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 A B S T R A C T

Optical vortices have attracted attention due to their intrinsic characteristics and potential applications, which 
span from telecommunication in free space and image analysis to manipulating small particles. Optical valves 
and liquid crystal cells have been fundamental in generating optical vortex beams. The theoretical description 
predicts the existence of different Rayleigh and standard vortices. Based on two different experiments, we 
investigate the transition between these vortices. When the effect of topological forcing is dominant, the 
bifurcation diagram between these vortices has been characterized through both experimental and numerical 
means. The numerical and experimental findings present qualitative agreement.
1. Introduction

Optical vortices (OAM) are beams of light that have point phase 
dislocations around which the electromagnetic field usually has a spiral 
structure; that is, these dislocations are singular points where the elec-
tromagnetic field cancels out and around which the phase distribution 
forms a spiral with 𝑁 arms, where 𝑁 is the topological charge [1–3]. 
In the last decade, optical vortices have attracted attention for their 
diverse photonic applications [4], ranging from angular momentum 
exchange between light and matter [5], optical tweezers [6–8], quan-
tum computing [9], astronomical image enhancement [10], optical 
beam generation by micro/nano-patterning in liquid crystals [11,12], 
and data transmission [13]. Several methods have been proposed to 
generate vortices, such as spiral phase plates [14], diffractive ele-
ments [15,16], liquid crystal cells with radial director orientation,
q-plates [17], liquid crystal droplets [18], liquid crystals cells with 
umbilical defects [19] with magnet and oscillatory electric field [20,21] 
or liquid crystal light valves [22–24]. In the case of optical valves, 
the emergence of vortex beams is related to the fact that the Gaussian 
incident beam on the photoconductor layer induces an inhomogeneous 
voltage with a hedgehog-type shape, which causes an umbilic vortex 
in the liquid crystal, which then interacts with the light, generating a 
vortex beam. This umbilical defect is taken into account by considering 
the system close to the reorientation instability of the liquid crystal 
molecules, which is described by the Ginzburg–Landau equation at real 
coefficients and with topological forcing [24]. The umbilical defect 
can be located in the center of the beam (see Fig.  1) or far from it, 
depending on the balance between forcing and spatial inhomogeneities. 
In the latter case, the defect is referred to as a shadow vortex [25], as its 
topological charge is in the unilluminated area. Likewise, the amplitude 
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equation predicts analytically that when the bifurcation parameter is 
below and away from the critical reorientation point of the liquid 
crystal molecules; the system presents a vortex of small amplitude with 
a large core, called the Rayleigh vortex [26], due to its shape (cf. 
Fig.  1). Experimental observation of these vortices and the transition 
between them and standard ones has yet to be established.

The letter aims to gain a deeper understanding of the formation 
and transition of Rayleigh vortices to standard ones through an ex-
perimental approach. Two experiments were conducted to observe the 
formation of Rayleigh and standard vortices, as well as their transitions: 
(i) in a liquid crystal light valve (LCLV) with homeotropic anchoring 
and transmission configuration and (ii) in a nematic liquid crystal cell 
(NLCC) with homeotropic anchoring under the effect of a magnetic 
ring and oscillating electric field. The bifurcation diagram between 
these vortices has been characterized experimentally and numerically 
when the effect of topological forcing is dominant. The numerical and 
experimental findings present qualitative agreement.

2. Experimental liquid crystal light valve setup

We will consider two experimental configurations to study the 
transition between vortices. A liquid crystal light valve in transmission 
and liquid crystal cells under the combined effect of a magnet ring and 
oscillatory electric field.

The experimental setup for vortex induction by light is schemati-
cally illustrated in Fig.  1. The LCLV, provided by HoloEye, is composed 
of a nematic liquid crystal layer (MLC 6608 Merck) deposited between 
two parallel glass plates separated by a distance 𝑑 = 15 μm. The 
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Fig. 1. Experimental vortex setup in Liquid Crystal Light Valve (LCLV). (a) Schematic 
illustration of matter vortex inducing OAM light modes. The right green beam accounts 
for the incident Gaussian light. (b) Schematic representation of experimental setup, 
where DPSS is a diode-pumped solid-state laser, 𝐿 and 𝑀 account for the lenses and 
mirrors considered, SLM is a spatial light modulator, 𝑃 and 𝐴 are the cross polarizers, 
𝑉0 is the driven voltage, 𝐼0 is the light intensity applied to LCLV, Obj stands for a 
microscope objective with a magnification of ×5, and CMOS is a complementary metal–
oxide–semiconductor camera. (c) Snapshots of experimental-type vortex solutions: (c.i) 
Standard, (c.ii) Rayleigh, and (c.iii) Rayleigh-standard vortex transition.

