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The paradigmatic Lugiato-Lefever model describes the electric field envelope in a ring cavity filled with a
Kerr medium and driven by a coherent injected laser beam. This model is applied to the formation of frequency
combs associated with localized structures in micro and macroresonators. Including temporal filtering, we derive
a generalized Lugiato-Lefever equation. This equation includes diffusion, linear, and nonlinear convection, and
third-order dispersion with purely imaginary coefficients. Multiscale analysis enables us to disregard higher-
order terms, such as nonlinear convection and third-order dispersion. We investigate the formation of periodic
and localized structures resulting from the combined action of temporal spectral filtering effect together with
Kerr nonlinearity, pumping, dissipation, and frequency detuning. We show that spectral filtering reduces the
intensity of the output field and increases the period of traveling solutions. Similarly, the maximum intensity of
moving localized structures, often called dissipative solitons, is reduced. In addition, we show that the threshold
associated with breathers is shifted toward large input intensities and that the associated domain of existence is
significatively reduced. We show that, when the drift is absent, dissipative solitons exhibit a homoclinic snaking
bifurcation. Increasing the strength of the temporal filter reduces the pinning range. The presence of the drift
breaks the homoclinic snaking and transforms it into isolas of solutions.
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I. INTRODUCTION

Frequency combs generated by continuous-wave (CW)
laser output in microcavity Kerr resonators have revolution-
ized many fields of science and technology [1–4]. Hänsch is
credited with being the first to introduce and develop optical
frequency combs. These are equally spaced coherent spectral
lines [5]. Much attention has been paid to the formation of
frequency combs associated with forming Kerr dissipative
solitons (DS) of light that maintain their shape during prop-
agation in optical microcavities [6,7]. This simple optical
device has a compact size, a high-quality factor, and allows
for chip-scale production of frequency combs [8–11]. Kerr–
Raman optical frequency combs were also experimentally
observed [12–17].

From a fundamental point of view, the Lugiato-Lefever
equation (LLE) [18] has led to the prediction and analysis of
various phenomena, including the theoretical study of Kerr
optical frequency comb generation using whispering gallery
mode cavities or integrated ring resonators [19]. In partic-
ular, frequency combs as the spectral content of localized
light structures were theoretically predicted in driven Kerr
resonators before their experimental observation [20,21]. The
link between these two objects in micro and macroresonators
has been established in [22,23] (see the review [24] in the
theme issue [25]). Dissipative solitons are not necessarily sta-
tionary. They can exhibit motion or oscillation. In particular,
several mechanisms leading to their movement have been de-

scribed in the literature. It has been shown that uniform soliton
motion can be induced by Raman scattering [26–28], odd
orders of dispersion [29], delayed feedback [30], or spectral
filtering [31–36].

The aim is to study the generation of dissipative soliton
Kerr combs under the influence of spectral filtering. We con-
sider an optical cavity filled with a Kerr medium, driven by a
coherent injected field, and with the inclusion of a temporal
spectral filter (see Fig. 1). We reduce the infinite-dimensional
discrete Ikeda map to the Lugiato-Lefever equation with
spectral filtering. We further simplified the generalized mean-
field model by using a global perturbation scheme based
on multiple-scale analysis. This approach enables high-order
terms, such as the third derivative and nonlinear convection
terms, to be suppressed. This approximation is only valid for
the law of intensity of the intracavity field and for smooth
function transfer. Under these conditions, we show that spec-
tral filtering not only affects the coefficient of the second
derivative, but also produces a first derivative whose coeffi-
cient is purely imaginary (iα1∂τ E ). In the second part, we
study moving dissipative solitons whose spectral contents are
frequency combs.

This paper is organized as follows. After briefly present-
ing a driven Kerr ring resonator with spectral filtering, we
derive the mean-field model, the generalized LLE (Sec. II).
We present the linear stability analysis of the CW solutions for
both anomalous and normal dispersion regimes (Sec III). Reg-
ular moving dissipative structures are then evidenced in the

2469-9926/2025/112(2)/023504(10) 023504-1 ©2025 American Physical Society

https://orcid.org/0000-0002-8006-0729
https://ror.org/047gc3g35
https://orcid.org/0000-0002-9985-5388
https://orcid.org/0000-0003-3660-2524
https://ror.org/01r9htc13
https://crossmark.crossref.org/dialog/?doi=10.1103/mlqm-6g6h&domain=pdf&date_stamp=2025-08-05
https://doi.org/10.1103/mlqm-6g6h


M. BATAILLE-GONZALEZ et al. PHYSICAL REVIEW A 112, 023504 (2025)

FIG. 1. Schematic setup of a driven ring resonator filled with
Kerr media with the filter and driven by a coherent injected field.
BS stands for beam splitter. The arrows account for the direction of
light propagation.

subcritical modulational instability regime, along with their
bifurcation diagrams for the monostable and bistable regimes
(Sec. IV. A). The results of the continuation algorithm, which
captures the homoclinic snaking bifurcation and isolas associ-
ated with dissipative solitons, are presented in Sec. IV. B. We
conclude in Sec. V.

