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Nonreciprocal coupling triggers pinning-depinning transitions
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Coupled discrete systems with reciprocal and nonreciprocal couplings exhibit unexpected and counterintuitive
phenomena compared to continuous systems. We investigate the pinning-depinning transition induced by
nonreciprocal coupling in nonlinear wave propagation connecting different equilibria in bistable system chains.
Theoretically, based on a prototype model of a bistable chain system with nonreciprocal coupling, we show
that the latter triggers pinning-depinning transitions of fronts between homogeneous states. Experimentally, we
study a chain of bistable systems with nonreciprocal coupling by employing a liquid-crystal light valve with
nonreciprocal optical feedback. This system exhibits the propagation of fronts between homogeneous states. The
fronts display a pinning-depinning transition by increasing the nonreciprocal coupling, achieved by increasing
optical feedback offset. Close to the bifurcation, the front velocity is characterized by a square root law as a
function of the bifurcation parameter. We can adequately account for the experimental observations using a

tight-binding theoretical model.

DOLI: 10.1103/9ypt-4kvs

Introduction. Coupled bistable systems exhibit exciting
phenomena, such as the coexistence of extended states,
synchronizations, chaos, spatiotemporal chaos, turbulentlike
behaviors, domain walls, complex propagation between
domains, localized states, and chimera states, among others
[1-12]. The spread of domains is usually referred to as fronts.
Physical examples of these fronts are nerve impulses along ex-
citable cells [1,2], array of diffusion-coupled flow reactors [3],
calcium release waves in cells [4,5], discrete one-dimensional
reaction-diffusion systems [6], coupled semiconductor lattices
[7], hydrogen-bonded chains [8], and domino waves [9]. In all
the above systems, the individual elements are symmetrically
coupled to their first neighbors, reciprocal coupling. Changing
the parameter that characterizes the relative stability of
equilibria from a critical value causes fronts to be motionless
even though one of the states is more stable. This phenomenon
occurs in a range of parameters, called the pinning range,
and it is known as failure propagation [1]. Likewise, failure
propagation was initially established in conservative systems
[10,11]. The transition from a propagating to a motionless
front is known as a pinning-depinning transition introduced in
a continuous system [13] and extended to discrete ones [6,12].
The front speed of this transition is characterized by exhibiting
a 1/2 power law as a function of the bifurcation parameter.

Various physical systems have investigated nonrecipro-
cal behaviors in the last few decades due to asymmetric,
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nonlinear, and non-time-reversal properties. Nonreciprocal
responses have been observed in several different systems,
including birefringent optical prisms [14], optomechanical
resonators [15], asymmetric optical cavities [16], ring-
resonant acoustic cavities polarized by a circulating fluid [17],
silicon chips [18], magneto-optical photonic crystals [19],
optical [20] and mechanical metamaterials [21], and coupled
liquid crystals [22]. One of the main effects of nonreciprocal
coupling is the generation of an asymmetric propagation of
the linear waves and fronts.

This Letter aims to study the pinning-depinning transi-
tion of nonlinear waves induced by nonreciprocal coupling.
Based on a prototype mathematical model of a bistable chain
system with nonreciprocal coupling, we show that the lat-
ter coupling triggers pinning-depinning transitions of fronts
between homogeneous states. Experimentally, employing a
liquid crystal light valve (LCLV) with nonreciprocal optical
feedback, we study a chain of optical bistable systems with
nonreciprocal coupling. This system exhibits the propagation
of fronts between homogeneous states [22]. The fronts exhibit
a pinning-depinning transition by increasing the nonreciprocal
coupling, achieved by increasing the optical feedback offset.
Close to the bifurcation, the front speed is characterized by
a square root law as a function of the bifurcation parameter.
We can adequately account for the experimental observations
using a tight-binding theoretical approach.