plates feature transparent conductive indium tin oxide (ITO) films and 
a transparent photoconductive slab, Bi12SiO20 (BSO), with dimensions 
of 25×25 mm2 and a thickness of 1 mm. The interior surfaces are treated 
to obtain a homeotropic anchoring for the liquid crystal, such that the 
nematic director is orthogonal to the confinement walls. The liquid 
crystal has a negative dielectric anisotropy 𝜖𝑎 = 𝜖∥ − 𝜖⟂ = −4.2𝜖𝑜, with 
𝜖∥ and 𝜖⟂ the dielectric susceptibility for the electric fields parallel and 
orthogonal, respectively. An oscillatory voltage 𝑉0 𝑟𝑚𝑠 can be applied 
to the LCLV through the ITO films at a frequency 𝑓0 = 1.0 kHz. 
Furthermore, when a light beam is incident upon the BSO wall of the 
LCLV due to the photo-generated charges, an extra non-homogeneous 
bias, in function of the light beam profile, is applied. This bias can be 
modeled as 𝑉𝐼 = 𝛼𝐼(𝑟) for a Gaussian light beam of small intensity [24]. 
This induced an effective bias 𝑉𝑒𝑓𝑓 = 𝑉0 + 𝛼𝐼(𝑟), where 𝑟 and 𝜃
are the transverse coordinates that describe the liquid crystal sample. 
Namely, the voltage applied to the nematic liquid crystal sample has 
two parts: one spatially homogeneous 𝑉0, externally imposed, and 
another inhomogeneous 𝛼𝐼(𝑟), Gaussian-shaped part imposed by the 
illumination. Note that the voltage is invariant under rotations in the 
plane orthogonal to the illumination. When the effective bias 𝑉𝑒𝑓𝑓 (𝑟) is 
locally above the voltage of Fréedericksz transition 𝑉𝐹𝑇 , that means 
𝑉𝑒𝑓𝑓 (𝑟) − 𝑉𝐹𝑇 > 0 for a specific spatial local region, a molecular 
reorientation occurs, following the intensity gradients associated with 
the Gaussian beam profile. This induces a localized matter vortex on 
the liquid crystal [22–24]. For the experimental realization of localized 
induction, a diode-pumped solid-state laser, 𝜆0 = 532 nm, with TEM 
00 light mode is employed. The beam is expanded by a microscope 
objective with a magnification of ×5. To control the beam shape, a 
spatial light modulator (SLM, LC 2012 Spatial Light Modulator Holo-
eye, transmission) is considered This SLM is based on a twisted nematic 
liquid crystal display, which generates a simple phase modulation and a 
coupled polarization effect, resulting likewise in amplitude modulation. 
The light beam is transmitted through the LCLV and is amplified ×3
approximately by a free-space telescope system to observe the vortex 
2

generated by the light. The LCLV is placed between two crossed linear 
polarizers, and the product of the polarization reorientation produced 
by the matter vortex is observed. The vortex induction is monitored by 
a complementary metal–oxide–semiconductor (CMOS) camera.

For voltages 𝑉0 below the Fréedericksz transition and with suffi-
ciently large light intensity, one observes the generation of standard 
vortices [see Fig.  1(c).i]. These standard vortices are characterized by 
centering their position at the center of the light beam. The director 
𝑛 shows a significant reorientation around the vortex position in a 
region of the order of the square root of the elastic constants of nematic 
liquid crystals [27]. This region of the vortex is usually called a vortex 
core. Hence, if no light is applied and the voltage exceeds the critical 
reorientation voltage, the same vortices are observed on the liquid 
crystal sample.

3. Theoretical description for localized vortex induction

The dynamics of nematic liquid crystals is driven by minimizing the 
Frank–Oseen free energy  when thermal variations are neglected. The 
Frank–Oseen free energy has the form [28,29]

 [𝑛] = ∫

(

𝐾1(∇⃗ ⋅ 𝑛)2

2
+
𝐾2(𝑛 ⋅ ∇⃗ × 𝑛)2

2
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+
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2

)

𝑑𝑉 , (1)

where {𝐾1, 𝐾2, 𝐾3} are, respectively, the splay, twist, and bend elastic 
constants of the nematic liquid crystal, 𝑉  accounts for the volume of the 
liquid crystal sample, 𝜖𝑎 is the anisotropic dielectric constant, and �⃗� is 
the electric field applied to the sample. The director only considers the 
molecule’s average orientation, so one considers constraint ‖𝑛‖2 = 1. To 
describe the dynamics of the illuminated liquid-crystal light valve, filled 
with a negative dielectric anisotropic nematic liquid crystal (𝜖𝑎 < 0), 
homeotropic anchoring, and consider the normalization constrain of 
the director, the dynamics of the molecular director 𝑛, reads
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, (2)

where 𝛾 is the torque relaxation time. The sample can be considered 
to consist of two parallel flat plates separated by a thickness 𝑑 that 
applied an effective voltage drop 𝑉𝑒𝑓𝑓 (𝑟) composed by a homogeneous 
voltage 𝑉0 and inhomogeneous voltage 𝛼𝐼(𝑟) as a consequence of the 
illumination of the optical valve. The electric field inside the sample 
has the form 
�⃗� = 𝐸𝑧�̂� + 𝐸𝑟 �̂� = −∇⃗𝑉𝑒𝑓𝑓 = − 1

