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Power-law spectral decay as a general feature of spiral turbulence
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Spiral waves emitted by topological defects and their instabilities are a fundamental and ubiquitous process
in nature. We study this phenomenon using data from recent experiments and different prototype models
ranging from coupled oscillators, reaction-diffusion, and nonlinear optics. Statistically we show that, for all
systems considered, the spectral density exhibits a power-law decay on spatial scales shorter than the intrinsic
wavelength. This reflects a common type of self-organization through a stationary turbulentlike dynamics. The
role of short-range interactions due to high defects density is discussed. Using a generalized Hilbert transform in
two dimensions, we show that local phase and amplitude field present similar power-law decays in their spectral
density.
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I. INTRODUCTION

Spiral waves are among the most common types of self-
organized spatiotemporal behavior [1–3]. They are known to
play an important role in many different biological processes,
such as cardiac [4,5] and cerebral [6,7] activity, and cellular
communication [8–12]. A spiral wave is a moving wavefront
emitted from a curved free end that rotates around a center that
constitutes a topological defect. Complex dynamics in spiral-
forming systems is usually associated with defect-mediated
turbulence, initially studied in the complex Ginzburg-Landau
equation [13]. Based on the one-dimensional approximation
of this model, Kuramoto and co-workers established the ex-
istence of a power-law spectrum in reduced variables, with
a power-law extending over about a decade. He coined this
behavior chemical turbulence [14,15]. This contrasts with
the usual turbulence in fluid dynamics [16] where power-
law spectra are observed over several decades due to the
presence of structures (eddies) at different scales and the
existence of a conservation law. Turbulentlike behaviors, such
as chemical turbulence, were observed in different physical
systems such as fiber lasers [17,18], nonlinear optics [19–21],
active matter [22], interfacial dynamics [23], Bose-Einstein
condensates [24], and financial markets [25]. In all these sys-
tems, a power-law decay behavior in the spectral density or
probability distribution has been established for observables
such as kinetic energy, light intensity, phase gradient, or price
changes. Note that these power-laws typically range over (not
more than) a decade due to the absence of different structures
or defects at various scales and/or of a conserved quantity.

Here, we provide evidence for a general way in which
systems exhibiting turbulencelike dynamics of spirals self-
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organize. A power-law decay at short-length scales in the
average spectrum of the observable characterizes this spa-
tial organization. Statistical analysis is first performed on
experimental data consisting of a temporal sequence of the
two-dimensional distribution of a chemical species concentra-
tion. Using a generalized two-dimensional Hilbert transform,
the concentration field is then decomposed into a local phase
and amplitude field, and their respective spectra are com-
puted. These spectra similarly exhibit power laws at short
spatial scales. Then, the generality of this feature is shown
by performing the same analysis on various models exhibit-
ing turbulentlike regimes of spirals stemming from different
physical origins: coupled oscillators, reaction diffusion, and
optical parametric oscillators.

II. EXPERIMENTAL OBSERVATION

Turbulentlike dynamics of chemical spiral waves of a sig-
naling protein on the membrane of starfish egg cells were
recently experimentally reported, see inset of Fig. 1(a). Details
about this experiment can be found in [12,26]. Let us start by
defining the average spectrum in the radial direction F[X ](k).
It is the temporal average of the two-dimensional Fourier
spectrum over which angular averaging was performed. This
yields a spectral density along the radial direction in the
space of wavenumbers. Mathematically, denoting k = |k| the
wavenumber,

F[X ](k) =
〈∫ 2π

0
F[X ](k, θ ; t )dθ

〉
t

,

where 〈·〉t stands for the average over time and the usual
Fourier transform is expressed in polar coordinates,

F[X ](k, θ ; t ) =
∫∫

X (r; t )e−ik·rdr.