Nonreciprocal bistable chain. Let us consider a dimen-
sionless chain of nonreciprocally coupled bistable systems
described by

du =0+ pu; — u + (D + o Y uip — u;)
+ (D — ") (uimy — uy), (1)
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FIG. 1. Pinning-depinning transition of front solution of model
Eq. (1) with n = 0.5, © = 2.2, and D = 0.55. (a) Schematic repre-
sentation of a front profile. (b) Bifurcation diagram of model Eq. (1)
as a function of 7. (c) Schematic representation of the local potential
V(u;). (d) Front average velocity as a function of nonreciprocal
coupling parameter o’. !~ and o/~ are the critical points of the
pinning-depinning transition.

where u;(¢) is an order parameter that accounts for the dy-
namics of the ith bistable cell. u and n are the bifurcation
parameter and the parameter that control the bistable re-
gion, respectively. D and o’ are reciprocal and nonreciprocal
couplings, respectively. Note that n, u, D, and o’ are dimen-
sionless parameters. The local dynamics, i.e., D = o’ = 0, of
Eq. (1) is potential d,u; = —0,,V (u;) with V(u;) = —nu; —
pwu? /2 + ut /4. V(u;) accounts for a bistable potential (see
Fig. 1). The local dynamics has two stable equilibria uy and
one unstable uy.

Equation (1) has propagative solutions (fronts) that asymp-
totically connect the stable equilibria [12]. Figure 1(a) depicts
a front profile. When the nonreciprocal term is zero (o’ = 0),
the system has reciprocal coupling, causing the average ve-
locity front to be the same in both directions, the left and
right flanks. However, as the nonreciprocal term increases
(o/ > 0), the front average velocity toward the right flank
increases, while the front average velocity toward the left
flank decreases. Figure 1(d) illustrates how the front average
velocity changes as a function of the nonreciprocal parameter

a’. The effect of the nonreciprocal term can be understood in
the continuum limit as a drift term responsible for dragging or
slowing the front propagation in one or the opposite direction,
respectively. Therefore, intuitively, one expects that the non-
reciprocal term can induce an absolute convective instability
(a = aé’ or ' = a/™); ie., the front becomes motionless.
Since the system is discrete, the front exhibits a motionless
region known as the pinning range resulting from the periodi-
cal potential induced in the continuous limit [12]. Figure 1(d)
shows the pinning range and the pinning-depinning transition
points.

In brief, any chain of nonreciprocally coupled bistable
systems can exhibit a pinning-depinning transition for fronts
when the nonreciprocal coupling is changed. In the following
sections, we will study this phenomenon experimentally and
explain in more detail the mechanism of pinning-depinning of
fronts in discrete systems with nonreciprocal coupling.

Experimental setup. To study the effect of nonreciprocal
coupling, we consider an LCLV experiment with nonrecip-
rocal optical feedback illustrated in Fig. 2(a). The LCLV
consists of a nematic liquid crystal LC-654 (NIOPIK), which
is a mixture of cyano-biphenyls with dielectric anisotropy
constant €, = 10.7¢p and large optical birefringence, An =
0.2, placed between two glass layers separated by a distance
d = 15 pm. Transparent indium tin oxide electrodes and a
photoconductive layer are deposed on the glasses to subject
the liquid crystal to a driven voltage. A dielectric Bragg mirror
with optimized reflectivity for 632.8 nm light is placed in
the back layer of the liquid crystal cell. The liquid crystal
has planar anchoring in the diagonal direction of the cell
for light polarization; that is, the molecules on the cell wall
are attached parallel to the cell. The LCLV can be electri-
cally addressed by applying an oscillatory voltage Vjy rms and
frequency fy = 1.0kHz across the liquid crystal layer. The
optical valve is optically forced with a He-Ne laser with a
wavelength A = 632.8 nm. The LCLV is placed in a4 f optical
configuration (f = 25 cm), as depicted in Fig. 2. The optical
feedback circuit is closed with an optical fiber bundle (FB)
placed at a distance of 4f from the LCLV front face. The
optical fiber bundle injects the light into the photoconduc-
tive layer, applying an additional voltage to the liquid crystal
layer depending on the local light intensity. The system op-
erates in the photoconductor linear regime as a light intensity
function. The optical feedback loop is designed so that light
simultaneously presents polarization interference induced by
the polarizing beam splitter (PBS) and shift of light over a
distance « [see Fig. 2(b)]. When there is no displacement (o =
0Omm), an illuminated area affects its surroundings isotropi-
cally, and when it is displaced, it privileges an area of space.
A spatial light modulator (SLM) is considered to carry out
different configurations of bistable optical chains.