𝑑
(𝑉0 + 𝛼𝐼(𝑟))�̂� −

𝑧𝛼
𝑑
𝑑𝐼(𝑟)
𝑑𝑟

�̂�. (3)

3.1. Weakly nonlinear analysis

A trivial solution of Eq. (2) when the photoconductor effect is 
neglected is the homeotropic state 𝑛 = �̂�. Under crossed polarizers, this 
state corresponds to a completely dark state in the microscope. The 
homeotropic state undergoes a stationary instability for critical values 
of the voltage that match with the Fréedericksz transition threshold 
𝑉𝐹𝑇 =

√

−𝐾3𝜋2∕𝜖𝑎. To figure out the director dynamics close to 
the re-orientational instability, we can consider the approach of a 
weakly nonlinear analysis and the effects of the inhomogeneous field 
as perturbative. Let us introduce the Ansatz 
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where 𝑟′⟂ = (𝑥, 𝑦) is the transverse coordinate and �⃗� (𝑋, 𝑌 ) accounts for 
the small nolinear corrections. Considering the Ansatz (4) in Eq. (2), 
close to the re-orientational instability, 𝑉0 ∼ 𝑉𝐹𝑇 , introducing the 
complex field 𝐴(𝑟, 𝑡) ≡ (𝑋+𝑖𝑌 )∕

√

[(𝑑∕𝜋)2(2𝐾1 −𝐾3) − 3𝜖𝑎𝐸2
𝑧 ]∕4, scaling 

the space and time as 𝑟 = 𝑟′⟂∕
√

2∕(𝐾1 +𝐾2) and 𝑡 = 𝜏∕𝛾, linearized in 
�⃗� (𝑋, 𝑌 ), and imposed the solvability conditions after straightforward 
calculations, we get (the Ginzburg–Landau-like amplitude equation, for 
more details, see Ref. [24,30]) 
𝜕𝜏𝐴 = 𝜇(𝑟)𝐴 − |𝐴|2𝐴 + ∇2𝐴 + 𝛿𝜕𝜂𝜂�̄� + 𝑓 (𝑟)𝑒𝑖𝜃 , (5)

where the amplitude 𝐴 accounts for the projection of the director on 
the plane of the liquid crystal sample, and �̄� is the complex conjugate 
of 𝐴. 𝜕𝜂 = 𝜕𝑥 + 𝑖𝜕𝑦 is the Wirtinger derivative, ∇2 = 𝜕𝜂�̄� stands for the 
Laplacian operator, {𝑟, 𝜃} are the cylindrical coordinates that describe 
the transversal direction of the sample. 𝛿 ≡ (𝐾1 − 𝐾2)∕(𝐾1 + 𝐾2)
accounts for the different elastic constants of the liquid crystal. 𝜇 ≈
𝜇0 + 𝜇1(𝑟) is the bifurcation parameter where 𝜇0 = −𝐾3𝑘2 − 𝜖𝑎𝑉 2

0 ∕𝑑
2

and 𝜇1(𝑟) = 𝜖𝑎2𝛼𝑉0𝐼(𝑟)∕𝑑2. Indeed, the bifurcation parameter is formed 
by a constant 𝜇0 that accounts for the elastic and driven voltage bal-
ance, plus a spatial Gaussian voltage proportional to the light intensity 
𝐼(𝑟) = 𝑒−𝑟2∕2𝜔2 , and the topological forcing 𝑓 (𝑟) ≡ 𝜖𝑎2𝑑𝐸𝑟(𝑟)𝐸𝑧(𝑟)∕𝑧𝜋
is a consequence of the radial component of the electric field inside 
the liquid crystal sample and proportional to spatial variation of the 
light beam 𝑑𝐼(𝑟)∕𝑑𝑟 = −(𝑟∕𝜔)𝑒−𝑟2∕2𝜔2 , the Rayleigh function. Note 
that a similar amplitude equation with complex coefficients has been 
derived for a resonant optical cavity-filled with a nonlinear medium 
and pumping with an orbital angular momentum beam [31].  Eq. (5) 
provides a quantitative and quantitative description of the LCLV system 
close to re-orientational instability, Fréedericksz transition. Far from 
this transmission, Eq. (5) only qualitatively describes the observed 
dynamics. 