II. DERIVATION OF THE MODEL

A. Integrodifferential Lugiato-Lefever model

We consider an optical cavity filled with a Kerr disper-
sive medium and driven by a coherent plane-wave field as
depicted in Fig. 1. Considering the Kerr effect and chromatic
dispersion, light propagation in the cavity is governed by the
nonlinear Schrödinger equation (NLSE)

∂F

∂z
= ı̇β2

∂2F

∂ζ 2
+ ı̇γ |F |2F, (1)

where F is the slowly varying electric field envelope, z is the
longitudinal coordinate along the propagation axis, and ζ is
the time in a reference frame traveling at the group velocity
of light in the Kerr material. The chromatic dispersion is
described by the second derivative with respect to ζ with the
coefficient β2. The nonlinear coefficient γ = 2πn2/λ0 with n2

the nonlinear refractive index and λ0 is the light wavelength
in the vacuum.

In addition to the effects of dispersion and nonlinearity,
the field propagating inside the cavity undergoes coherent
superposition with the input light beam at the cavity’s in-
put beam splitter. This process is described by the following
cavity boundary conditions:

F p+1(0, ζ ) = θFi + ρ exp (iφ)h(ζ ) ⊗ F p(l, ζ ), (2)

where parameters ρ and θ are the amplitudes associated with
the reflection and the transmission coefficients of the cavity
beamsplitter, respectively. For the sake of simplicity, we con-
sider a ring cavity with a single beamsplitter (ρ2 + θ2 = 1).
Equation (2) provides a relation between the intracavity field
envelope F p+1 at the input of the cavity after the p + 1th
round-trip and the field F p(l, ζ ) at the output after the pth
pass in the cavity, where l is the cavity length. The phase
φ = 2πnl/λ0 represents the linear phase accumulated by the
field during a round-trip time tr , with n as the refractive index.
In Eq. (2), the symbol ⊗ denotes the causal convolution of the

impulse response function h(ζ ) and the intracavity field F p

after p round-trips. The term h(ζ ) ⊗ F p(t, ζ ) accounts for the
temporal filter, where the impulse response function h(ζ ) is a
real function.

The nonlinear Schrödinger Eq. (1) supplemented by the
cavity boundary conditions, Eq. (2), constitutes an infinite-
dimensional map. The set of equations (1) and (2) describes
the dynamics of light in the Kerr-type nonlinear ring cavity
with a temporal filter. To simplify the theoretical analysis of
the problem, it is convenient to reduce this map to a single
integrodifferential equation. To do this, we will restrict our
analysis to high finesse cavities, i.e., the transmission coeffi-
cient θ is supposed to be much smaller than unity. Under this
approximation, the temporal evolution of the field inside the
cavity is slow for the round-trip time tr . We can thus consider
that this evolution is continuous, and we can replace the map
index p with a slow timescale t for the description of the field
evolution at the point z = 0. The replacement of the round-trip
number p by the continuous variable t consists in defining
F (t, ζ ) as the cavity pulse envelope at z = 0 as

F (t = ptr, ζ ) = F (t, ζ ) = F p(z = 0, ζ ), (3)

where p is a positive integer number. The time t describes the
slow evolution of the intracavity field from one round trip to
another, while the structure of the intracavity field changes at
the fast timescale ζ . The slow-time derivative can be defined
as

tr
∂F (t = ptr, ζ )

∂t
= F p+1(z = 0, ζ ) − F p(z = 0, ζ ). (4)

The injected field is coupled to the cavity only if the system is
close to resonance.

By averaging the right-hand side of the NLSE Eq. (1) over
one cavity length, we get

F p(l, ζ ) = F p(0, ζ ) + ı̇
β2l

2

∂2F p(0, ζ )

∂ζ 2

+ ı̇γ l|F p(0, ζ )|2F p(0, ζ ). (5)

By taking into account both continuous-time Eq. (3), i.e.,
F p(0, ζ ) = F (t, ζ ) and its derivative Eq. (4), i.e., ∂t F (t =
ptr, ζ ) = ∂t F (t, ζ ), and by replacing the field amplitude
F p(l, ζ ) that appear in Eq. (5) in the boundary conditions
Eq. (4), we obtain

tr
∂F

∂t
= θFi − F + ρ exp (iφ)

[
h(ζ ) ⊗ F + iβ2l

2
h(ζ )

⊗ ∂2F

∂ζ 2
+ ı̇γ lh(ζ ) ⊗ |F |2F

]
. (6)

We focus our analysis to high-finesse cavities. This means
that the transmission coefficient θ is assumed to be much
smaller than unity θ � 1, so that the reflection coefficient
is ρ ≈ 1 − θ2/2. We also assume that the linear phase shift
acquired by the light is small φ � 1 over the length l ,
so that exp (iφ) ≈ (1 + iφ). Under these approximations,
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Eq. (6) reads

tr
∂F

∂t
= θFi − F +

(
1 − θ2

2
− iφ

)[
h(ζ ) ⊗ F + iβ2l

2
h(ζ )

⊗ ∂2F

∂ζ 2
+ ı̇γ lh(ζ ) ⊗ |F |2F

]
. (7)

This equation is an integrodifferential equation containing
three convolution terms. It is derived from an infinite-
dimensional map equations (1) and (2) via averaging over
a cavity length and by introducing continuous time and its
derivative in the double limit of high-finesse cavities θ � 1
and small linear phase shift φ � 1.