The SLM allows us to illuminate the optical valve with par-
allel beams separated by a controllable distance, as illustrated
in Fig. 2(a). The experiment is monitored by a complementary
metal-oxide-semiconductor (CMOS) camera.

Due to optical feedback, the LCLV exhibits bistability be-
tween different molecular reorientations as a function of their
applied voltage [23], as illustrated in Fig. 2(c). Namely, for
the same parameters, the system exhibits two stable molecular
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FIG. 2. Liquid crystal light valve with nonreciprocal optical feedback. (a) Schematic representation of an experimental LCLV with
nonreciprocal optical feedback. He-Ne laser accounts for a helium-neon laser light source with a wavelength A = 632.8 nm. O stands for
an optical objective, SLM is a spatial light modulator, M is a mirror, PBS stands for a polarizing beam splitter, V; is the intensity of an
alternative voltage applied to the LCLV, BS is a beam splitter, L stands for lens, FB is a high-resolution optical fiber bundle, and CMOS stands
for a complementary metal-oxide-semiconductor camera. (b) Schematic representation of reciprocal coupling (left panel) and nonreciprocal
coupling (right panels). The upper (lower) right panel shows nonreciprocal coupling on the right (left). o accounts for the optical feedback
offset. (c) Bifurcation diagram of the LCLV with optical feedback. The intensity of light reflected by the optical valve is a function of the
voltage applied to the valve. The up and down triangles account for the light intensity measured by sweeping the voltage up and down,
respectively. The painted area (green) accounts for the bistability region. The inset snapshots illustrate the different molecular configurations.
The potential schemes show the shape of these in the bistability region. (d) Snapshots of the chain of stable optical systems with reciprocal
(e = 0 mm) and nonreciprocal (¢ # 0 mm) couplings, respectively. The arrows indicate the direction of propagation of fronts.

reorientations, which we can detect by comparing the light
emitted by the optical valve. Indeed, one state is brighter
and the other is darker. Depending on the initial conditions,
this system presents the front propagation between the dif-
ferent equilibria [23]. A spatial light modulator allows us
to illuminate the LCLV with parallel beams to generate a
bistable system chain. This induces a bistable square cell
chain, as illustrated in Fig. 2(a). Figure 2(d) shows the chain of
bistable systems with reciprocal and nonreciprocal couplings.
By moving the illuminated areas closer or further apart, the
reciprocal coupling, generated by the diffusive process associ-
ated with the liquid crystal and the voltage induced by optical
feedback, can be controlled. Furthermore, the nonreciprocal
coupling is controlled by the offset of the optical feedback
[cf. Fig. 2(b)].

Nonreciprocal coupling induces pinning-depinning tran-
sitions. The system is initially prepared in the dark state,
the lower branch of the bifurcation diagram, by decreasing
the voltage outside the bistability zone and then moving the
voltage toward the bistability region. We consider the voltage