Note that the Ginzburg–Landau equation [Eq. (5) with 𝛿 = 0 and 𝑓 =
0] is an equation that is invariant under phase symmetry (𝐴 → 𝐴𝑒𝑖𝜙0 ) 
and coordinate rotation transformations (𝜕𝜂 → 𝑒𝑖𝜙1𝜕𝜂). However, since 
Ginzburg–Landau-like Eq. (5) considers different elastic deformations 
of liquid crystals (𝐾1 ≠ 𝐾2 ≠ 𝐾3), which are determined by the 
director’s orientation, the aforementioned symmetries are not satisfied 
separately. Hence, this model Eq. (5) is not an invariant by a single 
rotation. Instead, Eq. (6) is invariant under simultaneous symmetry 
phase and rotation 𝐴 → 𝐴𝑒𝑖𝜙0  and 𝜕𝜂 → 𝑒𝑖𝜙0𝜕𝜂 [27].

Numerical simulations of the amplitude Eq. (2) for a positive bifur-
cation parameter show vortices similar to those of the Ginzburg–Landau 
equation, the standard vortex [24]. Observe that analytical expressions 
for these vortices are unknown. Likewise, vortices of small amplitude 
and large radius are presented for negative bifurcation parameters due 
to topological forcing, Rayleigh vortex [26]. These last vortices have 
analytical expressions.

3.2. Rayleigh vortex

To study the vortices when the bifurcation parameter is negative 
𝜇(𝑟) < 0, we consider the following scaling of the spatial variable 
𝜌 = 𝑟∕𝜔, where 𝜔 is the beam waist, the amplitude Eq. (5) is rewritten 
as 
0 = 𝜇(𝜌)𝐴 − |𝐴|2𝐴 + 1

𝜔2
∇2𝐴 + 𝛿

𝜔2
𝜕𝜂𝜂�̄� + 𝑓 (𝜌)𝑒𝑖𝜃 . (6)

Considering the limit of wide and weak light beam (𝜔 ≫ 1 and 𝐼(𝑟)
≪ 1), the Thomas–Fermi-like approximation, on Eq. (6), we can neglect 
the spatial derivatives 
0 ≈ 𝜇(𝜌)𝐴 − |𝐴|2𝐴 + 𝑓 (𝜌)𝑒𝑖𝜃 . (7)

Assuming a small amplitude ansatz, we neglected the cubic term on 
Eq. (7), resulting in the solution (Rayleigh vortex) [26] 

𝐴(𝑟) ≈ − 1 𝑓 (𝑟)𝑒𝑖𝜃 ∝
( 𝑟 ) 𝑒−𝑟

2∕2𝜔2𝑒𝑖𝜃 . (8)
3

𝜇0 𝜔
Fig. 2. Numerical bifurcation diagrams of the vortex transition for the amplitude 
Eq. (5) for 𝜇1 = 0.019, 𝛿 = 0.2, 𝑓 (𝑟) = 0.008(𝑟∕𝜔2)𝑒−𝑟2∕2𝜔2 , 𝜔 = 100. (a) Variation of 
the angle of the nullclines 𝛥𝜃 with respect to the horizontal direction as a function of 
the homogeneous bifurcation parameter 𝜇0. The red dots and their respective error bars 
are the error bars come from two sweeps of numerical simulations of the amplitude 
Eq. (5) and also take the standard deviation considering the angles obtained from the 
different arms of the vortex. The dashed curve accounts for the deterministic bifurcation 
curve, corresponding to a square root law. The insets account for the vortices observed 
in 𝜇0 = −0.01 (left) and 𝜇0 = 0.001 (right). (b) The total magnitude of the amplitude 
⟨𝐼⟩ = ∬ |𝐴(𝑥, 𝑦)|2𝑑𝑥𝑑𝑦 as a function of 𝜇0. The red dots and their respective error 
bars are obtained from numerical simulations. The dashed curve stands for the noisy 
bifurcation curve ⟨𝐼⟩ = 𝐶1

√

(𝜇0 − 𝜇𝑐 ) +
√

(𝜇0 − 𝜇𝑐 )2 + 𝜂1, for more details see Section 6 
and formula (11), with 𝐶1 = 8.827, 𝜇𝑐 = 0.9951 and 𝜂1 = 0.00000001 for the fit of (a), 
and 𝐶1 = 1.099, 𝜇𝑐 = 0.9985 and 𝜂1 = 0.5555517 for (b). (c) Rayleigh Vortex: stationary 
solution of Eq. (5) for 𝜇0 = −0.01, (c.i) amplitude field |𝐴|, (c.ii) polarization field 𝛹 , 
(c.iii) phase field of complex amplitude 𝐴𝑟𝑔(𝐴). (d) Standard Vortex: stationary solution 
of Eq. (5) for 𝜇0 = 0.001, (d.i) amplitude field |𝐴|, (d.ii) polarization field 𝛹 , (d.iii) 
phase field of complex amplitude 𝐴𝑟𝑔(𝐴).