B. Generalized Lugiato-Lefever equation with spectral filtering

To describe the evolution of the intracavity field, we use the
mean-field approach to further simplify the integrodifferential
equation Eq. (7) into a partial differential equation. Before
applying the mean-field approximation, let us first evaluate
the three convolutions that appear in Eq. (7). The causal con-
volution term h(ζ ) ⊗ F (t, ζ ) is

h(ζ ) ⊗ F (t, ζ ) =
∫ +∞

0
h(ζ ′)F (t, ζ − ζ ′)dζ ′. (8)

Expanding the term F (t, ζ − ζ ′) in a Taylor series, one gets

h(ζ ) ⊗ F (t, ζ ) =
∫ +∞

0
h(ζ ′)

∞∑
n=0

(−1)n ζ ′n

n!

∂nF

∂ζ n
dζ ′,

=
∞∑

n=0

an
∂nF

∂ζ n
, (9)

the coefficients an are

an(ζ ) = (−1)n
∫ +∞

0
h(ζ ′)

ζ ′n

n!
dζ ′. (10)

The above coefficients are well defined for functions h(ζ )
that decay faster than a polynomial. Given this restriction, we
get

h(ζ ) ⊗ F (t, ζ ) = a0F + a1
∂F

∂ζ
+ a2

∂2F

∂ζ 2
+ · · · . (11)

A similar calculation leads to the evaluation of the two other
convolutions in the integrodifferential Eq. (7), namely,

h(ζ ) ⊗ ∂2F

∂ζ 2
= c0

∂2F

∂ζ 2
+ c1

∂3F

∂ζ 3
+ · · · , (12)

h(ζ ) ⊗ |F |2F = d0|F |2F + d1
∂|F |2F

∂ζ
+ · · · . (13)

Replace the above three convolution terms Eqs. (11) to (13)
into the integrodifferential Eq. (7). Also, assume that the non-
linear phase shift must be smaller than unity, i.e., γ l|F |2 �
1. Finally, assume that the cavity length is much shorter
than the characteristic dispersion length of the field. Under
these approximations, this equation reduces to the following

generalized Lugiato-Lefever equation (see the Appendix)

∂t E = Ei − (κ + iδ)E + i|E |2E + iα1
∂E

∂ζ
+ (α2 + iβ )

∂2E

∂ζ 2

+ iα3
∂3E

∂ζ 3
+ iα4

∂|E |2E

∂ζ
+ h.o.t., (14)

where κ = (1 − a0 + a0θ
2/2)/tr, α1 = −φa1/(1 − a0 +

a0θ
2/2), and h.o.t. are the higher-order terms in the amplitude

E in its fast-time derivatives and nonlinear terms.
This model equation is very general as it does not specify

the exact form of the transfer function nor the filter frequency.
The presence of the filter impacts the formation of dissipative
solitons by four contributions: diffusion, linear, and nonlinear
convection, and third-order dispersion with purely imaginary
coefficients.

To reduce further the complexity of the generalized LLE,
we will use a global perturbation scheme based on multiple-
scale analysis in the limit of the long cavity (t−1

r ∼ ε � 1,
where ε is a small parameter) and small linear phase
shift φ ∼ ε1/2. This method is useful for systems char-
acterized by different timescales [37]. For this purpose,
we introduce the following timescales: κ ∼ ε, δ ∼ ε,

α1 ∼ ε1/2, β ∼ α2 ∼ α3 ∼ α4 ∼ O(1), |E | ∼ ε1/2, ∂/∂t ∼ ε,
and ∂/∂ζ ∼ ε1/2. The first five terms on the right side of
Eq. (14) are of order ε3/2, and the remaining terms are of order
ε2. Then, after renormalizing the coefficients according to the
dominant order, the amplitude equation reads

∂t E (t, τ ) = Ei − (1 + iδ)E + i|E |2E

+ iα1
∂E

∂τ
+ (α2 + iβ )

∂2E

∂τ 2
. (15)

This simple equation ignores high-order terms, such as
the third derivative with a purely imaginary coefficient, i.e.,
iα3∂

3E/∂ζ 3. This term cannot be neglected for a filter with a
sharp transfer function so that the equation is only valid for
smooth ones. Moreover, if the intracavity field strength is low,
the nonlinear convective terms with a complex coefficient, i.e.,
iα4∂|E |2E/∂ζ can reasonably be ignored. We place our study
in this limit.

Taking into account the temporal or spatial filters asso-
ciated with gain dispersion or diffusion, respectively, in the
modeling of the ring cavity filled with Kerr media implies con-
sidering not only a diffusive term, α2∂

2
τ E ; as in [34,35,38,39],

but also the first derivative whose coefficient is purely imagi-
nary; iα1∂τ E . We anticipate that this term will have significant
consequences on the dynamics as it produces a new contribu-
tion to the phase of light, which can affect both the velocity
and shape of the solutions.

