑘)𝑡𝑒𝑖𝑘𝑥. Here, the amplitude 𝐴(𝑘) depends on the initial conditions, and the eigenvalue 
function 𝜆0 (𝑘) = 𝜖𝑒−𝑖𝑘𝐿 −𝐷𝑘2 dictates the temporal evolution of the mode 𝑘. In Fig.  1, the eigenvalue is plotted as a function of 𝑘
for three different values of 𝜖, with 𝐷 = 1 and 𝐿 = 2. Near 𝜖 = 0, the homogeneous (𝑘 = 0) mode has the largest real part of 𝜆0 and 
is fully controlled by the 𝜖 parameter, i.e., 𝜆0 (𝑘 = 0) = 𝜖. Then, for small 𝜖, the translational coupling does not alter the Pitchfork 
bifurcation diagram since the leading mode is uniform, 𝑘 = 0, and non-oscillatory, Im[𝜆0 (𝑘 = 0)] = 0, and the instability occurs 
simultaneously to the creation of the 𝑢∗± equilibria [37].

Let us consider now the 𝑢∗± = ±
√

𝜖 equilibrium for 𝜖 > 0. Writing Eq. (6) up to linear order in the small perturbation around 𝑢∗±, 
𝛿𝑢(𝑥, 𝑡) ≡ 𝑢(𝑥, 𝑡) − 𝑢∗±, we get 

𝜕𝑡𝛿𝑢(𝑥, 𝑡) = −2𝜖𝛿𝑢(𝑥 − 𝐿, 𝑡) +𝐷𝜕𝑥𝑥𝛿𝑢(𝑥, 𝑡), (8)

where the corresponding eigenvalues, parameterized by 𝑘, are 
𝜆± (𝑘) = −2𝜖𝑒−𝑖𝑘𝐿 −𝐷𝑘2. (9)

Fig.  2 shows the real and imaginary parts of 𝜆± (𝑘) for the −2 ≤ 𝑘 ≤ 2 interval using 𝜖 = 𝐷 = 1. For relatively small 𝐿 values, the 
thick segmented curve shows that Re[𝜆± (𝑘)] < 0, and therefore the 𝑢∗± equilibria are stable. On the other hand, for the critical value 
𝐿 = 𝐿𝑐 ≡ 1.974, there is an inhomogeneous mode with wave number 𝑘𝑐 destabilizing the system, as revealed by the solid curve 
in Fig.  2(a). This leading mode has a characteristic angular frequency, 𝜔𝑐 = Im[𝜆±

(

𝑘𝑐
)

] ≠ 0, as confirmed by Fig.  2(b). Further 
increasing 𝐿 results in the temporal amplification of this leading mode (thinner segmented curve in Fig.  2).
3 
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Fig. 2. Eigenvalue as a function of the wavenumber, 𝜆± (−2 ≤ 𝑘 ≤ 2), of 𝑢∗± of Eq. (6), for 𝜖 = 𝐷 = 1. (a) The real part of the eigenvalue 𝜆±, 
Re

[

𝜆± (𝑘)
]

= −2𝜖 cos (𝑘𝐿) −𝐷𝑘2, is negative for 𝐿 < 𝐿𝑐 = 1.974 (thick segmented curve) but reaches zero for 𝑘 = 𝑘𝑐 and 𝐿 = 𝐿𝑐 (solid curve). The 
thin segmented curve shows the eigenvalue for 𝐿 > 𝐿𝑐 . (b) Imaginary part of the eigenvalue function, Im

[

𝜆± (𝑘)
]

= 2𝜖 sin (𝑘𝐿) that is zero for 
𝑘 = 0, indicating that the leading mode of the Pitchfork instability is stationary.