This vortex is characterized by growing radially linearly around the 
phase singularity and, far from it, decaying in a Gaussian manner. Due 
to the above property, the vortex (8) is called the Rayleigh vortex. 
Note that this solution is supported by the topological forcing, whose 
shape and size are given by the light intensity profile. Fig.  2c shows 
a Rayleigh vortex obtained numerically from Eq. (5). In the case of a 
resonant optical cavity filled with a nonlinear medium and pumping 
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with an orbital angular momentum beam similar Rayleigh vortex was 
obtained [31]. However, one expects that the dynamics and instabilities 
of this solution are different from those that we observe due to the 
complex coefficients included in the model that describes the nonlinear 
cavity,

3.3. Standard vortex

The Ginzburg–Landau equation at real coefficients in two dimen-
sions, similar to Eq. (5), predicts the emergence of vortex solutions 
when 𝜇 > 0. In the nematic liquid crystal, these vortex solutions are 
usually denominated as a standard vortex. These vortices are charac-
terized by singularity phase points where the amplitude 𝐴 vanishes. 
The phase acquires a spiral twist in space near this singular point due 
to the medium elastic anisotropy [24]. The 𝛿 parameter characterizes 
this anisotropy. The phase torsion allows us to observe these vortices 
in the polarization space as a swastika/svastika-type texture (cf. Fig. 
2d), depending on the elastic constants of the media and the initial 
conditions [24]. Numerical and experimental evidence shows that a 
standard vortex can be induced and localized at the center of a Gaussian 
light beam [24]. These vortex solutions do not have an analytical 
expression for the Eq. (5). Fig.  2d depicts a standard vortex solution.

In contrast to a Rayleigh vortex, a standard vortex has a small core 
with a torsion in the phase near the core. The Rayleigh vortex solution 
has a larger core size proportional to the size of the Gaussian beam 
waist, as indicated in the approximate solution (8). These solutions 
are found in different regions of the 𝜇 parameter, and it is possible to 
characterize their transition as shown in Fig.  2c. 

4. Numerical simulations

The study of the vortex transitions of Eq. (5) from an analytical 
point of view is a thorny task because there are no analytical solutions 
for the standard vortices. Numerical simulations of Eq. (5) are a logical 
approach to understanding this transition. Numerical simulations of 
Eq. (5) were implemented using a triangular finite element code with 
adaptive spatial and temporal steps based on the second-order im-
plicit backward method was used, and a simulation box of dimensions 
501 × 501 was considered.

In numerical simulations of the amplitude Eq. (5) for 𝜇 > 0, a 
standard vortex is observed at the center of the Gaussian. The right 
inset of Figs.  2 shows a standard vortex. By decreasing 𝜇0 below the re-
orientation instability, it is observed that the standard vortices must be 
replaced by vortices of minimum amplitude and with a nucleus of the 
order of the waist of the light beam, the Rayleigh vortex. Likewise, these 
vortices are characterized by having a Maltese cross in the polarization 
field 𝜓 = 𝑅𝑒(𝐴)𝐼𝑚(𝐴) (cf. Fig.  2). One can characterize this transition 
by measuring the orientation of the nullclines 𝛥𝜃 for the horizontal 
orientation. Nullclines correspond when the real or imaginary part of 
the amplitude is zero. Fig.  2a summarizes the variation of 𝛥𝜃 as a 
function of 𝜇0. Note that 𝛥𝜃 follows a square root law. Likewise, when 
the total intensity of the amplitude ⟨𝐼⟩ = ∬ |𝐴(𝑥, 𝑦)|2𝑑𝑥𝑑𝑦 is measured, 
the system presents a subcritical transition as illustrated in Fig.  2b.

