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Abstract Nonreciprocal coupling can alter the trans-
port properties of material media, producing strik-
ing phenomena such as unidirectional amplification
of waves, boundary modes, or self-assembled pattern
formation. It is responsible for nonlinear convective
instabilities in nonlinear systems that drive topologi-
cal dissipative solitons in a single direction, produc-
ing a lossless information transmission. Considering
fluctuations, which are intrinsic to every macroscopic
dynamical system, noise-sustained structures emerge
permanently in time. Here, we study arrays of nonre-
ciprocally coupled bistable systems exhibiting noise-
sustained topological phase wall (or soliton) dynam-
ics. The bifurcations between different steady states
are analytically addressed, and the properties of the
noise-sustained states are unveiled as a function of the
reciprocal and nonreciprocal coupling parameters. Fur-
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thermore, we study critical points where the structures’
characteristic size diverges with different power law
exponents. Our numerical results agree with the theo-
retical findings.

Introduction

Natural systems in out-of-equilibrium conditions, sub-
jected to both dissipation and injection of energy, can
display a rich dynamical behavior. Examples are the
synchronization phenomenon of coupled oscillators
and chaotic systems [1], front propagation in pop-
ulation dynamics [2,3], liquid crystal devices [4,5],
or complex fluid flows [6,7], and the pattern forma-
tion, sometimes spatiotemporally complex, in chemi-
cal reactions [8,9], fluid dynamics [10], or active mat-
ter [11,12]. Discrete nonlinear coupled systems com-
pose a framework that has been successful for the
description of dislocations in crystals [13], arrays of
coupled Josephson junctions [14], excitable semicon-
ductor lasers [15,16], or coupled waveguide dynamics
[17], tomention a few. Sometimes, the discrete descrip-
tion even captures some details absent in continu-
ous approximations of the dynamics [18]. Microscopic
reversibility of time renders any coupled mechanical
system to be reciprocal, a result known as theMaxwell-
Betti reciprocity theorem [19–21]. However, the injec-
tion and dissipation of energywisely applied could lead
to a nonreciprocal response of coupled systems in the
dynamic regime [21–23], and not only statically [20].
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The net effect can be the rupture of the space-reflection
symmetry along an engineered direction [21,23], caus-
ing the system to have interesting responses such as the
uni-directional amplification of waves [21], boundary
states [12], directed thermal flow [24], self-assembled
pattern formation [25], giant boundary layers [26], or
directed light propagation [27]. Interestingly, complex
natural systems such as vegetation in dry ecosystems
have been modeled employing nonreciprocal interac-
tions, which induces permanent stripe pattern dislo-
cations [28] and coexisting stripe oblique orientation
domains [29]. All these systems are subjected to noise
and generally are nonlinear; thus, they are prone to
the phenomenon of noise-sustained structures [30].
This phenomenon, which creates and sustains non-
linear structures such as phase walls, defects, or pat-
terns, occurs when the system has a spatial region
where noise has enough energy to drive these struc-
tures [31]. The mechanism is as follows: due to the
boundary conditions, a boundary layer is established
in the system, and perturbations grow easily inside it.
Then, noise can create these structures in the boundary
layer, where they are usually energetically cheaper to
make than in the system bulk. Finally, for this dynamic
to be persistent, advective flow (which can be effec-
tively induced by nonreciprocal interactions) pushes
the created structures into the bulk and then out of the
system, at the same time, new ones are created at the
boundary layer, forming a permanent dynamic of noise-
sustained structures [30]. This mechanism propagates
complex nonlinear structures across the whole system,
such as hydrodynamic vortices [6,32], turbulent flow
[30], nematic liquid crystal patterns [33,34], and even
topological defects [35]. Noise cannot only sustain new
dynamic regimes, but it can alter the existing ones in
deterministic systems [33], and change the bifurcation
curves of the underlying steady states [36].