Figure 1(a) shows the averaged spatial spectrum in the ra-
dial direction, for the experimental data available from the
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FIG. 1. Spirals turbulentlike regime of a protein concentration on
the membrane of a cell (video available from [26]). Averaged spectral
density of the concentration field (a), the amplitude (b), and the
phase (c). The shaded regions indicate the standard deviations of the
temporal distributions. Dashed lines show power-law decays kp with
associated exponents p = −3.5 (a), p = −5.1 (b), and p = −2.6 (c).
Insets show instantaneous realizations of the corresponding fields.

Supplemental Material (cf. video S1 in [26]). Note that the
recorded intensity is directly related to the concentration of
protein. The inset shows a snapshot of the analyzed field.
We observe that after a peak corresponding to the (intrin-
sic) wavelength of the pattern, the concentration spectrum
behaves as ∼k−3.5. This law is followed over approximately
one decade until the intrinsic noise spatial scale is reached,
causing the curve to flatten away [27]. This result echoes the
work done by Kuramoto and co-workers on turbulencelike
behaviors in chemical systems [15]. A physical interpretation
was then given in analogy with fluid dynamics: nonlinear
coupling is responsible for a connection between different
spatial scales and allows for the cascade of a physical quantity
through which the chemical system maintains a steady turbu-
lentlike state [14,28]. Here, we see evidence that the smallest
(noise-free) scales are connected to scales of the order of
the intrinsic wavelength. The experimental limitations prevent
from concluding on larger scales behavior. This is because
the aspect ratio (as defined by the number of wavelengths
the system supports) is generally limited in such experimental
data. In the following, we will then limit our analysis to small
length scales. By “small,” we mean spatial scales smaller than
the intrinsic wavelength associated with the traveling wave
behavior of the system. Spiral turbulencelike regimes involve
many domains of curved wavefronts with more or less random
orientations. Such structure is suitable for a decomposition
of the field into a constitutive phase and amplitude. This
decomposition is performed by means of the conformal mono-
genic signal [29]. It is constructed based on a generalized
Hilbert transform and was developed to analyze local (possi-
bly curved) features of two-dimensional signals. Note that in
this decomposition, the phase variable ϕ varies between 0 and
π (see [29] for details). Figures 1(b) and 1(c) show the aver-
aged spectral density in the radial direction associated with the
amplitude and phase field (see insets). These spectra similarly
exhibit power-law decays with different exponents provided
in the caption of Fig. 1. These exponents were obtained by
linear regression on the experimental data. We infer that such

a power-law behavior of the spectral density is a signature of
the turbulentlike dynamics of spirals.

III. MODEL EQUATIONS

To show that the power-law decay in the spectral density
observed in the experimental data above is a general feature
rather than an exception, we analyze different models. All
these models exhibit spirals of different shapes and aspects
(see insets of Fig. 2) and span different dynamical regimes,
from steadily rotating to meandering and unstable spirals. The
only common feature a priori is a global spatial disorder and
complex dynamics. Numerical simulations are performed on
square domains of 512 × 512 grid points. The laplacians are
approximated with second-order accuracy central differences
and the time stepping is made by means of a fourth-order
Runge-Kutta scheme. Boundary conditions along both spa-
tial directions are considered solid, satisfying the “no-flux”
boundary conditions ∂nψ = 0, with n the outward-pointing
normal vector at the boundary. First, we study the complex
Ginzburg-Landau equation (CGLE) as did the authors of [26]
for comparison with their experimental data. The CGLE is a
general amplitude equation for any continuous complex field
ψ sufficiently close to a Poincaré-Andronov-Hopf bifurcation
[30]. As such, it describes coupled nonlinear oscillators, and
it is given by

∂ψ

∂t
= ψ − (1 + ic)|ψ |2ψ + D(1 + ib)∇2ψ. (1)

This model has been extensively used to describe phase
singularities in optics, reaction diffusion, magnetic systems,
superconductors, Bose-Einstein condensates, and fluids [30].
Details about spirals dynamics in the CGLE are provided in
the Appendix. It is especially shown that for the chosen pa-
rameters b = −0.2 and c = 1, spirals are dynamically stable.
It means that no spontaneous front breaking (due for example
to Eckhaus or Doppler instability) manifests. The background
is also stable.