To generate the bifurcation diagrams in Fig.  2, an increasing and 
decreasing sweep of the 𝜇0 parameter was performed, which accounts 
for the bifurcation point of the system. This was done starting with 
a zero solution initial condition and recording the solutions at each 
increase/decrease of 𝜇0. Thereafter, an average was estimated with 
its respective error bar. To calculate the angular torsion, we perform 
image processing of the polarization field to detect and interpolate the 
nullclines of each vortex. We then compare the inclination of these 
nullclines with respect to the Cartesian axis in their central and external 
zones, which are delimited by the maximum point of the derivative of 
the interpolated nullcline. This accounts for the maximum torsion of 
this. Subsequently, the mean value of the difference between the incli-
nation angles of each zone is calculated, resulting in the angle of torsion 
4

Fig. 3. Total intensity ⟨𝐼out⟩ as a function of the applied voltage 𝑉0 to the LCLV. The 
green circles show the measured light intensity. The snapshots account for the vortices 
observed in the system with the applied voltage indicated by the arrows. The blue 
dashed and yellow curve account for a supercritical perfect and imperfect bifurcation 
obtained using the expression ⟨𝐼out⟩ = 𝐶2

√

(𝑉0 − 𝑉FT) +
√

(𝑉0 − 𝑉FT)2 + 𝜂2 + 𝐼ref, for 
more details see Section 6 and formula (11), with the common fitting parameters 
𝐶2 = 19.937 [arb.units/√𝑉rms], 𝑉FT = 12.8379 𝑉rms, and 𝐼ref = 3.4231 [arb.units], and 
using 𝜂2 = 0 [𝑉rms]2 and 𝜂2 = 0.02701 [𝑉rms]2, respectively.

between the nullclines of each vortex and its different realizations 
during the sweep of 𝜇0, with the associated error bar.

Hence, the theoretical model Eq. (5) predicts that standard vortices 
must be replaced by vortices of minimal amplitude, with a core of the 
order of the waist of the light beam and cross structures, Rayleigh vor-
tex. However, experimentally, this transition is challenging to discern, 
as light serves a dual function: on the one hand, it induces the vortex, 
and on the other, it illuminates the system to facilitate observation.

5. Experimental vortex transition

In experimental settings, when attempting to observe this vortex 
below the orientational transition, the system’s darkness precludes the 
observation of the Rayleigh vortex. Fig.  3 illustrates the transition 
observed near the orientational transition. This chart shows the total 
intensity of the light as a function of the applied voltage to the LCLV. 
Note that optical valves exhibit oscillatory behavior for transmitting 
light when the applied voltage is changed [32,33]. Away from the 
orientational transition, the transmitted intensity declines, resulting in 
a reduction in the voltage induced by the light. This allows for the 
observation of the transition between standard and Rayleigh vortices. 
Thus, as the applied voltage increases, the vortex transformation is 
observed. It takes the shape of a cross, and its width is of the order of 
the illuminated area (see the insets of Figs.  1 and 3). For large voltages, 
we can see how a standard vortex emerges from the center of Rayleigh 
vortex (see the lowest inset of Fig.  3). All experimental observations in 
this setup were conducted at a temperature of 21◦ C.

6. Characterization of stochastic supercritical transition

A supercritical bifurcation is characterized by a continuous transi-
tion between two equilibria by moving the bifurcation parameter [34]. 
This type of bifurcation, in general, when described by an order pa-
rameter, is typically characterized by having a fixed value up to the 
bifurcation point, at which it begins to grow as the square root of 
the bifurcation parameter. The above bifurcation becomes imperfect 
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Fig. 4. Vortex transition in a nematic liquid crystal cell (NLCC) with homeotropic an-
choring under the effect of a magnetic ring and oscillating electric field. (a) Illustration 
of the main elements of the experimental system. (b) Schematic representation of the 
experimental setup. NLCC is under the effect of a magnet ring (M) and an oscillatory 
electric field generated by a synodal-shape voltage 𝑉 = 𝑉𝑎 sin(𝜔𝑡), where 𝑉𝑎 and 𝜔 are 
the amplitude and angular frequency of the applied voltage. 𝑃 and 𝐴 crossed and linear 
polarizers. A CMOS camera monitors the experiment. The sample is illuminated by a 
white light source (WLS).

when one considers the inherent fluctuations of macroscopic physical 
systems [35]. That is, below the bifurcation point, due to fluctuations, 
precursors of the equilibrium that is about to emerge are observed. The 
following amplitude equation describes a prototype model of this type 
of bifurcation 
𝜕𝑡𝐶 = 𝜖𝐶 − |𝐶|2𝐶 +

√

𝜅𝜁 (𝑡), (9)

where 𝐶(𝑡) is a complex order parameter that describe the supercritical 
bifurcation, 𝜖 is the bifurcation parameter, 𝜅 is the noise intensity level 
and 𝜁 (𝑡) is a white noise, characterized by zero mean value ⟨𝜁⟩ = 0
and correlation ⟨𝜁 (𝑡)𝜁 (𝑡′)⟩ = 𝛿(𝑡 − 𝑡′). In the case of the deterministic 
system, 𝜅 = 0, the module of the stable equilibrium is zero 𝐶 = 0
(𝐶 =