In this work, we analyze the dynamics of nonlinear
systems subjected to nonreciprocal coupling in chains
and lattices. We also analyze how the bifurcation dia-
gram of a damped nonreciprocal Frenkel-Kontorova
prototype model is modified when noise is included.
We test the robustness of the previously predicted self-
assembled patterns and nonlinear waves of Ref. [25].
These structures are formed by topological dissipative
solitons that carry information in a lossless way [37].
The pattern of equispaced topological dissipative soli-
tons of alternating signs remains stable for moderate
nonreciprocity levels with a threshold that depends on

the noise intensity. In addition, the absolute-convective
instability exhibited in this discrete system gives rise
to noise-sustained domains with a rich spatiotemporal
dynamic.

Theoretical description

Physical systems that could display discrete nonlin-
ear dynamics of nonreciprocally coupled elements
are not usual, but several experimental setups have
recently been developed due to their striking properties.
Mechanical systems have been constructed employ-
ing robotic metamaterial chains [21,37]. Similarly, a
chain of nonlinear damped oscillators has been studied
theoretically under the aforementioned nonreciprocal
coupling using the Frenkel-Kontorova model [14]. The
reciprocal Frenkel-Kontorova model was initially pro-
posed to describe a chain of classical particles with
nearest-neighbor interactions, subject to a periodic on-
site substrate potential. Later, it described various phys-
ical phenomena, including dislocations, dynamics of
adsorbed layers on surfaces, domain walls in magnet-
ically ordered structures, and even DNA chains. This
chain can be extended laterally with reciprocal or non-
reciprocal couplers to form lattices, as illustrated in
Fig. 1a. Apart frommechanical systems, nonreciprocal
couplers can be constructed for the dynamics of current
or voltage in electrical circuits. There, nonlinear cir-
cuits showing bistability or chaos could be connected
through operational amplifiers in chains or other arrays
to form both unidirectional or non-reciprocal coupled
circuits [38–40]. An example is illustrated in Fig. 1b.
On the other hand, nonreciprocity in nonlinear optical
devices could be induced by translated optical feedback
[27,41,42], as shown in Fig. 1c.

We start by assuming a discrete chain of parti-
cles subjected to a periodic (or bistable) potential and
nearest neighbor linear elastic coupling, the Frenkel-
Kontorova model [14]. Moreover, we allow the cou-
pling to be nonreciprocal. A LagrangianL can describe
the system, reading

L=
∑

i

[
θ̇2i

2
−ω2 cos θi − D − α

2
(θi+1− θi )

2

]
eμt�i ,

where � ≡ (D − α)/(D + α). ω2 characterizes the
in-site potential. D corresponds to the reciprocal elas-
tic constant and α the nonreciprocal part of it. μ is
the viscous damping coefficient modeling dissipation.
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Fig. 1 Discrete systems
with nonreciprocal
coupling. a Membrane
model of masses and their
height zi j , one of the
directions of the grid is
coupled with a
nonreciprocal material
(indicated by arrows). b
Electrical circuits, the
voltage of each capacitor
(VCi ) can be
nonreciprocally coupled
employing operational
amplifiers (OA). The
feedback loop array
connected to each OA gives
the specific nonreciprocal
coupling, and the nonlinear
response is given by the
circuit connected to the
capacitor. c Optical
example. A liquid crystal
light valve (LCLV) reflects
incoming light that is
externally modulated by a
spatial light modulator
(SLM); the reflection is
translated and injected into
the device through a
photo-conductive plate. The
translation results in
nonreciprocal coupling
between the cells (Ii j )
induced by the SLM, for
more details see Ref. [27]

Following the least-action principle and imposing the
overdamped regime [25], the equation of motion for a
nonreciprocally coupled chain is

θ̇i = ω2 sin θi+(D−α)(θi+1−θi )−(D+α)(θi−θi−1).

(1)

Note that θ is measured such that the equilibria θ = 0
and θ = ±π are unstable and stable, respectively. The
termω2 sin θi could be replaced with any nonlinear on-
site force exhibiting bistability. Dynamics of equation
(1) have been described when imposing a fixed bound-
ary condition θ0 = 0 [25]. This restriction favors the
formation of nonlinearwaves between stable and unsta-
ble states, FKPP fronts [43], with different velocities

depending on their propagation direction. Nonrecip-
rocal coupling could induce the system (1) to have a
kink and anti-kink (topological dissipative solitons of
opposite charge) emission either from a former FKPP
front or from the upstream boundary (forming a self-
assembled pattern) depending on the nonreciprocity
level α deterministically [25].