In the context of reaction diffusion, the Brusselator model
is a paradigm for understanding dissipative structures in
nonequilibrium systems. It describes the coupled dynamics of
the concentrations of two intermediate species involved in a
global chemical reaction. The evolution equations read [31]

∂X

∂t
= A − (B + 1)X + X 2Y + ∇2X,

∂Y

∂t
= BX − X 2Y + D∇2Y. (2)

A and B are the concentrations of reactants supposed con-
stant and D is the ratio between the diffusion coefficients
of species Y and X , respectively. The unique fixed point
(X,Y ) = (A, B/A) undergoes a Poincaré-Andronov-Hopf bi-
furcation at Bc = 1 + A2. From this value on, the system
locally exhibits a limit cycle whose amplitude gets larger as B
grows away from Bc. For our choice of the parameter values
(A = 1, B = 5, D = 0.5), the local dynamics is of relaxation
oscillations type and spiral waves emerge from the diffusive
coupling. For a well-chosen inhomogeneous initial condition,
the system exhibits a turbulentlike regime of spirals in which
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FIG. 2. Spectral density of spiral-forming systems in the turbulentlike regime. Spatial organization for the different models studied,
evidencing a general power-law decay kp of the averaged spectral density at short wavelengths. (a) Coupled oscillators: Complex Ginzburg-
Landau equation; (b) reaction diffusion: Brusselator model, excitable systems; (c) FitzHugh-Nagumo equation; and (d) Bär-Eiswirth model;
and (e) nonlinear optics. Exponents are found to be p = −6.36 (a), p = −3.37 (b), p = −4.05 (c), p = −4.48 (d), and p = −5.02 (e). Dashed
lines indicate these laws found by linear regression, each with a maximal absolute error of 0.10. The shaded blue regions indicate the standard
deviations within the statistical ensemble, and the insets show snapshots of each field in the turbulentlike regime.

the cores diffuse. As for the CGLE, our set of parameters leads
to spirals that are dynamically stable. Note however that the
diffusion of the cores (called meandering) does not occur in
the CGLE.

The FitzHugh-Nagumo model is another paradigm in re-
action diffusion systems describing excitable cells, and was
originally developed to simulate spike generation in axons
[32,33,34]. While the fast variable u stands for the transmem-
brane potential, v is generally thought of as a slow recovery
variable. Here, we consider the slightly different version stud-
ied by Winfree [35]:

∂u

∂t
= 1

ε

(
u − u3

3
− v

)
+ D∇2u,

∂v

∂t
= ε(u + b − gv), (3)

with ε = 0.2, b = 0.05, g = 0.5, and D = 0.2. Spiral wave
solutions then steadily rotate about a fixed center without
exhibiting any type of dynamical instability.

Next, considering excitable media, we study the derived
Bär-Eiswirth model [36]. It is characterized by delayed in-
hibitor production and was first used in the context of surface
reactions:

∂u

∂t
= −1

ε
u(u − 1)

(
u − v + b

a

)
+ ∇2u,

∂v

∂t
= f (u) − v,

with

f (u) =

⎧⎪⎨
⎪⎩

0, u < 1/3

1 − 6.75u(u − 1)2, 1/3 � u � 1

1, u > 1.

The system parameters used in our study are ε = 0.071,
a = 0.84, b = 0.07. For these values of the parameters, the
individual spiral undergoes the so-called Doppler instability
during which spiral breakup occurs in the vicinity of the core,
eventually leading to a turbulentlike state where the number
of the defects fluctuates.