√

𝜖), when the bifurcation parameter is negative 𝜖 ≤ 0 (positive 
𝜖 > 0). From the Langevin Eq. (9), one can infer the Fokker–Planck 
equation when considering stochastic fluctuations. From this equation, 
one can find the stationary probability for the magnitude of amplitude, 
which satisfies [35] 
𝑃𝑠(|𝐶|) = 𝑄(𝜖, 𝜅)|𝐶|𝑒[𝜖|𝐶|

2−|𝐶|4∕2]∕𝜅 , (10)

where 𝑄(𝜖, 𝜅) = 2
√

2𝑒−𝜖2∕2𝜅∕𝑒𝑟𝑓𝑐(−𝜖∕
√

2𝜅)
√

𝜋𝜅 is the normalization 
factor. The expectation value ⟨|𝐶𝑚𝑎𝑥|⟩ of this distribution satisfies the 
simple expression [35] 

⟨|𝐶𝑚𝑎𝑥|⟩ =

√

𝜖 +
√

𝜖2 + 𝜅
2

, (11)

This statistic is very close to the mean value. However, the latter 
has a complex analytical expression. The formula (11) recovers the 
deterministic result in the weak noise limit. We have used the previous 
expression (11) to characterize experimentally the bifurcation point 
and the noise level intensity (cf. Figs.  2 and 3). It is worth noting that 
experimentally, the expression (11) allows us to determine quantita-
tively the values of the transition points for the control parameters 𝜖 =
0, and quantify the total noise level intensity 𝜅 present in the system. 
Determining the bifurcation point in experimental systems is a complex 
problem when the inherent fluctuations are not negligible [35].

7. Liquid crystal cell under the effect of a magnetic ring

In order to examine the transition from a Rayleigh vortex to a 
standard vortex, we have conducted a further experiment based on a 
5

Fig. 5. Vortex transition characterization as a function of the voltage in a nematic 
liquid crystal cell with homeotropic anchoring under the effect of a magnetic ring 
and oscillating electric field. (a) Bifurcation diagram for total intensity ⟨𝐼⟩ as a 
function of applied voltage 𝑉0. The red circles are obtained experimentally. The dashed 
curve is obtained using the expression ⟨𝐼out⟩ = 𝐶2

√

(𝑉0 − 𝑉FT) +
√

(𝑉0 − 𝑉FT)2 + 𝜂2, for 
more details see Section 6 and formula (11), with the common fitting parameters 
𝐶2 = 182.2 [arb.units/√𝑉rms], 𝑉FT = 6.14 𝑉rms, 𝜂2 = 0.0003 [𝑉rms]2. (b) Variation of 
the angle of the nullclines 𝛥𝜃 with respect to the horizontal direction as a function 
of the applied voltage 𝑉0. The red circles and their respective error bars are obtained 
experimentally. The insets account for the vortices observed in the respective voltage 
emphasized with arrows. The dashed curve accounts for a supercritical transition using 
the expression ⟨𝐼out⟩ = 𝐶2

√

(𝑉0 − 𝑉FT) +
√

(𝑉0 − 𝑉FT)2 + 𝜂2, with the common fitting 
parameters 𝐶2 = 179.07796 [◦/√𝑉rms], 𝑉FT = 6.5602 𝑉rms, 𝜂2 = 0.000004 [𝑉rms]2 for (b).

NLCC , with the addition of a magnetic ring and an oscillating field. 
Fig.  4 shows a schematic representation of the experimental setup. 
We consider a cell composed of two thin glass layers with transparent 
electrodes included (indium tin oxide with a thickness of 0.08 μm) and 
separated by a thickness of 𝑑 = 75 μm, which are treated so that their 
inner walls have homogeneous homeotropic anchoring. By capillarity, 
the cell is filled with a nematic liquid crystal LC-BYVA-01 (INSTEC) 
with negative dielectric anisotropy 𝜖𝑎 = −4.8𝜖0, rotation viscosity 
𝛾 = 204 mPa⋅s, splay and bend elastic constants 𝐾1 = 17.65 pN and 
𝐾3 = 21.39 pN, respectively, and negative magnetic anisotropy 𝜒𝑎 (not 
measured yet). A neodymium magnetic ring of 3200 G on the surface 
with a rectangular cross-section, outer radius 𝑅out = 7 mm, inner radius 
𝑅in = 2 mm, and thickness ℎ = 5 mm is placed on the top of NLCC. 
The sample is placed in the microscope (Olympus BX51), sandwiched 
between two crossed linear polarizers and illuminated with a white 
light (halogen lamp). A sinusoidal voltage 𝑉 (𝑡) of frequency 𝑓0 = 1 kHz 
= 𝜔∕2𝜋 and amplitude 𝑉𝑎 is applied to the NLCC, where 𝑉𝑎 is above 
the critical reorientation voltage, Fréedericksz voltage, 𝑉𝐹𝑇 = 6.05 Vpp, 
ranging between 5 and 7 Vpp. To characterize the Fréedericksz voltage, 
we have studied the total intensity of the transmitted light as a function 
of the applied voltage 𝑉𝑎, which shows a supercritical transition (see 
Fig.  5a). A complementary metal–oxide–semiconductor (CMOS) camera 
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monitors the NLCC temporal evolution, allowing us to observe the 
central zone of the magnetic ring. All experimental studies in this setup 
were conducted at a temperature of 18◦ C.