We extend the chain transversally while still analyz-
ing a scalar field, forming a lattice. Additionally, we
include the effect of fluctuations in a highly dissipa-
tive environment. The nonreciprocally coupled lattice
obeys

θ̇i j = ω2 sin θi j + (D − α)(θi+1 j − θi j )

−(D + α)(θi j − θi−1 j ) + D⊥(θi j+1 − θi j )

−D⊥(θi j − θi j−1) + √
�ξi j (t), (2)
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where θi j accounts for the dynamics of the i j-element
of the lattice, D⊥ represents a transversal (to the direc-
tion with nonreciprocal coupling) reciprocal coupling
in the bistable chain, for simplicity, we consider it con-
stant (D⊥ = D), but it could be a nonlinear function
of θi j , as well, depending on the underlying physics.
� measures the intensity level of the randomly gen-
erated fluctuations ξi j (t) (in time and in sites), which
is characterized by white noise statistics, that is, the
fluctuations are characterized by a Gaussian stochastic
process with a zero mean value and without correla-
tion. The dynamics of Eq. (2) are similar to Eq. (1) and
will be dominated by moving phase walls. We remark
that one could use a nondimensional time τ = ω2t and
reduce the number of parameters of system (2). Thus,
we keep ω = 1 throughout the presented numerical
simulations.

To study noise-sustained structures in the system,we
implement a boundary condition that favors the forma-
tion of boundary layers. Then, we impose θ0 j = 0
for all j (the unstable equilibrium). The other end
of the lattice has free boundary conditions such that
θ(N+1) j = θN j for all j (where N is the length of
the system in the i direction), but the results hold for
other choices. In the transversal direction to nonrecip-
rocal coupling, we impose periodic boundary condi-
tions θi(L+1) = θi0 for all i (where L is the length of
the system in the j direction).

Results

Numerical observations

To analyze the dynamics of Eq. (2), it is conve-
nient to define a macroscopic parameter quantifying
the presence of interfaces connecting the θ = ±π

equilibria, often called phase walls, domain walls, or
kinks, which can not be destroyed by smooth trans-
formations of the variable; thus, they are topological,
sometimes called topological dissipative solitons due
to the soliton-like profile of their spatial derivative (
all these terms are used interchangeably throughout
the text in what follows). A possible choice corre-
sponds to the parameter 
(t) = π2 − 1

N

∑
i j θ

2
i j (t).

A homogeneous solution with θi j = π or θi j = −π

gives a value 
 = 0. An interface necessary crosses
the zero, so its presence increases the 
 value. It is
not hard to convince oneself that for a 1-dimensional

array, 
 ∝ (total number of interfaces), and that in
a 2-dimensional lattice 
 ∝ (total interface length),
given that the interfaces are identical to each other,
which is granted in our system due to homogeneity of
space (the equation is independent of (i, j) explicitly).
In the presence of nonreciprocal interactions in the i
direction, in steady state operation, it is convenient to
define 
 as a function of i instead of time, such that

(i) = (1/T )

∫ T
0

[
π2 − ∑

j θ
2
i j (t)

]
dt .

Numerical simulations of model Eq. (2) display the
behaviors summarized in Fig. 2. In the absence of non-
reciprocity, α = 0, domain wall dynamics is observed,
where a coarsening law for the parameter
(t) is found,
with a characteristic exponent of −1/2 (
 ∼ t−1/2)
computed after the initial transient and considering the
asymptotically surviving phase walls. This exponent is
explained by phase ordering kinetics; see Appendix
B for details. If D � ω2 and αc > α > αp, we
are found in a region where a self-assembled pattern
of phase walls (or kinks) with alternating topological
charge emerges; αp corresponds to the onset of the pat-
tern state, and αc is the onset for noise sustained struc-
tures. In this region, either measuring 
(t) or 
(i)
gives a constant value due to the periodic behavior of
the system. Finally, one has the α > αc region, where
the above-mentioned pattern (or the homogeneous state
if D � ω2) loses its stability and gives rise to a perma-
nent domain wall dynamical behaviors; Interestingly,
a coarsening-like law is observed for 
(i), with the
same exponent −1/2. One can readily see that in the
α > αc case, a boundary layer is formed, which size
we call Nc. The coarsening law for 
(i) is valid only
for i > Nc, because for i < Nc the system is either
on a homogeneous state (D � ω2) or in the pattern
state (D � ω2). The boundary layer size depends on
the coupling parameters α and D, and also on the noise
intensity level � which is responsible for destabilizing
the pattern (or homogeneous state).