III. LINEAR STABILITY ANALYSIS
AND MODULATIONAL INSTABILITY

A. Linear stability analysis

The continuous wave solutions (CWs) of Eq. (15) are
E2

i = |Es|2[1 + (|Es|2 − δ)2]. They are independent of the pa-
rameters α1,2, and the CWs are, therefore, unaffected by the
spectral filtering effect. For δ <

√
3 (δ >

√
3), the transmitted

intensity as a function of the input intensity E2
i is monostable
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(bistable). With periodic boundary conditions, we consider
small fluctuations exp (λt + iωτ ) around the CW Es. This for-
mulation leads to a characteristic equation which is quadratic
in λ and whose coefficients are functions of ω2 and the system
parameters

(λ + 1 + α2ω
2)2 + (δ − 2Is − iα1ω + βω2)2 − I2

s = 0,

(16)
with Is = |Es|2. The solutions of the characteristic Eq. (16)
reads

λ± = −1 − α2ω
2 ±

√
I2
s − (δ − 2Is − iα1ω + βω2)2. (17)

In the Fourier space, unstable modes are characterized by a
finite range of frequencies excluding the origin. This range
must exclude all large periods (small frequency) correspond-
ing to quasiuniform distributions and very short periods (large
frequency). They ensure that temporal fluctuations of arbitrar-
ily small and large frequencies are damped. The well-known
temporal modulational instability occurs when the real part
of the eigenvalue corresponding to when ωm changes sign and
becomes positive. This dispersion relation determines the crit-
ical point associated with modulational instability, provided
that Re[λ(ωm)] = 0 and ∂ωRe[λ(ωm)] = 0.

In the case of the spectral filter, where α1 	= 0 and α2 	= 0,
the threshold and critical frequency expressions at the modu-
lation instability threshold are cumbersome. However, when
α1 = 0, in the case of a phase filter, the critical frequency
expression is simple and reads as follows:

ω2
m = β(2|Em|2 − δ) − α2

α2
2 + β2

, (18)

where |Em|2 is the critical intensity at the onset of the bifurca-
tion and is given by

|Em|2 =
(α2δ − β )

[
2α2 ±

√
α2

2 + β2
]

3α2
2 − β2

. (19)

In the absence of spectral filtering, i.e., α1 = α2 = 0, we
recover the well-known critical frequency and threshold for
the modulational instability: |Em|2 = 1 and ω2

m = (2 − δ)/β
obtained for β = 1 [18]. Considering a small filter strength
(α2 � 1), solutions with a minus sign should be excluded
since the intensity is positively defined.

Let us first consider the anomalous dispersion regime
where the chromatic dispersion coefficient is positive, i.e.,
β > 0 and focus on the monostable case where the output is
a single-valued function of the injected field amplitude, i.e.,
δ <

√
3. Figure 2 shows the input-output characteristics and

the marginal stability curves for different values of α = α1

= α2. The threshold associated with modulational instability
is shifted towards a higher injected field strength, indicating
that the spectral filter tends to stabilize the CWs as shown in
Fig. 2(a). The period of temporal structures emerging from
the modulatory instability is affected by the α2 parameter, as
shown in Fig. 2. In the monostable regime, i.e., δ <

√
3, we

see that the threshold associated with the modulational insta-
bility is increased with the spectral filtering coefficients. In the
bistable regime we shall analyze the stability separately from
the three CW solutions, forming a bistable response curve
when

√
3 < δ < δl , with δl = [−α2 + 2(α2

2 + β2)1/2]/β in

(a) (b)

FIG. 2. (a) CWs of Eq. (15) in the monostable case for anoma-
lous dispersion where the threshold of the modulational instability
is shown with markers for different values of α1 = α2 = α. The blue
dot corresponds to α = 0, the orange square to α = 0.2, and the black
diamond to α = 0.4. (b) Marginal stability curve for the frequency
as a function of the CW intensity obtained from the real part of
Eq. (17). The blue full line corresponds to α = 0, the orange dashed
to α = 0.2, and the black dotted line to α = 0.4. Other parameters
are δ = 1.7, β = 1.

the case α1 = 0, a small portion of the lower CW solution is
affected by the modulational instability (MI), namely, in the
range

|Em|2 < |Es|2 < |El |2. (20)

|El |2 = [2δ − (δ2 − 3)1/2]/3 is the lower limit or turning
point associated with the bistable response curve. The
intermediate CW solution is always unstable even in the
absence of chromatic dispersion. The upper CW solution
is unstable for all input injection values. Therefore, when√

3 < δ < δl , the bistable response curve is unstable when
|Es|2 > |Em|2. The expression for δl is obtained by replacing
|Em|2 from Eq. (19) in Eq. (18) and solving ω2

m = 0 for δ. In
the absence of spectral filtering, i.e., when α1 = α2 = α = 0,
we recover the frequency range

√
3 < δ < 2 for which a small

portion of the lower CW solution is linearly unstable, namely,
in the range 1 < |Es|2 < |El |2. For δ = δl , the dissiative MI
threshold coincides with the lower limit point associated with
bistability, i.e., |Em|2 = |El |2.

For δ � δl the upper (lower) CW solution remains unstable
(stable) for all values of the injected field. This situation is
shown in Fig. 3, where the left panel depicts the stabilization
of the lower CW as α2 increases.