This experimental system is described by the same amplitude Eq. (5)
[21], but due to the magnet ring, the bifurcation parameter is corrected 
by a bell-shaped function but with power law decay. In addition, the 
forcing is also modified by a Rayleigh function with power law decay. 
We observe a Rayleigh vortex for voltages lower than the molecular 
reorientation, 𝑉 < 𝑉𝐹𝑇 , thanks to the microscope illumination system. 
Fig.  5b shows the vortices observed in the experiment. As the reorien-
tation instability is approached, it is observed that the core structure of 
the vortex begins to exhibit slight rotation at its center. As the voltage 
increases, the core of the vortex continues to rotate until it reaches a 
state of saturation, at which point it ceases to rotate. This phenomenon 
is illustrated in Fig.  5. Note that from this chart, we show again that 
the bifurcation is supercritical in nature. Since in this last experiment, 
the light is used only to illuminate the experiment, it allows better 
detection of the vortices and their respective transitions (compare Figs. 
3 and 5).

The theoretical description for the system under magnetic forcing 
is analogous to the LCLV system  (for more details, see Ref. [21,36]), 
from the dynamics of the reorientation of 𝑛 described by Eq. (2) 
adding an external magnetic field �⃗�. The NLCC is also considered to 
have a homeotropic anchoring and negative electrical and magnetic 
anisotropy. For a cylindrical magnet, the magnetic field can be modeled 
in a first approximation by 

�⃗�(𝑟, 𝑧) = 𝐵𝑟 �̂� + 𝐵𝑧�̂� = 𝑚

[

3𝑧𝑟�̂� + (3𝑧2 − 𝜎)�̂�
(𝑟2 + 𝑧2)5∕2

−
𝑙20 �̂�

(𝑟2 + 𝑧2)3∕2

]

+ 𝑏0�̂�, (12)

where 𝜎 > 0, 𝑙0, and 𝑏0 are phenomenological dimensional parameters 
that account for the geometric features of the magnet ring, 𝑚 is a 
constant that has a dimension of permeability per magnetic moment, 
and {𝑟, 𝜃, 𝑧} are the cylindrical coordinates. The origin of the coordinate 
is fixed at the center of the magnetic ring.

By a similar ansatz to (4), close to the reorientation transition, 
the same Ginzburg–Landau-like amplitude Eq. (5) can be developed, 
where the bifurcation parameters and the topological forcing must 
be modified as a function of the external magnetic field [21,36], 
in the following manner 𝜇(𝑟) = −𝐾3(𝜋∕𝑑)2 − 𝜖𝑎𝐸2

𝑧 + 𝜒𝑎𝐵2
𝑟 (𝑟) and 

𝑓 (𝑟) ≡ −4𝜒𝑎𝑑𝐵𝑟(𝑟)𝐵𝑧(𝑟)∕𝜋𝑎1∕2 where 𝜒𝑎 is the anisotropic magnetic 
permeability and 𝑎 = [(𝜋∕𝑑)2(2𝐾1 −𝐾3) − 3𝜖𝑎𝐸2

𝑧 − 3𝜒𝑎𝐵2
𝑧 ]∕4.

8. Conclusion

We have characterized the formation and transition of different 
vortex-type solutions in confined and topologically forced liquid crystal 
cells, which have been used to generate optical vortices. The existence 
of a Rayleigh vortex centered on a Gaussian beam profile implies 
that optical vortices are always located at the center of a light beam, 
which facilitates the generation of optical vortices using light valves 
or magnetic rings in liquid crystal cells. Our theoretical model, valid 
close to the reorientation transition, shows qualitative agreement with 
experimental observations. In addition, the ability to modify the shape 
of optical vortices provides versatility in the manipulation and genera-
tion of optical vortices, opening up new perspectives in image analysis, 
optical twister, and communications.

The use of liquid crystal light valves, theoretically and experimen-
tally, opens new perspectives on using different light intensity profiles 
to generate, transition, and stabilize new vortex-like solutions resulting 
from topological forcing.
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