Despite the complexity arising fromcomplex-shaped
walls, one numerically obtains that their total perime-
ter obeys a simple law for its evolution in time. For
enough nonreciprocity, this behavior is translated to
space. Intuitively, this can be explained by looking at
the continuum limit of the model, where the nonrecip-
rocal coupling term transforms into a linear advection
term; thus, phase walls drift with constant velocity. At
the same time, they relax according to their interaction
laws.
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Fig. 2 Dynamics of the nonreciprocally coupled Frenkel-
Kontorova lattice. a Case α = 0. The left panel shows a snap-
shot of the dynamics in the absence of nonreciprocity; the right
panel depicts how the phase wall total perimeter (∝ 
(t))
obeys a coarsening law in time (
(t) ∝ tn) with exponent
n = −0.5. The inset shows the graph in logarithmic scale.bCase
αp < α < αc, where self-assembled patterns can be observed
despite the existence of fluctuations. A snapshot is shown in the
left panel and the behavior of the macroscopic parameter 
(i) is
given in the right panel. The white arrow indicates the direction

of the propagation of the pattern, with velocity v. c Case α > αc.
The top panel shows snapshots of the dynamic (t1 < t2 < t3),
where a boundary layer of size Nc exhibiting the patterned state
is followed by intricate permanent advected phase walls. The
bottom panel shows the coarsening law of the 
(i) variable,
which shows coarsening dynamics (
(i) ∝ in) with exponent
n = −0.5. The inset shows the graph in logarithmic scale. The
white arrows indicate the propagation direction of the pattern and
the phase walls with velocity v. All simulations where performed
with parameters ω = 1, D = 0.3, and

√
� = 0.1

In the case α �= 0, the equation exhibits a clear
preference for the i direction, and modulations in j
are perturbations. For simplicity, as the main dynam-
ics are longitudinal, we use equation (2) in the case
θ j±1 = θ j (planar solutions) for computational effi-
ciency and focus on domain wall dynamics, as they
mediate the behavior of the system. The phase walls’
dynamical regimes are depicted in Fig. 3 as a func-
tion of the coupling parameters, where we observe
rich dynamics converging to homogeneous states, pat-
terns, or permanent phase wall dynamics with differ-
ent boundary layers. We can recognize four different
behaviors for the system dynamics, corresponding to

Regions I, II, III, and IV of the phase diagram in Fig. 3.
Region I corresponds to the system achieving a homo-
geneous state θi = π or θi = −π , due to the bound-
ary conditions, a small boundary layer is observed. In
Region II, it is observed that from a small boundary
layer, phase walls are permanently created, and one
observes a steady state with a nonuniform distribution
of them. In Region III, the boundary layer extends and
takes a big portion of space; the boundary layer is sim-
ilar to a pattern that becomes unstable at the mean dis-
tance Nc, and for i > Nc, the permanent domain wall
dynamic is recovered. Finally, in Region IV, one can
observe the self-assembled pattern as the steady state.
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Fig. 3 Phase diagram of
Eq. (2) for planar solutions
and their typical behavior
depending on the coupling
parameters D and α. a The
phase diagram of Eq. (2)
obtained numerically. Four
regions could be
differentiated by analyzing
the domain walls’ number
fluctuations and the
boundary layer size. The
dashed lines correspond to
transition curves obtained in
the absence of noise. b
Panels illustrate the typical
behavior of each region.
Region I corresponds to the
homogeneous, stable state;
one observes no domain
walls and a thin boundary
layer (the shadowed region
on the left flank). Region II
shows permanent domain
wall dynamics (whose
number fluctuates) with a
thin boundary layer. In
Region III, the boundary
layer enlarges drastically up
to Nc, where the permanent
domain wall dynamics
(whose number fluctuates)
emerge. Finally, in
Region IV, stable
self-assembled patterns can
be observed; the boundary
layer is thin, and the number
of phase walls is constant.
All simulations have
parameters ω = 1 and√