In the normal dispersion regime where the chromatic dis-
persion coefficient is negative, i.e., β < 0, the modulational
instability does not affect the monostable regime. However,
in the bistable case, a small portion of the lower CWs be-
comes modulationally unstable. By increasing the strength of
the spectral filtering, both states forming the hysteresis loop
of the bistable output-input characteristic become modula-
tionally stable. This result is shown in Fig. 4(a) where the
threshold of the modulational instability is pushed towards the
upper limit point as α increases. The corresponding behavior
of the marginal stability curve is presented in Fig. 4(b). The
blue curve obtained in the absence of filtering shows a single
instability threshold with a critical frequency given by ωm =√

(2 − δ)/|β|. Nonzero spectral filtering induces a deforma-
tion of the marginal stability curve, as seen on the orange
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(a) (b)

FIG. 3. (a) CWs of Eq. (15) in the bistable case for anormal
dispersion where the threshold of the modulational instability is
shown with markers for different values of α1 = 0, α2 = α. The blue
dot corresponds to α = 0, the orange square to α = 0.2, and the black
diamond to α = 0.4. (b) Marginal stability curve for the frequency as
a function of the CW intensity obtained from the real part of Eq. (17).
The blue full line corresponds to α = 0, the orange dashed line to
α = 0.2, and the black dotted line to α = 0.4. Other parameters are
δ = 1.74, β = 1.

curve. As the filtering intensity increases further, the modu-
lational instability threshold approaches the lower limit point
of the bistable cycle, leading to stabilisation of the lower CW
solutions (see Fig. 4). In what follows, we will concentrate our
analysis on the anomalous dispersion regime, i.e., β < 0.

B. Temporal periodic structures

The linear regime discussed in the previous section al-
lows to determine the thresholds as well as the frequencies
at the modulational instability. We now explore numerically
the nonlinear dynamics above the modulational instability
threshold. We fix all the parameters as δ = 1.7, β = 1,

α1 = 0.1, α2 = 0.1 and we vary the injected field amplitude
as the control parameter. As the input field increases, the
CW solution becomes modulationally unstable, and the out-
put field spontaneously develops a periodic structure with a

(a) (b)

FIG. 4. (a) CWs of Eq. (15) in the bistable case for normal
dispersion where the threshold of the modulational instability is
shown with markers for different values of α1 = α2 = α. The blue
dot corresponds to α = 0, the orange square to α = 0.2, and the black
diamond to α = 0.4. (b) Marginal stability curve for the frequency as
a function of the CW intensity obtained from real part of Eq. (17).
The blue full line corresponds to α = 0, the orange dashed line to
α = 0.2, and the black dotted line to α = 0.4. Other parameters are
δ = 5, β = −1.

FIG. 5. Bifurcation diagram obtained in the monostable case.
(a) The amplitude of the intracavity field as a function of the am-
plitude of the injected field. The black curve represents the CW
solutions. The solid (dashed) line indicates stable (unstable) with
respect to modulational instability. The blue dots indicate the max-
imum amplitude of moving periodic structures. The modulational
instability appears to be subcritical. A hysteresis loop exists in the
range Eil < Ei < Eim between stable CW solutions and moving pe-
riodic structures. A continuation algorithm generates the unstable
and stable mustard curves resulting from the modulation instability,
while the blue dots correspond to direct numerical simulations of
Eq. (15). (b,c) The τ − t maps obtained for Ei = 2.3 and Ei =
2.39, respectively, associated with regular moving periodic struc-
tures and breathing structures. Other parameters are δ = 1.7, β = 1,

α1 = 0.1, and α2 = 0.1.

well-defined frequency or period. Using the implicit Euler
algorithm scheme, they are obtained from numerical simula-
tions of the mean-field model Eq. (15). Numerically, this is
done using periodic boundary conditions compatible with the
resonator geometry in Fig. 1. The grid size is 500 with a tem-
poral step integration size of 0.1. We consider the monostable
regime where the CW solution is a single-valued function of
the injection beam. This solution is shown by the black line
in Fig. 5(a) and is stable until the threshold denoted by Eim.
Above this threshold, the CW solutions become unstable and
develop spontaneously moving periodic structures. An exam-
ple of this solution is plotted in the τ − t map in Fig. 5(b).
An example of such temporal profile of the intracavity field
amplitude moving with a constant speed 
v is shown above the
curves. The amplitude of regular moving periodic solutions
as a function of the input amplitude is indicated by blue dots
in the bifurcation diagram of Fig. 5(a). The motion is directly
attributed to the presence of spectral filtering, which generates
through mean-field modeling a term iα1∂τ E in the generalized
LLE model Eq. (15). The presence of this term breaks the
reflection symmetry τ → −τ leading to traveling solutions.