Finally, nonlinear optical systems were shown to exhibit
spiral turbulence [37–41]. One of these, describing an optical
parametric oscillator with a saturable absorber, will be used
to generalize further the result [42]. Optical parametric os-
cillators (OPO) are undergoing significant development for
the generation of coherent, tunable radiation. We consider a
degenerate optical parametric oscillator driven by a coherent
field injected at frequency 2ω. A quadratic nonlinear medium
converts this field into a field at frequency ω. We add to the
optical cavity a saturable absorber that absorbs the field at
frequency ω. The effective absorption coefficient depends on
the field and is modeled by a two-level saturable medium. We
consider the combined effects of diffraction, quadratic nonlin-
earity, and dissipation. In the mean-field approximation, the
optical parametric oscillators with a saturable absorber reads
[42,43]

∂A0

∂t
= −γ

[
(1 + i
0)A0 + A2

1 − E
] + i

2

⊥A0,

∂A1

∂t
= −(1 + i
1)A1 + A∗

1A0 − RA1

1 + S|A1|2 + i
⊥A1.

A0 and A1 are the normalized slowly varying envelopes of
the pump and the signal field at frequencies ω and 2ω, re-
spectively. The injected field amplitude is denoted by E and
the ratio of the photon lifetimes at frequencies ω and 2ω is
γ . The saturable absorber parameters are the linear loss R
and the saturation intensity 1/S. The transverse Laplacian 
⊥
describes the diffraction effect in the transverse plane (x, y).
To satisfy the phase matching condition, the ratio between the
diffraction coefficients of the two fields is fixed at 1/2. We
consider the pump and the signal field are in perfect resonance
with the cavity, 
0 = 
1 = 0. We place ourselves in the pa-
rameter region where spirals are unstable and spontaneously
breakup to form a turbulentlike state. The parameters values
are R = 4.5, S = 0.1, and E = 7.1.

IV. RESULTS

On the basis of all the models mentioned above, we carry
out a statistical analysis by computing the averaged spatial
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FIG. 3. Small-length structures emerging from the complex in-
teractions of wavefronts. (a) In the FitzHugh-Nagumo model, a
random cut (yellow line) is considered from an instantaneous re-
alization of the field u(x, y, t ). Typical lengths λi are identified in
(c) and the corresponding wavenumbers ki = 2π/λi are located on
the averaged spectrum in (b). λ0 is the intrinsic wavelength emerging
from the traveling wave instability.

spectral density in the radial direction along with the respec-
tive standard deviations. Figure 2 summarizes the results.
Despite the differences between the models in the widths,
shapes, and general aspects of the spirals (see insets), and in
their dynamical regime as discussed in the previous section,
the averaged spectrum of each system is characterized by a
power-law decay at short wavelengths. For each panel, the lo-
cal standard deviation of the temporal distribution is indicated
as a shaded blue region surrounding the mean value (full line).
Note that the averaging procedure has been performed on at
least 10 000 frames for every curve. The respective exponents
characterizing the decay law are indicated in the caption and
are obtained by linear regression over the estimated linear
range, with a maximal tolerated error of 0.10. This error is
computed as the mean difference between the regression and
the “true” value. Discrepancies between the exponents are
attributed to the details of the individual spiral shape and
dynamics, and quantitative analysis is under investigation.

The occurrence of the power-law at such short wavelengths
may find its origin in different mechanisms. However, when
the spiral waves are dynamically stable we suggest that it is
due to the high density of spirals whose short-range inter-
actions result in irregular spatial modulations of the spiral
arms. These modulations introduce new (small) characteristic
length scales over which the observable of the system is on
average distributed according to the power-law as depicted in
Fig. 3. Through this self-organization, a dynamical equilib-
rium is reached, and the turbulentlike regime is maintained.
Figure 3 illustrates the emergence of small-scale structures
due to wavefront interactions. In panel (c), several lengths

FIG. 4. Power-law decay in the spectral density of the amplitude
and phase variables for the Brusselator (top panels) and FitzHugh-
Nagumo (bottom panels) model. At small scales, the law kp is
given for the Brusselator model by p = −2.55 ± 0.11 and p =
−2.96 ± 0.09 for the amplitude (a) and the phase (b), respectively.
For the FitzHugh-Nagumo model, we found p = −3.30 ± 0.13 and
p = −3.32 ± 0.08 for the amplitude (c) and the phase (d), respec-
tively. Shaded regions indicate the standard deviation. Insets show
corresponding instantaneous fields.