The critical mode (𝑘 = 𝑘𝑐) maximizes Re[𝜆± (𝑘)], or, equivalently, 
sin(𝑘𝑐𝐿)
𝑘𝑐𝐿

= 𝐷
𝜖𝐿2

. (10)

which is a transcendental equation with solution 𝑘𝑐𝐿 = 𝜋 for 𝐷 = 0. For small but nonzero 𝐷, the approximate solutions for wave 
number (𝑘𝑐) and angular frequency (𝜔𝑐) of the leading mode read 

𝑘𝑐 (𝐿) =
3𝜋
2𝐿

−
𝜋
√

1 + 4𝐷∕𝜖
2𝐿2

, (11)

𝜔𝑐 (𝐿) = 2𝜖 sin

(

3𝜋
2

−
𝜋
√

1 + 4𝐷∕𝜖
2𝐿

)

. (12)

The next section will show that these formulas for 𝑘𝑐 (𝐿) and 𝜔𝑐 (𝐿) are in good agreement with their numerically obtained 
counterparts, even if 𝐷 is as large as unity. At a fixed 𝜖, there is a critical value of 𝐿 for which the leading mode satisfies 
Re[𝜆±

(

𝑘𝑐 ;𝐿 = 𝐿𝑐
)

] = 0, namely 

𝐿𝑐 = 1.974
√

𝐷
𝜖
, (13)

which solves Eq. (10). This curve is plotted in Fig.  3(a) in the (𝜖, 𝐿) parameter space. For 𝐿 < 𝐿𝑐 , the 𝑢∗± = ±
√

𝜖 states are stable, 
while they become unstable against unidirectional waves for 𝐿 > 𝐿𝑐 . Numerical simulations of Eq. (6) reveal that the instability 
of 𝑢∗± = ±

√

𝜖 occurs in the ellipses in Fig.  3(a), showing excellent agreement with the analytic curve (𝜖, 𝐿𝑐
)

. Furthermore, from 
Eq. (13), one can obtain the critical value 𝜖 for any given 𝐿, namely, 𝜖𝑐 = 𝐷 (1.974∕𝐿)2. This indicates that the traditional Pitchfork 
bifurcation diagram is corrected due to the destabilization of the 𝑢∗± = ±

√

𝜖 states for 𝜖 = 𝜖𝑐 , as shown in Fig.  3(b).
While the linear stability analysis is helpful to predict the Andronov–Hopf bifurcation with inhomogeneous critical mode, the 

resulting dynamics requires weakly nonlinear analysis, as done in the next section.

4. Unidirectional waves

Let us start considering the following Ansatz describing the waves emerging around 𝑢∗+ =
√

𝜖

𝑢(𝑥, 𝑡) =
√

𝜖 + 𝐴𝑒𝑖(𝑘𝑐𝑥+𝜔𝑐 𝑡) + 𝐴̄𝑒−𝑖(𝑘𝑐𝑥+𝜔𝑐 𝑡) +𝑊 , (14)

where the small amplitude 𝐴 = 𝐴 (𝑥, 𝑡) is a slowly-varying field, i.e., 𝐴 satisfies |𝜕𝑡𝐴| ≪ |𝜔𝑐𝐴| ≪ 1 and |𝜕𝑥𝐴| ≪ |𝑘𝑐𝐴| ∼ |𝐴∕𝐿|. 𝐴̄
stands for the complex conjugate of 𝐴, and 𝑊 = 𝑊

(

𝐴, 𝐴̄, 𝑘𝑐𝑥, 𝜔𝑐 𝑡
) is a small correction expanded as

𝑊 =𝐶1,1|𝐴|
2 + 𝐶2,0𝐴

2(𝑥, 𝑡)𝑒2𝑖(𝑘𝑐𝑥−𝜔𝑡)

+ 𝐶0,2𝐴̄
2(𝑥, 𝑡)𝑒−2𝑖(𝑘𝑐𝑥−𝜔𝑡) +⋯ (15)

Replacing Eqs. (14) and (15) in Eq. (6), we get after straightforward but lengthy calculations

𝐶1,1 =
∓3
√

𝜖
, (16)

𝐶2,0 =
3
√

𝜖𝑒−2𝑖(𝑘𝑐𝐿)

2𝑖𝜔𝑐 + −2𝜖𝑒−2𝑖(𝑘𝑐𝐿) − 4𝐷𝑘2𝑐
, (17)
4 
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Fig. 3. Bifurcation diagrams of the homogeneous stationary states of model Eq. (6) for 𝐷 = 1. (a) In the bluish and reddish regions, the 𝑢∗± = ±
√

𝜖
states are stable and unstable, respectively. The separation is given by the analytic curve 𝐿𝑐 = 1.974