When the input field intensity is decreased, the periodic
solution remains stable in the range of Eil < Ei < Eim as
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shown in the zoom of Fig. 5(a). Indeed, the branch of moving
periodic solution emerges subcritically from the modulational
instability and is connected to the CW solution by unstable
solutions represented by a dashed line as shown in the zoom
of Fig. 5(a). These unstable and stable branches of solutions
are obtained by the pseudo-arclength continuation method,
which allows the plotting of both stable and unstable periodic
traveling solutions (mustard curves). As the input field is fur-
ther increased beyond the threshold of modulational instabil-
ity, the output of the resonator evolves from regular to breath-
ing self-pulsating structures. These solutions are moving with
speed 
v. The τ − t map in Fig. 5(c) shows examples of a
t − τ map of the breathing solutions. An example of temporal
profile is shown under the curves of Fig. 5(a).

IV. DISSIPATIVE SOLITON COMBS WITH FILTERING

A. Moving and breathing dissipative soliton

Kerr resonators support temporal dissipative solitons in the
anomalous dispersion regime where the modulational instabil-
ity appears subcritically [20]. Their formation does not require
a bistability between CW solutions. They can be generated
in the monostable regime in the range δ <

√
3. We consider

the input field amplitude domain Eil < Ei < Eim, which gives
rise to a hysteresis loop involving the CW solution and the
traveling periodic solutions [see the zoom of Fig. 5(a)]. As we
shall see, different types of localized solutions exist as stable
solutions associated with this domain. Numerical simulations
of the generalized LLE model Eq. (15) show evidence of
dissipative solitons. The results are summarized in Fig. (6).
When α = 0, LSs are stationary and symmetric solutions [see
Fig. 6(b)]. Their range of existence as stable solutions, indi-
cated by full squares, is rather large, as shown in Fig. 6(a).
From this chart, we see that as the spectral filter parameters
increase, the dissipative solitons stability range is reduced. In
addition, we plot together with the points corresponding to
the localized states for α1 = 0.1, the branch of the moving
periodic solutions that connects to the CW solution by an
unstable solution represented by a dashed line as shown in
Fig. 6(a). The branches of the periodic solutions in motion for
α = 0 and α = 0.05 are not shown in Fig. 6(a) for readability.
The unstable and stable branches of the periodic solutions are
obtained using the pseudoarclength continuation method. The
stable branch of the moving periodic solution coincides with
the localized branch of the solutions represented by the black
dots. However, as we shall see, unlike the periodic solutions,
the localized solutions branch is not connected to the CW
solution.

In addition, when α1 	= 0, the localized peaks become
asymmetric and begin to exhibit regular motion, as shown in
the τ − t map in Fig. 6(c). The profile of a single peak dis-
sipative soliton is shown in Fig. 6(d). The dissipative soliton
has an exponentially decaying tail. The zoomed inset depicts
how the asymmetry of the tail becomes more pronounced as
the parameter α1 is increased. The motion is then due to the
presence of temporal spectral filtering inside the cavity. The
speed of single peak dissipative solitons as a function of the
parameter α1 is plotted in Fig. 6(e). The speed increases with
the parameter α1 and decreases with α2. The Fourier transform

FIG. 6. Moving dissipative solitons obtained in the monostable
case. (a) Maximum amplitude of the intracavity field associated with
dissipative solitons as a function of the amplitude of the injected
field. The black curve represents the CW solutions. As the input
field increases, the CW solutions become unstable with respect
to modulational instability. The black open circles on this curve
represent the threshold associated with modulational instability for
α = 0, α = 0.05, and α = 0.1. The solid (dashed) line indicates
stable (unstable) with respect to modulational instability. The three
curves formed by black squares obtained for α = 0, α = 0.05, and
α = 0.1 show the maximum amplitude of moving dissipative struc-
tures. (b) τ − t maps obtained for Ei = 1.21, α1 = 0, and α2 =
0.1 associated with stationary dissipative soliton. (c) τ − t maps
obtained for Ei = 1.21, α1 = 0.2, and α2 = 0.1 associated with
moving dissipative soliton. (d) Zoom-in on the dissipative solitons
profile shows the deformation of the soliton tails for different val-
ues of the filter parameters. (e) Speed of dissipative solitons for
a fixed amplitude of the injected field amplitude as a function of
the parameter α1. (f,g) Combs associated with the stationary and
moving dissipative solitons shown in (b) and (c), respectively. Other
parameters are δ = 1.7 and β = 1.

of the train of localized structures corresponding to Fig. 6(b)
and exiting the resonator is plotted in Fig. 6(f). Similarly, the
Fourier transform of the moving localized structures shown in
Fig. 6(c) is plotted in Fig. 6(e). When the amplitude of the
input field is increased in the monostable regime, localized
breathing solutions are unstable because the background, the
CW solution, becomes modulationally unstable.