where the bright state is more favorable to observe the fronts
between the bright state and the dark one. Then, we perturb a
central cell by increasing the illumination in this cell thanks to
the spatial light modulator, triggering the propagation of the
fronts toward both flanks. Figure 3(a) illustrates the typical
spatiotemporal evolution of observed fronts. When the cou-
pling is reciprocal (¢ = Omm), the front propagation speed
toward both flanks is similar [cf. left panel of Fig. 3(a)]. When
the optical feedback is moved toward the right flank [« > 0;
see Fig. 2(b)], the front propagates faster toward the right
flank than to the left one, as illustrated in the central panel of
Fig. 3(a). Figure 4 summarizes the left and right front speeds
as a function of « offset. Intuitively, one expects that as the
optical offset increases to the right, the front speed increases
toward the right flank and decreases toward the left one [22].
This can be figured out as an advective effect. For example, an
advective effect is an everyday phenomenon when one tries to
swim with or against a flowing river. Counterintuitively, the
nonlinear nonreciprocal coupling is responsible for the front
speed toward the right flank having a maximum as a function
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FIG. 3. Experimental (top panels) and numerical (bottom panels)
front propagation of the bistable optical chain. (a) The panels illus-
trate spatiotemporal diagrams where the horizontal axis represents an
intermediate spatial line in the bistable optical system chain, and the
vertical axis represents the temporal evolution. The colors represent
the intensity of the light in arbitrary units. The yellow lines account
for the spread of the front. The left, center, and right panels show
reciprocal and nonreciprocal couplings shifted to the right flank.
(b) Spatiotemporal evolution of numerical front propagation recon-
struction of the average molecular reorientation field 6(x,t) = 6, +
> ui(#)O(x — x;) using the nonreciprocal bistable chain Eq. (4) with
n=05a=10,k. =—19-a,ky =2.1-¢/,D=0.55u=2.2,
o’ = 0 (left panel), ' = 0.08 (middle panel), and &’ = 0.11 (right
panel).

of the offset «. It is, therefore, expected to find a point at which
the front should be motionless. Due to the system’s discrete
nature, one intuitively expects that the front propagating in
the direction opposite to the o offset for a critical value o/ *
will cancel the speed and remain motionless in a parameter
range [12]. The right panel of Fig. 4 shows a perturbation
in the pinning range; the propagation occurs only in one
direction. Close to the pinning-depinning transition point, the
front speed v satisfies the kinetic law v = y,/ozfr — o, where
y is a dimensional parameter. The bottom panels of Fig. 4
depict this kinetic law. Due to nonlinear reciprocal effects,
the front propagating toward the right flank also exhibits a
pinning-depinning transition, which presents the same kinetic
law as illustrated in Fig. 4. It is important to note that the
front velocity versus « offset diagram is not symmetrical con-
cerning this parameter; the primary origin of this asymmetry
is the illumination, which is not homogeneous and generates
a gradient toward the left flank [22]. We observe the same
phenomenon when the optical retro-injection misalignment
moves in the opposite direction. However, due to the align-
ment inhomogeneity, the pinning-depinning transitions for the
left- and right-propagating fronts occur in a similar region.

Theoretical description of the bistable optical system with
nonreciprocal coupling. The dynamics of the average molecu-
lar orientation angle 6 (x, t) of the liquid crystal to the vertical
direction of the valve is described by [24]

2 T FV]:T
10,0 =010,0 —60+—|1— [—— |, (2
2 I'Vo+ x1,(0, o)

where x and ¢ are the nonreciprocity direction of the liquid
crystal layer and time (cf. Fig. 2), respectively. The planar and
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FIG. 4. Front speed as a function of the optical offset. The or-
ange and blue dots indicate the front speed toward the left and
right flanks, respectively. The error bars are obtained by deter-
mining the front speed for different points in the spatiotemporal
diagram. The lower panels show amplifications of the front speed
versus the o offset diagram close to the pinning-depinning bi-
furcations. The continuous curve of the left and right panels
is obtained using the fitting v =y~ /|le; |+ o (¢ <0) and v =
yty/of —a (a > 0), respectively, where the parameters of the
left panel are y~ = [/~ = 44.63 mm'/?/s, '~ = 40.86 mm'/?/s]
and o, = [aff = —0.333 mm, o/~ = —0.328 mm], and of the right
panel are y* = [y'* = 38.80 mm!/?/s, y"* = 39.17 mm'/?/s] and
af = [a/t =0.310 mm, o’* = 0.355 mm]. The fitting curves have
the following coefficients of determination from left to right: R} =
0.9920, R2_ = 0.9780, R}, = 0.9774, and RZ_ = 0.9762.