� = 0.1

To understand how these different behaviors are dis-
tributed in the parameter space analytically, an analy-
sis of the FKPP front dynamics is performed, and the
boundaries of the phase diagram are obtained approxi-
mately. A valuable tool for this corresponds to the cal-
culated mean velocity of FKPP fronts, v(α, D), pre-
sented in [25,44]. In the deterministic case � = 0,
it is found that depending on the parameters, the the
shape of FKPP front as a function the space can be
monotonous or nonmonotonous, and each of its forms
can suffer an absolute convective instability. Non-
monotonous fronts arise due to a modulational insta-
bility of the monotonous front solution. In the case of
a noisy system, � �= 0, one would assume that all
FKPP fronts are destroyed due to their fragility near

the unstable equilibrium θ = 0, and thus become irrel-
evant; however, their properties leave an imprint on the
system behavior, as seen in the next section.

Analytical predictions

Planar FKPP front solutions of Eq. (2) in the determin-
istic limit� = 0 can be analyzed with the ansatz for the
front tail θi = ε exp

[√−1(ki − �t)
]
, where k and �

are the wavenumber and angular frequency (allowed to
be complex [43]), obtaining the linear growth relation

−√−1�(k) = 1−2D+2D cos(k)−2α
√−1 sin(k).

(3)
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Then, we can apply the self-consistency equations for
the existence of FKPP fronts propagating with veloc-
ity v and wavenumber kc [43], reading d�/dk|kc = 0
and v = Im �/Im kc. When using the boundary con-
dition θ0 = 0, analyzing solutions with Im kc < 0 is
especially interesting, as these fronts could undergo an
absolute-convective instability [45,46]. This instability
occurs at the condition v(α, D, kc) = 0, which gives
the light purple (light) and yellow (lightest) dashed
curves in the phase diagram of Fig. 3. The dashed
light purple (light) curve corresponds to the absolute-
convective threshold for monotonous (Re kc = 0)
FKPP fronts and has the analytical formula D =
ω2/4 + α2/ω2. On the other hand, the dashed yel-
low (lightest) curve is the absolute-convective thresh-
old for non-monotonous (Re kc �= 0) FKPP fronts and
corresponds to the curve D = ω2/2. One can clearly
observe that fluctuations affect the transition curves;
this is due to the fragility of the FKPP front that forms
close to the boundary θ0 = 0. As a consequence of fluc-
tuations, Region II supports noise-sustained structures
[30], from the upstreamboundary, θ0 = 0 perturbations
grow and are advected due to the state θ = 0 being
convectively unstable. A similar behavior is observed
in Region III, where a spatially periodic boundary layer
gives rise to the noise-sustained structures. Fluctuations
modify the landscape in the (D, α) parameter space
compared to the deterministic case seen in Fig. 2 of Ref.
[25]. In this reference, for � = 0, Region IV extends
over Region III, Region II shows θ = 0 as the homo-
geneous steady state, and the transition curves match
exactly with the predictions given.We reproduce this in
Fig. 4a considering a small value of noise level intensity√

� = 10−13.
The extent to which the noise term affects the phase

diagram depends on its intensity level �. A less intense
noise will be less capable of creating phase walls
in Region II, so the average distance between them
increases. Likewise, a less intense noise has a weaker
effect on the pattern of self-ensembled phase walls.
Indeed, Region III would be reduced as the boundary
layer size Nc would increase and eventually reach the
system size. This enlargement of the boundary layer
size emerges because the perturbation does not have
enough time to disarm the pattern, in particular, bound-
ary layer size behaves as Nc ∼ − log�, similar to
the case of giant boundary layers in Ref. [26]. Fig. 4b
illustrates the boundary layer size as a function of the
coupling parameters D and α. Likewise, we show that

the boundary layer size scales with log� in Regions
II and III. The effect of the noise on the transition
curves is depicted in Fig. 4a, where one can observe
that the convective instability curve and the transition
to self-ensemble of phase walls are robust. However,
the domain of the self-ensemble shrinks as the region
for incoherent emission of defects enlarges. Neverthe-
less, one can still observe the controlled emission of the
phase walls for high noise values; this is due to their
nonlinear origin as a limit cycle solution, as explained
below.