We now consider the bistable regime δ >
√

3. The linear
stability analysis shows that the range over which lower CW
solutions are stable increases when considering spectral fil-
tering. We fix the detuning parameter to δ = 5, and we vary
the input field amplitude. In the absence of spectral filtering
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FIG. 7. Moving and breathing dissipative solitons obtained in the
bistable case. (a) Maximum amplitude of the intracavity field asso-
ciated with dissipative solitons as a function of the amplitude of the
injected field for different values of α1 = α2 = α. The black curve
represents the CW solutions. The lower branch shown is always
stable for δ = 5, and the upper CW solution denoted by the dashed
line is always unstable. The three curves formed by circles and
diamonds are obtained for α = 0, α = 0.05, and α = 0.1 and show
the maximum amplitude of dissipative structures. As the injected
field amplitude is increased, the stationary (full circles) and moving
(empty diamonds) dissipative soliton branches exhibit a pitchfork
bifurcation. Above this bifurcation, the DSs begin to breathe. The
two branches emerging from each of these bifurcations represent the
maximum and minimum amplitudes associated with the breathing
dissipative solitons (yellow circles and diamonds). (b) τ − t maps
obtained for Ei = 3.9, α = 0 associated with breathing dissipative
soliton. (d) τ − t maps obtained for Ei = 3.9, α1 = 0.2, and α2 =
0.03 associated with moving, breathing dissipative soliton. (c,e)
Combs associated with stationary and moving dissipative solitons are
shown in (b) and (d), respectively. Parameters are δ = 5 and β = 1.

α = 0, numerical simulations of the generalized LLE Eq. (15)
show stationary dissipative solitons [the branch of full black
circles in Fig. 7(a)]. These regular dissipative solitons are
stationary solutions similar to those shown in the monostable
case [see Fig. 6(b)]. When the input field is increased, DSs
start to exhibit breathing behavior indicated by the yellow
branches of maxima and minima in Fig. 7(a). An example
is shown in Fig. 7(b). The corresponding comb is plotted in

FIG. 8. Bounded dissipative solitons in the presence of spectral
filtering. (a) Bounded moving dissipative solitons and (b) bounded
moving and breathing dissipative solitons obtained for the same
parameters of Figs. 7(b) and 7(d), respectively.

Fig. 7(c). When taking into account spectral filtering, α 	= 0,
the breathing solitons start to move with a constant speed as
shown in Fig. 7(d), and the corresponding comb is plotted in
Fig. 7(e).

Kerr micro and macroresonators can host bounded moving
solutions. Figure 8(a) shows an example of two bounded
moving dissipative solitons. Breathing and moving bounded
dissipative solitons are also stable solutions of the generalized
LLE model Eq. (15). This solution is shown in Fig. 8(b).
Dissipative solitons interact via their exponentially decaying
tails and form bounded states. This weak interaction can be
strongly affected by various perturbations, such as periodic
modulation [40,41] and high-order dispersions [29,42]. These
perturbations lead to the appearance of the so-called soliton
Cherenkov radiation at the soliton tails [43,44]. A deeper
investigation of interaction in the presence of filtering will be
the subjet of future publication.

B. Homoclinic snaking bifurcation and isolas
of dissipative solitons

Kerr resonators exhibit a high degree of multistability over
a finite range of injected field amplitude values, often referred
to as the pinning region [45]. More precisely, the generalized
LLE model Eq. (15) supports not only two peaks solutions
bounded together, but two sets of odd and even localized
peaks. Let us first assume that α1 = 0, for which Eq. (15)
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admits two snaking curves; one describes dissipative solitons
with an odd number 2n + 1 of peaks, and the other corre-
sponds to an even number 2n of peaks, with n is a positive
integer. They are motionless solutions because the general-
ized LLE model Eq. (15) conserves the reflection symmetry
τ → −τ . Dissipative solitons exhibit a well-known homo-
clinic snaking type of bifurcation within the subcritical
modulational instability range. In the time domain, their
bifurcation diagram consists of two snaking curves that
are connected and emerge from the modulational instability
threshold [46,47]. Since the maximum amplitudes of DSs with
different numbers of peaks are close to each other, it is more
convenient to plot the L2-norm

N =
∫

dτ |E − Es|2 (21)

as a function of injected field amplitude. The homoclinic
snaking bifurcation is shown in Fig. 9. The two snaking
curves associated with odd and even numbers of localized
peaks are intertwined. They correspond to the back-and-forth
oscillations across the pinning region. This feature has been
abundantly addressed for the Lugiato-Lefever model without
spatial filtering. However, when α1 	= 0, the classic homo-
clinic snaking type of bifurcation is broken, and branches
of localized peaks form isolas, closed curves disconnected
from the CW solutions. This means that the unstable branch
associated with the dissipative soliton is not connected to the
modulational instability threshold. This property is inherent
to all irreversible systems in which the reflection symmetry is
broken, i.e., τ 	→ −τ . The summary of this analysis is shown
in Fig. 10. The bifurcation diagram for moving periodic so-
lutions (green curve) and a dissipative soliton with a single
peak (blue curve) are shown in Fig. 10(a). A zoom of the
isola branch of the single DS is depicted in Fig. 10(b). The
stable (unstable) moving dissipative solitons is shown in full
(dashed) line. Profiles corresponding to the points A to D
along this isola are indicated in the bottom left corner of the
figure, with the profile A being the only stable solution. The
associated speeds are shown in Fig. 10(b), where it can be
noted that increasing the injection results in an increase of the
velocity of the stable DSs.

LLE Eq. (15) without the effect of spectral filtering is
known to present a homoclinic snaking bifurcation dia-
gram. However, taking spectral filtering into account, the first
iα1∂τ E derivative term in Eq. (15) is unavoidable, leading the
homoclinic snaking bifurcation to be broken and the dissipa-
tive solitons to become asymmetric and exhibit motion. This
is a behavior well known in the field of dynamical systems
theory [48]. In optics, isolas are also generated by the odd
order of dispersion [49] or by Raman scattering [50], which
both break the parity symmetry.