√

𝐷∕𝜖, or equivalently, 𝜖𝑐 = 𝐷 (1.974∕𝐿)2, 
while the ellipsoids are the numerical results. (b) The bifurcation diagram of the Pitchfork transition for 𝐿 = 1.974. While the destabilization of 
𝑢∗0 , and the emergence of 𝑢∗±, for 𝜖 = 0 is well known, a secondary instability takes place for 𝜖 = 𝜖𝑐 ≡ 𝐷 (1.974∕𝐿)2. This is an Andronov–Hopf 
bifurcation of the 𝑢∗± states that gives rise to (unidirectionally) traveling waves, as shown in the inset.

with 𝐶0,2 being the complex conjugate of 𝐶2,0. On the other hand, the equation of 𝐴 reads, 

𝜕𝑡𝐴 = 𝜇𝐴 − 𝑐𝐴|𝐴|2 + 2𝑖𝑘𝑐𝐷𝜕𝑥𝐴 +𝐷𝜕𝑥𝑥𝐴, (18)

with 

𝜇 ≡ 2𝜖𝑘𝑐𝛥𝐿 sin(𝑘𝑐𝐿𝑐 ) − 2𝛥𝜖 cos(𝑘𝑐𝐿𝑐 ) (19)

being the effective bifurcation parameter of this Andronov–Hopf instability, which depends on the 𝛥𝐿 ≡ 𝐿 − 𝐿𝑐 and 𝛥𝜖 ≡ 𝜖 − 𝜖𝑐
unfolding coefficients of the parameter space, i.e., 𝜇 indicates the transition between the bluish and reddish zones in Fig.  3(a). On 
the other hand, 

𝑐 ≡ 9𝜖𝑒−3𝑖(𝑘𝑐𝐿)

𝑖𝜔𝑐 − 𝜖𝑒−2𝑖(𝑘𝑐𝐿) − 2𝐷𝑘2𝑐
− 15𝑒−𝑖𝑘𝑐𝐿 (20)

is the complex coefficient of the cubic nonlinearity, accounting for the saturation, 𝑐𝑟 ≡ Re [𝑐] > 0, and the frequency shift, 
𝑐𝑖 ≡ Im [𝑐] > 0. Finally, the terms ∝ 𝜕𝑥𝑥𝐴 and ∝ 𝑖𝜕𝑥𝐴 are diffusion and a phase gradient (wavenumber shift) by the translational 
coupling. The latter can be eliminated by a change of variables of the form 𝐵 = 𝐴𝑒−𝑖𝑘𝑐𝑥, resulting in 

𝜕𝑡𝐵 =
(

𝜇 +𝐷𝑘2𝑐
)

𝐵 − 𝑐𝐵|𝐵|2 +𝐷𝜕𝑥𝑥𝐵. (21)

Eq.  (18), or its equivalent form (21), corresponds to the Ginzburg–Landau equation [20], a paradigmatic model of nonlinear 
waves [1]. Beyond the 𝐴 = 𝐵 = 0 state, for 𝜇 > 0, the simplest uniform solution of this amplitude equation reads 

𝐴(𝑡) =
√

𝜇
𝑐𝑟

exp
[

𝑖
(

𝜇𝑐𝑖
𝑐𝑟

𝑡 + 𝜙0

)]

, (22)

where the phase 𝜙0 depends on the initial condition. This 𝐴(𝑡) solution is a unidirectional wave. Replacing Eq. (22) in Eq. (14), we 
get at dominant-order in 𝜇

𝑢(𝑥, 𝑡) ≈
√

𝜖 + 2
√

𝜇
𝑐𝑟

cos
(

𝑘𝑐𝑥 +
[

𝜔𝑐 −
𝜇𝑐𝑖
𝑐𝑟

]

𝑡 + 𝜙0

)

. (23)

Note that Eq. (23) represents waves traveling only leftward for 𝐿 > 0, that is, the Andronov–Hopf instability generates 
nonreciprocal wave propagation. If 𝐿 < 0, the propagation direction reverses. On the other hand, the temporal oscillation in the wave 
amplitude, Eq. (22), is an angular frequency shift 𝛥𝜔 = −𝜇𝑐𝑖∕𝑐𝑟 for the wave (23). The analytic wave number, angular frequency, 
and the modulus of the amplitude, |𝐴|, are compared to their numerical counterparts in Fig.  4(a), (b), and (c), respectively, showing 
an excellent quantitative agreement for |𝛥𝐿| ≪ 1.