are highlighted on a random cut along the horizontal direc-
tion of an instantaneous realization (a) of the u field in the
FitzHugh-Nagumo model. This cut is located by a full yellow
line. The correspondence with the associated wavenumbers
in the spectrum is shown in panel (b) where ki = 2π/λi (i =
1, 2, 3). k0 = 2π/λ0 is the asymptotic wavenumber associated
with the traveling wave far from the core. It is clear that, in
order to construct the spectrum of panel (b), an average over
a large statistical ensemble is necessary. Similar results can
be obtained from the other models considered in this work.
The coupling between the wavenumbers is responsible for
the observed power laws on short spatial scales. Although
the system also exhibits a global disordered, this analysis
focuses on short scales. Our study reveals that at these scales,
a common type of spatial self-organization manifests itself in
complex regimes of interacting spirals which is independent
of the details of the system.

To shed light on the origin of the dynamics observed, we
computed the averaged spectra for individual amplitude and
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FIG. 5. Power-law decay in the spectral density of the ampli-
tude and phase variables for the Bär-Eiswirth (top panels) and OPO
(bottom panels) model. At small scales, the law kp is given for the
Bär-Eiswirth model by p = −4.09 ± 0.09 and p = −2.64 ± 0.09 for
the amplitude (a) and the phase (b), respectively. For the OPO model,
we found p = −4.95 ± 0.09 and p = −2.68 ± 0.08 for the ampli-
tude (c) and the phase (d), respectively. Shaded regions indicate the
standard deviation. Insets show corresponding instantaneous fields.

phase variables from the constructed conformal monogenic
signal [20,21]. Results are shown for two reaction-diffusion
models in Fig. 4, namely the Brusselator [(a) and (b)] and
the FitzHugh-Nagumo model [(c) and (d)]. Each of these
spectra exhibits a power-law decay over small scales, as for
the associated concentration spectra and similar to what was
found from the experimental data. This information takes
its importance from the fact that, by construction, these two
fields are uncoupled and describe different aspects of the
spatiotemporal dynamics. Thus, it is not evident a priori that
their spectrum will also exhibit power-law decay. The associ-
ated exponents are similar to one another but slightly differ
from the exponent characterizing the observable. Figure 4
teaches us that both the amplitude and the phase dynamics
exhibit similar turbulentlike behavior. Note that a previous
work showed power-law behaviors in both these variables but
characterized by different exponents associated with different
mechanisms [20]. However, this “dynamical decoupling” does
not clearly emerge in the turbulentlike regime of spirals for the
Brusselator and FitzHugh-Nagumo model. Interestingly, such
decoupling is observed in the Bär-Eiswirth and OPO models

for which the spiral wave state has undergone a dynamical
instability, as shown by Fig. 5. The exponents, indicated in
the caption, are significantly different from one another in
this case. We also note that the exponents associated with
amplitude and phase spectrum for the experimental observa-
tions are distinct and that, in this case, the individual spirals
are unstable (see [12,26]). A possible interpretation is that
spiral instability produces a decoupling between amplitude
and phase dynamics. Systematic quantitative investigation is
in progress for this hypothesis to be tested. For example, in
the case of the CGLE where spirals are stable, we cannot yet
explain the difference between the exponents observed.