We note that the curve separating Regions I and
IV, the dark purple (dark) dashed curve in Fig. 3, is
not predicted with the theory of FKPP front propa-
gation. Here, we report its origin. To understand this
curve in a tractable manner, let us consider the limit
of a few pendulums, with two of them being enough
(see Appendix A for details). The equations for the
two pendulums (θ1, θ2) will have multiple equilibria
representing their rest position. One trivial solution is
(θ1, θ2) = (0, 0), which is always unstable; generally,
four other solutions exist: two of them represent sym-
metric stable configurations (θ1, θ2) �= (0, 0), and the
other two are unstable ones. The purple dashed curve
of the phase diagram in Fig. 3 corresponds to a saddle-
node on invariant curve (SNIC) bifurcation [47,48];
the four equilibriamentioned above annihilate pairwise
in a saddle-node bifurcation at α = αp(D), however,
the heteroclinic orbits close in a loop, forming a stable
limit cycle for α > αp(D). The curve is approximated
implicitly by the equations (see AppendixA for details)

θ =
2D

[
θ − sin θ

D+αp

]
− sin

(
θ − sin θ

D+αp

)

D − αp
,

1 = 1

D − αp

(
1 − cos θ

D + αp

)

(
2D − cos(θ − sin θ

D + αp
)

)
. (4)

Surprisingly, the curve predicted with a two-pendulum
theory fits perfectly the numerical results. Note that as
this bifurcation gives birth to a limit cycle, it explains
the robustness of the pattern of self-assembled struc-
tures against fluctuations.

Finally, we analyze the scaling law for the total
perimeter of domain walls in the system. Clearly, the
dynamic in the bulk is dominated by phase wall inter-
actions. It is known that in Eq. (1) bistable fronts (or
phase walls) are weakly interactive, as a consequence
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Fig. 4 Effect of noise in
the dynamical system
Eq. (2). Panel a shows the
phase diagram for different
values of the noise intensity
level �. For vanishing noise,
one approaches the curves
predicted by the
deterministic model. For
increasing noise, the regime
of self-ensembled phase
walls has a smaller domain
in parameter space, while
the one of incoherent
emission of the topological
defects enlarges. Panel b
depicts the behavior of Nc
as a function of the
parameters D, α, and �,
where one observes it scales
with log�.

of both states θ = ±π being favorable to the system.
The interaction can be quantified if one employs an
approximation in the continuum limit [44,49], result-
ing in that a slightly curved front relaxes diffusively
to a straight line [50]. Considering this, one obtains
the characteristic exponent n = −0.5 for the relax-
ation of the perimeter of phase walls (see Appendix
B for details). This exponent characterizes the noise-
sustained structures of Regions II and III of the phase
diagram. One path to reach these dynamic states is to
increase the nonreciprocal coupling parameter α, when
doing so, depending on the value of D, we will observe
or not the self-assembled patterns.

A useful parameter to monitor is the characteristic
size of the phase wall pairs that form both the self-
assembled pattern or the noise-sustained structure [25],
represented by the characteristic wavenumber of the
Fourier power spectrum.We compute it numerically as
a function of the nonreciprocal coupling α, shown in
Fig. 5. When increasing α for D > Dc, we find that the
characteristic size of structures in the system behaves
as λ ∼ 1/(α − αc), with αc = √

Dω2 − ω4/4. This

scaling is explained when computing the average num-
ber of phase walls emitted from the thin boundary layer
in Region II, which scales as n ∼ α−αc (see Appendix
C for details), using that λn ∼ N (the number of ele-
ments) we recover the scaling for the characteristic
size behavior. On the other hand, if D < Dc when
increasing α, one first encounters the region of self-
assembled patterns, for which the wavelength scales
as λ ∼ 1/(α − αc)

1/2 with αc obtained from Eq. (4).
This is explained by the nature of the SNIC bifurcation
[47,48], for which the period of oscillations scales as
T ∼ 1/(μ − μc)

1/2 with μ the bifurcation parameter.