homeotropic configurations are described by 6(x,7) = 0 and
0(x,t) = /2, respectively. Ve &~ 4.5 Vi is the threshold
for the reorientation transition at room temperature (21 °C),
7 = 100 ms is the liquid crystal relaxation time, and / = 30
um is the electric coherence length. 1,,[6(x + )] = fin(x +
a)(1 — cos[B cos? O (x + a)]) /2 is the nonreciprocal optical
feedback light intensity reaching at the photoconductor [24],
where [, (x) is the light intensity controlled by the spatial light
modulator and 8 = 2kd An, with d = 15 um the thickness of
the nematic layer, An = 0.2 the liquid crystal birefringence,
and k = 27 /A the wavenumber of the light; we employ a
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red laser of wavelength A = 632.8 nm (He-Ne laser). The
effective voltage applied to the liquid crystal layer is Ve =
I'Vy + x1I,, ' = 0.3 is a transfer factor that depends on the
electrical impedances of the photoconductor, dielectric mirror,
and liquid crystal, and yx is a phenomenological dimensional
parameter that accounts for the linear response of the photo-
conductor [24].

When the applied voltage V is varied, model Eq. (2)
presents several branches of bistability of uniform states re-
sulting from critical values of 6.. Employing the spatial light
modulator close to the Fréedericksz transition, one can in-
duce inhomogeneous illumination, which alternates between
a bistable and a monostable region (planar state). Considering
that each bistable cell is separated enough, one can use the
following ansatz to describe the dynamics of bistable cells
(tight-binding-like approach):

O(x,1) =0 + Zui(t)@)(x —x) + Wi, ui,x),  (3)

where u;(r) is the intensity of the average molecular orien-
tation tilt profile ®(x — x;) in the ith cell, x; is the middle
position of the ith cell, and W (x;, u;, x) is the small correction
function that accounts for the effects of the other cells at the ith
cell. Introducing the previous ansatz into Eq. (2), linearizing in
W, and imposing a solvability condition after straightforward
calculations, one can obtain

3 2
uy =n + puy — au; — (Kplipy — K_ui—1)u;

+ D+ )iy —u) + (D — ooy —uy).  (4)

In the Supplemental Material, the relationship between these
parameters and the coefficients of Eq. (4) are provided [25].

The model Eq. (4) is an extension of model Eq. (1) with a
nonlinear and nonreciprocal coupling. Numerical simulations
of Eq. (4) show front propagation between the homogeneous
states. Figure 3(b) shows the numerical reconstruction of
front propagation in the bistable chain using the ansatz (3)
with ©(x — x;) = sech?(x — x;) as the fundamental state func-
tion. From these, we observe a behavior quite similar to that
observed experimentally; that is, initially, for small nonre-
ciprocity, the speed of the fronts becomes asymmetrical and
subsequently decreases. Figure 5 summarizes how the front
velocity toward the left and right flanks behaves as a function
of the nonreciprocal parameter «’. The behavior of the front
velocity as a function of o’ is similar to that observed ex-
perimentally, where we observe a maximum (see Figs. 4 and
5). Subsequently, the system exhibits two depinning-pinning
transition points [see Fig. 5(e)]. Numerically, we observe the
same law found experimentally; that is, the velocity satisfies a
square root law near the pinning-pinning point.