The largest Lyapunov exponent (LLE), 𝜆LLE, can be used as a numerical indicator to demonstrate the presence of chaos in this 
system, as illustrated in Fig.  4(d). The LLE was obtained by calculating the distance ‖𝛿𝑢LLE(𝑡𝑛+1)‖ between two initially nearby 
trajectories at times 𝑡𝑛+1 = 𝑛𝜏, with 𝜏 = 5 and 𝑛 = 0,… , 𝑁 for 𝑁 = 30. Other 𝜏 and 𝑁 values yield equivalent results. The notation 
‖𝑎‖ stands for the euclidean norm of the discretized scalar field 𝑎, ‖𝑎‖ =

√

∑𝑚 𝑎2
(

𝑥
)

, with 𝑥 = 𝑗 ⋅ 𝛥𝑥 being the positions in the 
𝑗=1 𝑗 𝑗
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Fig. 4. Unidirectional waves by translational coupling. The panels (a) to (d) show the wave number 𝑘𝑐 , angular frequency 𝜔𝑐 + 𝛥𝜔, amplitude 
norm |𝐴|, and largest Lyapunov exponent 𝜆LLE, respectively, as a function of 𝐿, using 𝐷 = 𝜖 = 1. (a) The solid curve shows the wave number 
of formula (11) and compares it with the numeric counterpart (ellipses), showing an excellent agreement for all the shown values of 𝐿. (b) The 
angular frequency is composed of a critical part given by the Andronov–Hopf instability, Eq. (12), and a correction from the solution of the 
Ginzburg–Landau equation (22). (c) and (d) show the modulus of the amplitude and the largest Lyapunov exponent (LLE) as a function of 𝐿, 
respectively. Three regions are distinguished: in Zone I, the 𝑢∗± = ±

√

𝜖 states are stable and the wave amplitude decays to zero. This convergence 
𝐴 → 0 implies a non-chaotic behavior, 𝜆LLE < 0. In Zone II, the wave amplitude grows and eventually saturates. At the onset of the instability, 
the amplitude obeys the |𝐴| ∝ (

𝐿 − 𝐿𝑐
)1∕2 power law, but eventually deviates from formula (22) and enters in Zone III for 𝐿 > 𝐿𝑐2 = 2.61, where 

chaos is observed. (e) and (f) show the spatiotemporal diagrams (left panels) and field profile at 𝑡 = 𝑡1 (right panels) for 𝐿 = 2.1 (Zones II) and 
𝐿 = 3.2 (Zone III), respectively. Here, 𝑥0 = −50, 𝑥𝑓 = 50, 𝑡0 = is the transient time, 𝑡1 = 𝑡0 + 50, and 𝑡2 = 𝑡0 + 100.

discretized domain. Then, the LLE reads 

𝜆LLE ≈ 1
𝑡𝑁

𝑁
∑

𝑛=0
ln
(

‖𝛿𝑢LLE(𝑡𝑛+1)‖
‖𝛿𝑢LLE(𝑡𝑛)‖

)

. (24)

As Fig.  4 reveals, the |𝐴| = 0 equilibrium is stable for 𝐿 < 𝐿𝑐 (Zone I in the figure). The convergence to the |𝐴| = 0 state corresponds 
to a 𝜆LLE < 0 as shown in Fig.  4(d). On the other hand, in Zone II, the wave grows as |𝐴| ∝ 𝜇1∕2 for 𝜇 > 0. In Zone II, two solutions 
separated by a small 𝜙0 value, remain at the same distance ‖𝛿𝑢LLE(𝑡𝑛+1)‖ in the phase space, resulting in 𝜆LLE ≈ 0. While in the first 
part of Zone II, the analytical approximation and numerical solutions for |𝐴| are in excellent agreement, the numeric value deviates 
as 𝛥 = 𝐿 − 𝐿𝑐 grows, eventually entering in Zone III. In this region, 𝐿 > 𝐿𝑐2 = 2.61, complex spatiotemporal patterns are observed, 
which corresponds to a positive LLE, as shown in Fig.  4(d). To grasp this dynamics at the onset of this secondary bifurcation, Figs. 
5(a) and 5(b) show the Fourier spectra of 𝑢, |𝐹 [𝑢]|, for 𝐿 = 2.6 < 𝐿𝑐2 and 𝐿 = 2.65 > 𝐿𝑐2, respectively. As these plots show, a new 
Fourier peak emerges in the spectra for 𝐿 > 𝐿𝑐2, creating aperiodic behaviors. The continuous growth of the LLE in Fig.  4(d) and 
the continuous growth of the non-resonant Fourier peaks as 𝐿 is varied, indicate that the transition is of a supercritical type.