V. CONCLUSIONS

In conclusion, on the basis of experimental and numerical
data, we evidence a general feature of turbulentlike regimes
of spirals, namely the power-law decay of the concentration
spectral distribution over short spatial scales. This distribution
is adopted by the system while maintaining permanent irregu-
lar spatiotemporal evolution, and corresponds to a dynamical
equilibrium. The numerous interactions of spiral wavefronts
result in spatial modulation of the latter and the emergence
of structures at scales shorter than the intrinsic wavelength
associated with the traveling wave. This explains the domain
of extension of the power-law and reveals complexity at short
scales. While intrinsic instabilities may play an active role in
the dynamics, our work show that they are not a prerequisite
for the emergence of power-law spectral distribution. Our
result finds its importance in the fact that spiral waves are
ubiquitous in nature, in particular in biology and physiology
where the turbulentlike dynamics of spirals plays a central role
in key processes. On the other hand, the established features
of spatiotemporal complex regimes are nowadays still largely
restricted to specific settings, and general results bridging
different physical systems are necessary. Our work aims to
advance in this direction.
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APPENDIX: COMPLEX REGIME OF SPIRALS
IN THE CGLE

The complex Ginzburg-Landau equation (CGLE) is an
amplitude equation that has been derived for many spatially
extended close to the Poincaré-Andronov-Hopf bifurcation
threshold and is well known to exhibit a wide variety of dy-
namical behaviors [30]. Among them, a simple spiral solution
describes a traveling wave rotating around a phase singularity
(spiral core) and takes the form

ψ (r, θ ) = F (r) exp {i[−ωt ± θ + φ(r)]} (A1)

in the polar coordinates (r, θ ). The spiral frequency is ω, and
k stands for the asymptotic wavenumber defined in the radial
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FIG. 6. Averaged spectral density distributions for the Ginzburg-Landau model. Steadily rotating single spiral (a), spiral pair (b), and
complex regime (c). For our choices of parameters, the real part of the complex field ψ exhibits wavefronts radially traveling toward the phase
singularity as indicated by black arrows in the insets of (a) and (b).

direction. Far from the core, assuming

F (r) −→
r→∞

√
1 − k2 and φ(r) −→

r→∞ kr,

we find a dispersion relation

ω(k) = (Db − c)k2 + c.

Numerical parameters were taken to be dx = 0.04 and
dt = 0.01 for the spatial and temporal increment, respec-
tively. For the system parameters, we chose the values
b = −0.2, c = 1.0, and D = 0.003, for which the group
velocity

vg = ∂ω

∂k
= 2(Db − c)k < 0.

The waves then travel toward the singularity as shown in
the insets of Figs. 6(a) and 6(b). Note that the asymptotic
wavenumber k and the spiral frequency ω are uniquely deter-
mined by the parameter values. Figure 6 shows the averaged
spectral densities associated with the steadily rotating single
spiral (a) and spiral pair (b), and with the complex regime (c)
involving many defects. All these results are obtained for the
set of parameters specified above. In this regime, spirals are
intrinsically stable in the sense that no dynamical instability
(such as Eckhaus, Doppler, or phase instability) drives the dy-
namics, even in the turbulentlike regime. Each spiral steadily
rotate around its fixed core and the complex spatial organi-
zation is solely due to the high density of defects inducing
wavefront interactions. In Fig. 6, the asymptotic wavenumber
is numerically identified from the single spiral spectral den-
sity (a) to be k0 
 7.98 and is identical for the spiral pair
(b). This value is indicated in panel (c) for comparison. We

conclude that the associated “natural” wavelength λ0 =
2π/k0 still dominates in this complex turbulentlike regime.

Figure 7 depicts the averaged spatial spectra in the radial
direction for (i) the amplitude A and (ii) the phase ϕ variable
computed from the conformal monogenic signal (see main
text). Insets show examples of instantaneous fields. Similar
to what was observed for the Brusselator and FitzHugh-
Nagumo model, after a peak at the dominant wavenumber,
a power-law decay characterizes the spectral distribution at
small wavelengths in both cases. A linear regression in this
region gives the exponents −5.03 ± 0.19 for the amplitude
and −3.89 ± 0.17 for the phase.

FIG. 7. Averaged spatial spectral density of the amplitude (a) and
phase (b) of the CGLE computed from the conformal monogenic
signal. A power-law decay characterizes the spectral distribu-
tion at small spatial scales as evidenced by the linear regression
(dashed line). Insets show instantaneous realizations for each two-
dimensional field.
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