Conclusion

The phase diagram for a Frenkel-Kontorova chain
or lattice is unveiled when subjected simultaneously
to nonreciprocal coupling and fluctuations. Noise-
sustained structures are observed due to noise and
nonreciprocity, which produce an effect similar to
advection in continuumsystems.These noise-sustained
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Fig. 5 Behavior of the characteristic length of the system struc-
tures after the bifurcations. a Transition from Region I to II. For
α < αc the system is homogeneous, thus the dominant Fourier
mode is zero. For α > αc, the dominant mode increases linearly
with α, that is, kc ∝ (α − αc)

m , with m = 1. b Transitions from
Region I to IV, and IV to III. For α < αp the system is homoge-
neous. For αc > α > αp , one observes the pattern state, which
exhibits a characteristic mode behaving as kc ∝ (α −αp)

m , with
m = 0.5. For α > αc, one enters Region III, where the charac-
teristic length of the boundary layer, the pattern inside it, and the
randomly distanced phase walls coexist

structures exhibit coarsening dynamics in the co-
mobile reference frame of the respective created struc-
tures. Thus, the temporal coarsening is transformed
into a spatial coarsening. These complex dynamical
behaviors are mediated by the nonreciprocity param-
eter and the reciprocal coupling parameter α and D,

respectively. Furthermore, they are characterized by the
average size of structures versus parameters.

In the case of small fluctuations, one can consider
the reciprocal coupling parameter Dc ≈ ω2/2 a spe-
cial one, as it separates two different paths in parame-
ter space that lead to the regime of randomly emitted
domain walls. For D > Dc, when increasing the non-
reciprocity parameter α, we observe a sharp transition
from the homogeneous state to the noise-sustained state
of phase walls (also called topological solitons). On the
other hand, for D < Dc, we have particular values of
αp < α < αc for which a self-assembled pattern sta-
bilizes, although it becomes unstable for enough non-
reciprocity. The pattern is resilient to noise and has a
well-defined wavelength given by the system param-
eters. In this regime, a perfect array of phase walls,
or topological solitons, is emitted from one boundary
and transmitted to the other in a self-sustained fashion
without deformations.

To conclude, this work explored the effects of noise
over nonreciprocally coupled chains of nonlinear sys-
tems. Analytical results regarding the bifurcations of a
prototypicalmodel are obtained and contrasted numeri-
cally. Noise considerably affects the bifurcations medi-
ated byFKPP fronts, as these nonlinear waves are frag-
ile against additive fluctuations. On the other hand,
we found that an infinite period bifurcation gives
rise to a spatiotemporal-periodic state that could not
be explained before, we unveiled that its topological
nature (in phase space) protects it against fluctuations,
making it robust.

The different states supporting continuous emission
of phase walls (the noise sustained Regions II and III,
and the patternRegion IV) are characterized by a coars-
ening dynamic for the total perimeter of walls.. Simi-
larly, the average size of the structures against the non-
reciprocity parameter is unveiled as a function of the
nonreciprocity while crossing the bifurcation curves.
Our results can enlighten the path to nonlinear nonre-
ciprocal device characterization and operation in fluc-
tuating environments.
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Appendix

A. Saddle node on invariant curve bifurcation

The origin of the bifurcation separating Regions I and
IV is in the upstream boundary, which we realized by
numerical inspection.We observe that only a few parti-
cles acquire self-sustained dynamics, and the rest of the
chain accommodates to their perturbations. Motivated
by this, we consider the limit of two-particle dynamics
described by the equations

θ̇1 = sin θ1 − 2Dθ1 + (D − α)θ2,

θ̇2 = sin θ2 − (D + α)θ2 + (D + α)θ1. (5)

These equations are obtained from Eq. (1) with two
elements and boundary conditions θ0 = 0 and θ3 = θ2.
This simple dynamical system supports various equi-
librium states. In particular, (θ1, θ2) = (0, 0) corre-
sponds to an unstable node. The solutions represent-
ing the thin boundary layer in Region I correspond to
(θ1, θ2) = ±(φ1, φ2); however, the solution for these
angles is not unique. Indeed, hyperbolic points rep-
resenting unstable boundary layers exist. When these
equilibria cease to exist by saddle-node bifurcation, a

limit cycle of an infinite period is born from the hete-
roclinic orbits of the degenerated equilibrium points at
the bifurcation, namely, a saddle-node on an invariant
curve (SNIC) bifurcation [47].