V. CONCLUSION

We studied the formation of temporal dissipative solitons
and the corresponding combs generation in driven resonators
under the combined influence of the Kerr effect, dispersion,
dissipation, and spectral filtering. We generalized the well-
known mean-field Lugiato-Lefever model. The equation was
derived from the infinite-dimensional Ikeda map with a gen-

FIG. 9. Bifurcation diagram showing the L2-norm
N = ∫

dτ |E − Es|2 as a function of the injection amplitude
Ei. Green lines indicate periodic solutions, while (orange) blue
lines indicate (even) odd numbers of peaks in localized states. Full
(dashed) lines correspond to stable (unstable) states, respectively.
Parameters are δ = 1.7, β = 1, α1 = 0.

eral impulse response function. We used a global perturbation
scheme based on multiscale analysis to further simplify this
model by removing high-order terms such as third-order
dispersion i.e., iα3∂

3E/∂ζ 3 and nonlinear convective terms,
i.e., iα4∂|E |2E/∂ζ . The simplified equation was only valid
in cases of low intracavity field strength and smooth transfer
functions.

It was shown that, in addition to the second-order derivative
with a fast response time associated with the gain dispersion,
an additional first-order derivative with a purely imaginary
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FIG. 10. Dissipative solitons isolas. (a) Bifurcation diagram
showing the intensity of the intracavity field as a function of the
injected field amplitude Ei. Black lines indicate the CWs, green lines
indicate the intensity of moving periodic solutions, and blue lines
indicate the one-peak dissipative soliton. (b) L2-norm of the dissi-
pative soliton branch as a function of the injected field amplitude.
Insets A to D on the left show the profiles along the soliton branch.
(c) Velocity of moving dissipative solitons isolas as a function of the
injected field amplitude Ei. Full (dashed) lines correspond to stable
(unstable) states, respectively. Parameters are δ = 1.7, β = 1, and
α1 = α2 = α = 0.1.

coefficient iα1∂E/∂τ is necessary for the modeling. This term
has a significant impact on the dynamics and results in the
following consequences.

(i) The CW solutions are stabilized as the modula-
tional instability threshold is shifted towards higher intensity.
Numerical simulations generate moving and breathing pat-
terns. A branch of moving solutions connecting these periodic
solutions to the modulational instability has been constructed
using a continuation algorithm.

(ii) In the monostable regime, where the CW solutions
are single-valued functions of the injection field, the spectral
filtering not only breaks the reflection symmetry that causes
dissipative solitons to move, but also reduces the stability do-
main associated with moving dissipative solitons (cf. Fig. 6).

(iii) In the bistable regime, the stability domain of moving
dissipative solitons is enlarged by the spectral filtering, as
the threshold above which transition to breathing dissipative
solitons occurs is shifted towards higher injected field inten-
sity (cf. Fig. 7). Numerical simulations revealed the existence

of moving bounded dissipative solitons, including moving-
breathing bounded dissipative solitons.

(iv) The first derivative term breaks the homoclinic
snaking type of bifurcation and promotes rather the formation
of isolas branches of dissipative solitons.

Further work is needed to complete the picture and charac-
terize the whole bifurcation structure showing isolas stacking
associated with multipeak dissipative solitons, using nu-
merical continuation methods. The same behavior will be
investigated in two-dimensional diffractive Kerr resonators
under spatial filtering.
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APPENDIX: ADIMENSIONAL GENERALIZED
LLE WITH FILTERING

To derive the adimensional form Eq. (14) we start from
Eq. (7) and insert expressions Eqs. (11) to (13) for the three
convolution terms, we get

tr
∂F

∂t
= θFi − F +

(
1− θ2

2
− iφ

)(
a0F + a1

∂F

∂ζ
+ a2

∂2F

∂ζ 2

)

+ iβ2l

2

(
c0

∂2F

∂ζ 2
+ c1

∂3F

∂ζ 3

)

+ ı̇γ l

(
d0|F |2F + d1

∂|F |2F

∂ζ

)
. (A1)

Using the following changes of variables and scalings:

E = F
√

γ ld0σ , Ei = θFiσ
√

γ ld0σ , t = 1

trσ
t, δ = a0φσ,

v = (1 − θ2/2)a1σ, α1 = −φa1σ, α2 = a2σ, β = β2l

2
σc0,

α3 = β2l

2
σc1, α4 = d1

d0
, with σ = κ

/(
1 − a0 + a0

θ2

2

)

leads to the dimensionless form Eq. (14)

∂E

∂t
= Ei − (κ + iδ)E + i|E |2E + (v + iα1)

∂E

∂ζ

+ (α2 + iβ )
∂2E

∂ζ 2
+ iα3

∂3E

∂ζ 3
+ iα4

∂|E |2E

∂ζ
. (A2)

According to Eq. (10), ai = ci = di, with i = 0, 1, 2, and by
considering the comoving reference system, τ = ζ + vt , the
model Eq. (A2) becomes Eq. (15).
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