The transition between the pinning-depinning of fronts and
the pinning range phenomenon can be understood as a con-
sequence of the slight energy difference between connected
states, which is affected by the system spatial discreteness
effects or Peierls-Nabarro potential [12]. In the case of non-
reciprocal effects, a new element must be considered to stop
the propagation of the front: the advective drift effect, which
induces a decrease in the front speed. To understand this, the
following two limits can be considered: effective continuous

o right speed
1.0 /\Ieﬁ speed
0.8 1

4 )

FIG. 5. (a) Front speed propagation of model Eq. (4) with
n=05u=22,a=1,D=055k, =2.1-a',and k. =—-19-
a'. (b) Front velocity amplification as a function of the nonrecip-
rocal parameter o’ close to pinning-depinning transitions, where the
parameter of the left panel is o = [/~ = —0.250, &/~ = —0.107]
and of the right panel is o} = [«/" =0.107, &/* = 0.250]. The
continuous curves correspond to fitting curves with a square root
law of the form v = vf v — &’ (¢’ > 0) and v = vy V]a |+ o’
(o’ < 0), where the parameters of the left panel are v, = [v(’,’ =
3.093, vy = 3.184] and o = [a/” = —0.250, /= = —0.107], and
of the right panels are v = [v)" = 3.183, v;" = 3.084] and o} =
[/t =0.107, &/ = 0.250].

equation [12,26] and limit of the extremely discrete system
[7].

In the first approach, one can consider that the effective
continuous equation for Eq. (4) takes the form [12,26]

du(x,t) =1+ puu — au’ + D'[1 + Tygp(x)]0,u
—v(1 + kt®)[1 + Hyy (X)), Q)

where u(x, t) is the continuous variable for u;(¢), which ac-
counts for the average molecular reorientation around the
critical angle 6., and D’ and v account for diffusion and
advective coupling that are poroportional to D and «, respec-
tively. k accounts for the nonlinear reciprocal coupling that is
proportional to xk_ + k. 'y (x) and Hyy(x) are spatially pe-
riodic functions with a dx period, i.e., g (x + dx) = g (x)
and H;,(x + dx) = H;,(x), where dx is the characteristic dis-
tance between the optical cells. These functions account for
the discreteness effect of the bistable optical chain, which
is associated with the Peierls-Nabarro potential [27]. In the
continuum limit, which corresponds to strong coupling
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FIG. 6. Schematic representation of the front velocity as a func-
tion of the nonreciprocal parameter o’. Insets account for the
potential V (xy) of Eq. (6) for different nonreciprocal parameter o’
values.

between bistable cells, the system is described by Eq. (5), with
I'; and Hy, being small functions. Therefore, these functions
can be considered as perturbative.

Ignoring the drift v < 1 in Eq. (5) and the discreteness
effects, the system has front solutions ur(x — xo(¢)) that con-
nect stable states toward both flanks, where xg is a reference
position from which the front dynamics are described. Note
that xo accounts for the front speed. The analytical expression
for the front is typically unknown because determining this
expression involves solving a nonlinear eigenvalue problem.
The front velocity is only known in specific regions, such as
around critical points like the Maxwell point [13] or near the
bistability disappearance point [28]. By including the linear
and nonlinear homogeneous drifts, fronts toward both flanks
can present front speeds that must vanish around specific
critical values of the nonreciprocal coupling .. For exam-
ple, if the front propagates against the direction of the drift,
one naturally expects that there will be a point of absolute
convective instability at which the front becomes motion-
less [29]. When fronts propagate in the same direction, the
linear and nonlinear drift terms are responsible for abso-
lute and convective instabilities. Likewise, discreteness effects
are included close to this critical point (absolute-convective
instability); the front’s dynamics satisfy the Adler-like
equation [30]:

dv

xo = _d_ = AO((YZ - Ol,) + )/dx(xo), (6)
X0

where Ay is a constant, the periodic function

<3XMF |[D/Fdx(x)3xxu + de(x)aqu
Yax(Xo) = . (D
<8qu |8qu )
(f(x)|gx)) = f f(x)g(x)dx is an inner product, and V (xp) is
a washboard potential (see Fig. 6). If the potential is an essen-
tially decreasing (increasing) function with undulations, the
front will propagate in a direction toward the right (left) flank
(see Fig. 6). Changing the nonreciprocal parameter «’, new
maxima on the potential can emerge for a critical value of the

parameter o' = «.., pinning transition. In the insets of Fig. 6,
we illustrate the potential V (xy) for different nonreciprocal
parameter o’ values. Increasing the o’ parameter even further,
the potential clearly exhibits maxima and minima, which are
responsible for the pinning phenomenon. Since the emergence
of new maxima corresponds to a saddle-node bifurcation of
the Adler-like equation, the dynamics around the transition is
described by an equation of the form