To determine the bifurcation point, we need to ask
the parameter point for which φ1,2 ceases to have solu-
tions, that is, they become complex-valued. Solving for
φ1,2 = φ leads to

φ =
2D

[
φ − sin φ

D+α

]
− sin

(
φ − sin φ

D+α

)

D − α
. (6)

Close to the saddle-node bifurcation, two intersec-
tions of the above curves exist. Just at the saddle-
node; they become tangent. This is the condition for the
SNIC bifurcation. Thus, one solves Eq. (6), obtaining
φ∗(D, α); then, deriving Eq. (6) to impose the saddle-
node bifurcation, one gets

1 = 1

D − αp

(
1 − cosφ∗

D + αp

)

(
2D − cos(φ∗ − sin φ∗

D + αp
)

)
. (7)

Equation (7) determines the bifurcation curve in the
phase diagram (D, α) that leads to the permanent
spatiotemporal-periodic emission of topological soli-
tons. Then, the curve separating Regions I and IV is
given by D = D(αp), which is implicit in Eq. (7). An
example of the bifurcation is depicted in Fig. 6.

B. Coarsening scaling exponent

Scalingof the perimeter of the phasewalls is an already-
answered question regarding continuous systems in
space. Considering that the transition to a continuum
limit for equation (2) is a matter of scaling of the
parameters, the same results as in Ref.[51] can be
applied. Our equation is for a single variable in two
dimensions, then, the scaling rule for the characteris-
tic length of the domains is L(t) ∼ t1/2. Naturally, in
two dimensions, the number of these defects goes as
nphase walls ∼ 1/L2, thus, the total perimeter of phase
walls escales as P ∼ N ·L = 1/L [51,52]. This demon-
strates the exponent observed in the α = 0 case.

For the α �= 0 case, the exponent observed this time
in space can be attributed to the linear relationship
between the drift velocity of the topological solitons
and the nonreciprocity parameter v ∼ α [27]. Then, in
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Fig. 6 System of two
pendula for values of the
nonreciprocity before, at,
and after the SNIC
bifurcation. Blue lines
correspond to the nullclines
of the system of equations.
Orange lines correspond to
the trajectories starting from
the initial condition
(θ1, θ2) = (1, 1)

Fig. 7 Scaling law for the
number of topological
solitons in the system

the coarsening region (away from the boundary layer),
the coarsening dynamic occurs in a mobile reference
frame with speed v. Finally, one can interchange the
role of time and space due to the linear relation between
the time traveling and the distance crossed by a defect
ttravel = xcrossed/v, similar to the argument employed in
Ref. [28]. This explains that the same exponent holds,
however, this time against space, for the perimeter of
phase walls in the case α �= 0.

C. Defects created in the boundary layer

To derive an approximation for n defects created at
the boundary layer, we employ simple arguments. It
is already known that at first order, nonreciprocity
behaves like a linear advection [27]. Then, the veloc-
ity of FK PP fronts close to the convective instability
is vFK PP ∼ α − αc. Then, one can argue that the
boundary layer size is established as the velocity of
the FK PP front and a characteristic timescale arising
from the growth rate of perturbations given by noise.
This timescale is just τ ∼ − log� (similar to the argu-
ment used in [31]), then Nc ∼ −(α − αc) log�. The
maximum number of zeros that can fit in the bound-
ary layer is given by the characteristic wavenumber of

the modes excited by noise times the boundary layer
length. The linear growth relationship gives the char-
acteristic wavenumber, obtaining approximately that
kc ∼ 1/

√
D. Finally, using that n = Nckc one obtains

that ncreated ∼ −(α−αc) log�/
√
D. This serves as the

initial condition for the annihilation that takes place at
the polynomial rate n ∼ t−1 (in the two-dimensional
case, for others, see [51,52]). Moreover, the total num-
ber of phase walls in the system is directly proportional
to the ones created at the boundary layer, explaining the
obtained result for the characteristic domain size as a
function of α. Furthermore, we show that the number
of phase walls scales with log� as well, as illustrated
in Fig. 7.
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