The transition from coherent to chaotic wave dynamics in our 𝜙4−model, Eq. (6), can be framed within the established theory 
of the Ginzburg–Landau equation [20]. In particular, the onset of irregular behavior is associated with secondary modulational 
instabilities of the plane-wave states predicted by the amplitude equation (21), giving rise to spatiotemporal intermittency and 
defect turbulence [20,35,38]. Then, even if translational coupling is a specific forcing mechanism, the observed chaotic regime can 
be identified with the spatiotemporal instability scenarios well established in the Ginzburg–Landau model [20].

So far, we have predicted and characterized the Andronov–Hopf instability with non-zero wavenumber that gives rise to 
unidirectionally traveling waves. An analytic expression for the wave solution is found using weakly nonlinear analysis, and it 
6 
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Fig. 5. Fourier spectra, |𝐹 [𝑢]|, as a function of the wavenumber 𝑘 and angular frequency 𝜔 at the onset of the secondary instability of the system. 
(a) For 𝐿 = 2.60 < 𝐿𝑐2, the unidirectional wave has a clean Fourier spectrum. (b) For 𝐿 = 2.65 > 𝐿𝑐2, new peaks emerge with incommensurable 
angular frequency and wave number.

shows excellent agreement with its numeric counterpart at the onset of the instability. Further increasing the translational coupling 
parameter results in the emergence of a new oscillatory mode, eventually leading to a chaotic solution. As we show in the next 
section, such a phenomenology is inherited by front solutions connecting the domains centered on the ±√𝜖 states.

5. Fronts

In infinite systems, single front solutions such as Eq. (5) obey 𝑢Kink (𝑥 → ±∞) = ±1, which does not occur in experimental setups. 
Correspondingly, in our finite simulation box, zero-flux boundary conditions were applied, and the field was extrapolated cubically 
at the borders to evaluate the 𝑢(𝑥 − 𝐿, 𝑡) and 𝑢3(𝑥 − 𝐿, 𝑡) terms. The general phenomenology is presented in Fig.  6. For small values 
of 𝐿, the fronts connect 𝑢∗− = −

√

𝜖 and 𝑢∗+ =
√

𝜖 and propagate at a constant speed, as shown in Fig.  6(a). To find the front speed 
analytically, we start writing Eq. (6) as 𝜕𝑡𝑢(𝑥, 𝑡) = 𝐹 (𝑢(𝑥 − 𝐿, 𝑡)) +𝐷𝜕𝑥𝑥𝑢(𝑥, 𝑡), and use the following Ansatz based on Eq. (5), 

𝑢(𝑥, 𝑡) = 𝑢Kink
(

𝑥 − 𝑥𝐹
)

+𝑊 (𝑥, 𝑥𝐹 ). (25)

where 𝑥𝐹 = 𝑥𝐹 (𝑡) is the front position and 𝑊  is a small correction emerging from the nonlinear nature of the system. Up to linear 
order in 𝐿, 

𝐿̂𝑊 = −𝑣𝜕𝑥𝑢Kink (𝑥) + 𝐿
(

𝜕𝐹
𝜕𝑢Kink

)

𝜕𝑥𝑢Kink (𝑥) (26)

where 𝐿̂ =
(

𝜕𝐹∕𝜕𝑢Kink
)

+𝐷𝜕𝑥𝑥, 𝑣 ≡ 𝜕𝑡𝑥𝐹  is the front speed, and the derivative (𝜕𝐹∕𝜕𝑢Kink
) is evaluated on 𝑢Kink (𝑥). Using the inner 

product (𝑎, 𝑏) = ∫ ∞
−∞ (𝑎 ⋅ 𝑏) 𝑑𝑥, 𝐿̂ is a self-adjoint operator, and the Fredholm alternative for Eq. (26) gives 