X, = Aol — ') + y2x;, ®)

where y; is a constant. The solution of this equation has the
form x,(1) = \/Ao(a, — ') /ys tan[/Bo(e, — & )ya(t — 1)].
Then, the time t that the front takes to cross each zone
with a unique maximum is 7 = 1/,/Ag(a. — ')y, and the
distance between these zones is dx. Hence, the average front
speed is

(¥o) = dx/Ao(ag — a)ya. ®

Hence, the average front velocity around the pinning-
depinning point grows as the square root of the nonreciprocal
parameter, which is consistent with the numerical observa-
tions of Eq. (9) and the experimental ones.

As mentioned, the pinning phenomenon and the square
root law of front speed can be understood in the extremely
discrete system, the second approach, using the strategy pre-
sented in Ref. [6]. Equation (4) becomes extremely discrete
as D+ o’ — 0. At this limit, the front interface becomes
extremely abrupt, formed by only three points, which we
call u_y, ug, and u;, where uq is the most central point. The
dynamics of this central point satisfies

dUu
Oiupg = — T + (D4 o' )y — up) + (D — o' Y(u—y — up)
0

— Gy Uy — k_u_1)ug, (10

where U (uy) = —nuy — Mu(z)/Z + au3/4. Note that the so-
lutions u;(n, u, a, D, a’) are functions of the parameters.
Assume that a critical point o/ exists at which there is a
transition from three solutions to one solution, saddle-node
bifurcation of the above equation. Then, the following condi-
tions must be satisfied:

du

— — + D+ a)(uy —up) + (D — o) (u_; — up)
du()
— (kyup — K_u_l)ué =0,
d*U
dzuo

+2D — 2(ksuy — k—u_)itg = 0. (11)

To study the dynamics of the front close to the saddle-node bi-
furcation, let us introduce the local variable ¢(¢) < 1 around
the central position of the front uy = ug(c.) + ¢(t). Using
this ansatz in Eq. (10), expanding in the Taylor series, and
using the above relations, after straightforward calculations,
one obtains the equation

dp = Dol — a) + Tag?, (12)

where 'y = ug +u{ —u’, and I'; = —6uy; indeed, one re-
covers Eq. (8). Therefore, the average front speed follows a
square root as a function of the nonreciprocal parameter.
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In conclusion, coupled bistable one-dimensional systems
exhibit nonlinear waves that propagate to minimize one state
over another. However, due to the discreteness of these sys-
tems, nonlinear states become motionless when changing
the parameters, and a failure propagation phenomenon oc-
curs, even though one state is more stable than another. We
have shown that nonreciprocal couplings can also induce this
phenomenon. Our findings have the potential to reveal new
methodologies for the manipulation of nonlinear waves in
magnetic chains [31], the coupling of lasers [32,33], thermal
spin photonics coupling slabs [34], the release of calcium
waves in living cells [5], coupled chemical reactors [35],
the arrays of coupled diode resonators [36], the chains of
paramagnetic colloidal particles [37], the covalent chemical
reactions on single-walled carbon nanotubes [38], and the
dynamics of neuron chains [39].

Unexpectedly, one can find regions where propagation
cannot occur on any flank. In this region, one expects to
observe stable localized states. Studies in this direction are
in progress. Likewise, the extension of this phenomenon
to more dimensions and different geometries opens excit-
ing questions about how these nonlinear waves propagate
and what effects the nonreciprocal terms can have on these
dynamics.
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