𝑣 = 𝐿
∫ ∞
−∞

(

𝜕𝐹
𝜕𝑢Kink

)

[

𝜕𝑥𝑢Kink (𝑥)
]2 𝑑𝑥

∫ ∞
−∞

[

𝜕𝑥𝑢Kink (𝑥)
]2 𝑑𝑥

= 2𝜖𝐿
5

, (27)

which is plotted in Fig.  6(a), displaying an excellent agreement with the numerical results (ellipsoids), even for 𝐿 values close 
to unity. For larger values of the 𝐿 control parameter, the system develops waves, as expected from the discussion of the previous 
section. The spatiotemporal diagram and the spatial profile of the solutions are shown in Fig.  6(b). For this figure, the initial condition 
is the kink-shaped function, formula (5), centered on 𝑥𝐹 ,0 ≡ 𝑥𝐹 (0), that is 𝑢(𝑥, 𝑡 = 0) = 𝑢Kink (𝑥 − 𝑥𝐹 ,0). The dynamics of fronts are 
illustrated in the bifurcation diagram of Fig.  6(d) for the dynamical indicator 𝐴(𝑎𝑣), which averages the oscillation amplitude at the 
right of the front. For small values of 𝐿 (Zone I), the fronts move at the constant speed 𝑣 = 2𝜖𝐿∕5, and connect two uniform states. 
Since the front travels rightwards for 𝐿 > 0, it perturbs the domain at its right, resulting in the waves discussed in Section 4 if 𝐿
exceeds the Andronov–Hopf threshold. Note that in Zone II the fronts continue to advance steadily even if connecting nonuniform 
states. A further increase in 𝐿 destabilizes the traveling waves, and in Zone III, the emergent chaotic oscillations eventually pin 
the front. These transitions can be understood using the Ginzburg–Landau equation (21) satisfied by each domain, which predicts 
waves undergoing secondary instabilities that lead to defect-mediated spatiotemporal chaos. Thus, while the translational coupling 
provides a system-specific mechanism for breaking parity, the complexity of the front solutions reflects the universal spatiotemporal 
regimes characteristic of Ginzburg–Landau dynamics. Then, in brief, while the front exhibits a complex zoology, it is fundamentally 
inherited from the wave dynamics discussed earlier.

Note that, while Fig.  6 shows the evolution of the system when it starts with a kink-shaped initial condition, it is also possible 
to start with a randomly perturbed initial condition 𝑢(𝑥, 𝑡 = 0) = 𝑢Kink (𝑥 − 𝑥𝐹 ,0) + 10−3𝛿𝑢(𝑥), where 𝛿𝑢(𝑥) is a random variable of 
mean zero and standard deviation one. The resulting dynamics are shown in Fig.  7(a) and (b), where the initial conditions are 
amplified temporally and permanently, respectively. In Fig.  7(a), for 𝐿 = 2.2, the waves decay, while in (b), for 𝐿 = 2.4, the left-side 
perturbation saturates to standing waves due to the boundary conditions.
7 
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Fig. 6. Front dynamics. (a), (b), and (c) show the spatiotemporal diagrams (left panels) and field profiles (right panels) for 𝐿 = 1.7 (Zone I), 
𝐿 = 2.4 (Zone II), and 𝐿 = 3.3 (Zone III), with𝑥0 = −150, 𝑥𝑓 = 150, 𝑡0 = 0, 𝑡1 = 75, and 𝑡2 = 150. The temporal average value of the amplitude 
at the right of the front is plotted in (d). Three distinct behaviors can be observed: approximately monotonous fronts propagate in Zone I due 
to 𝐿; regular (Zone II) and chaotic (Zone III) waves emerge in the right domain. This zoology is inherited from the instabilities of the domain 
centered around √𝜖, c.f. Fig.  4.

Fig. 7. Front propagation for (a) 𝐿 = 2.2 and (b) 𝐿 = 2.4. Here, 𝑥0 = −150, 𝑥𝑓 = 150, 𝑡0 = is the transient time, 𝑡1 = 𝑡0 + 50, and 𝑡𝑓 = 150. The 
noisy initial condition here is a front solution plus a small random variable.

6. Conclusions

The phenomenology of dissipative waves and fronts is well-known in systems with local coupling. On the other hand, the
translational coupling, where a field 𝑢(𝑥, 𝑡) at position 𝑥 and time 𝑡 couples to itself at a translated position 𝑥−𝐿, 𝑢(𝑥−𝐿, 𝑡), remains 
much less explored. This article studied systematically a dissipative 𝜙4−model, also known as the spatially extended Pitchfork normal 
form, with a translational coupling for the field 𝑢(𝑥, 𝑡),

𝜕𝑡𝑢(𝑥, 𝑡) = 𝜖𝑢(𝑥 − 𝐿, 𝑡) − 𝑢3(𝑥 − 𝐿, 𝑡) +𝐷𝜕𝑥𝑥𝑢(𝑥, 𝑡).

While the Pitchfork bifurcation of the 𝑢∗0 = 0 state at 𝜖 = 0 is unaffected by 𝐿, the translational coupling modifies the stability 
of the 𝑢∗± = ±

√

𝜖 equilibria. Indeed, at 𝐿𝑐 = 1.974
√

𝐷∕𝜖, an Andronov–Hopf bifurcation with non-zero wave number takes place. 
This instability gives rise to unidirectional waves since they travel leftward and rightward for 𝐿 > 0 and 𝐿 < 0, respectively. The 
linear stability analysis is done analytically and used to build a bifurcation diagram of the system in the two-dimensional parameter 
space (𝜖, 𝐿). Via weakly nonlinear analysis, we derived the Ginzburg–Landau equation for the wave envelope, providing an analytic 
solution for the wave amplitude, 𝐴 ∝

(

𝐿 − 𝐿
)1∕2. While the model preserves the 𝑢 → −𝑢 symmetry, the translational coupling breaks 
𝑐
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the 𝑥 → −𝑥 invariance, resulting in a phase gradient in the amplitude equation (𝑖𝜕𝑥𝐴). Further increasing 𝐿 results in a secondary 
instability, where the waves are chaotic and display complex spatiotemporal diagrams. Indeed, one can distinguish three regions: 
in Zone I (𝐿 < 𝐿𝑐), the waves decay and the system converges to its homogeneous stationary solution 𝐴 → 0, showing a negative 
largest Lyapunov exponent (𝜆LLE < 0). In Zone II (𝐿 ≳ 𝐿𝑐), the waves exhibit a finite amplitude and travel leftwards with 𝜆LLE ≈ 0. 
Finally, in Zone III, the waves are chaotic as demonstrated by a positive LLE.

We also study the translational-coupling-induced dynamics of fronts connecting the 𝑢∗− = −
√

𝜖 and 𝑢∗+ =
√

𝜖 states at the left and 
the right of the front, respectively. The fronts propagate with a speed proportional to the translational coupling parameter, 𝑣 ∝ 𝐿, 
that we obtain analytically and numerically, finding an excellent agreement between the two approaches. As 𝐿 increases, the front 
connects a uniform state (at the left of the front) with a region of waves (at the right of the front), which eventually becomes chaotic 
for large 𝐿. As a result of this transition to complex waves, the front becomes pinned. A bifurcation diagram for the front dynamics 
is presented, distinguishing the three regimes mentioned earlier. We find that the spatiotemporal dynamics of fronts originate from 
the instabilities of the connected states (𝑢∗+ =

√

𝜖 if 𝐿 > 0).
As a final remark, translational coupling emerges as a versatile route to rich nonequilibrium behavior. In this study, we 

analytically predicted, characterized, and numerically confirmed the onset of unidirectional waves and propagating fronts. Given 
the dynamical complexity of systems with translational coupling, our model considers simplifications, such as the independence of 
the diffusion constant and the translational coupling parameter. Consequently, although our results could be applied to experiments 
with liquid crystal light valves with optical feedback, in order to describe the experimental observations more quantitatively than 
qualitatively, it is necessary to incorporate locally dependent linear terms, as well as the effects of inherent fluctuations (noise), into 
the model Eq. (6). The study of the experimental dynamics of the fronts is currently under development. V
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