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A B S T R A C T

The emergence of spatiotemporal coherence is ubiquitous in nature. Intriguingly, in systems
with uniform energy injection and dissipation mechanisms, coherent regions can be neighboring
zones with non-coherent (e.g., chaotic or quasi-periodic) motions, giving rise to the so-called
chimera states. This article studies the chimeric self-organization of magnetic nano-oscillators
coupled with dipolar fields under energy losses and injection. The chimera states arises from
an alternating voltage that, in the presence of insulating barriers, modulates the magnetic
anisotropy fields, an effect known as voltage-controlled magnetic anisotropy. This field allows
the efficient manipulation of the magnetization because it can produce magnetic switching and
resonances, among other dynamic responses, while avoiding the Joule heating. In the classical
limit, magnetization dynamics are governed by the Landau–Lifshitz equation. We consider three
setups composed of 𝑁 = {4, 6, 10} interacting oscillators, each one of them regarded as a
macrospin that moves rigidly. Our main results are Small magnetic chimeras, Weak magnetic
chimeras, and a meta-chaos state. Chimera states are composed of a synchronized and a chaotic
group of oscillators, both sets typically having hundreds of units; on the other hand, small
chimeras are composed of a few – usually around five – oscillators dividing into coherent and
non-coherent regions. A weak chimera has two or more sets of coherently oscillating units, but
the groups possess different frequencies. Finally, the meta-chaos state is a chaotic transient.
Beyond the previous zoology, fully synchronized states are also present, as the bifurcation
diagram reveals.

. Introduction

Non-equilibrium systems exhibit numerous dynamical behaviors [1–4], such as synchronized oscillations [5], chaotic and
patiotemporally chaotic states, spatially periodic patterns, and localized structures [2,4]. Under certain conditions, systems with
niform parameters can self-organize in two or more regions, displaying different dynamics separated by domain walls [1–4].
n iconic example is the so-called chimera state [6,7], where a set of oscillators evolve coherently while another group moves
on-coherently. In the literature, the labels coherent and non-coherent typically refer to frequency-synchronized and chaotic or quasi-
eriodic dynamics, respectively. The term chimera has been employed since 2004 in nonlinear sciences [7] in resemblance to the
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Fig. 1. Single VCMA-driven oscillator dynamics. (a) Schematic setup of a magnetic metal/nonmagnetic insulator bilayer, where an applied voltage increases or
decreases the interfacial electron density. The magnetic field 𝐡, tilted in 𝜑 radians from the 𝑧-axis, breaks the 𝑚𝑧 → −𝑚𝑧 symmetry. (b) Trajectory of the 𝑚𝑦
magnetization component (black curve) and the perpendicular-magnetic anisotropy function 𝛽 (thicker yellowish curve) for 𝛽0 = 0.05, 𝜔 = 0.08, and 𝛽1 = 0.126.
Note that both functions oscillate with the same period 𝑇 , i.e., 𝑚𝑦(𝑡) = 𝑚𝑦(𝑡 + 𝑇 ) and 𝛽(𝑡) = 𝛽(𝑡 + 𝑇 ). The initial and final times of the figure are 𝑡𝑖 = 92000 and
𝑡𝑓 = 92400. (c) Stroboscopic map of 𝑚𝑦 as a function of the energy-injection parameter 𝛽1 for several initial conditions. In this representation [49], for each 𝛽1
value, and after a transient time, 𝑚𝑦(𝑡) is plotted every forcing period 𝑇 = 2𝜋∕𝜔. One can observe several oscillatory states and a period-doubling route to chaos.
As in Ref. [49], the cycles are labeled by their period, e.g., a 𝑛-T state has an oscillation period equal to 𝑛 times the forcing period. Then, the bifurcation diagram
shows a 1-T (black) state and its period-doubling instabilities, leading to chaos. In addition, there are two 3-T states, one with a high (light blue) and one with
a low (light brown) amplitude, a 9-T (crimson), 5-T (lemon green), 8-T (brown), 6-T (purple), and 16-T with a high (gray) and low (salmon) amplitude.

creature of Greek mythology composed of incongruous parts: a lion with a goat’s and a snake’s heads protruding from its back
and tail. While the stabilization of the most common chimeras relies on a combination of bi-stability and nonlocal coupling [8,9],
their existence in systems with local interactions has also been demonstrated [10,11]. Several chimeras emerge from hundreds of
interacting oscillators; however, they also appear in smaller systems such as three pendulums [12], three-phase oscillators [13], and
four lasers [14]. Those states are usually referred to as small chimeras. Another subclassification of chimeras includes the so-called
weak chimera [15,16], where two regions possess internal frequency-synchronization, but the frequency is different from one zone to
the other; amplitude chimera [17–21] showing the coexistence of regions with coherent and incoherent oscillation amplitude (rather
than oscillation phase); and freak chimera [22], where the system exhibits two incoherent behaviors of different nature.

Ferromagnetic oscillators attract increasing attention due to their rich phenomenology, usually described in terms of their
magnetization, and the possibility of using them as building blocks for information recording, processing, and transmission. Most of
those applications rely on the bi- or multi-stability of magnetic systems and a switching mechanism that moves the magnetization
from one stable equilibrium to another. Bi-stability is a signature of the nonlinear nature of hard magnets, and it arises from their
magnetic anisotropy energies, which are usually quadratic in one of the magnetization components. The theoretical description of
the magnetization evolution is based on the Landau–Lifshitz equation and its generalizations [23]. The solutions of this model, when
the forcing is a (electric current-driven) magnetic field with a pulse- or sinusoidal-type time dependence, are magnetic switching
and localized structures [24–26], among several others (see [23] and references therein). Beyond magnetic fields, spin-polarized
charge currents [27] exert a torque to magnetic media that, depending on the current direction, enhances or counterbalances
the magnetic dissipation, inducing self-oscillations [23,28,29], spatial textures [30–32], and chaos [33,34]. Even if spin-polarized
currents can excite magnets in a much more localized region than magnetic fields, their power consumption is relatively high due
to the Joule heating. Hence, the scientific quest for low-power-consumption forcing mechanisms for nano-scale magnetic devices is
an active research field in the condensed matter community. One promising candidate is the voltage-controlled magnetic anisotropy
(VCMA) effect, which allows modulation of the coefficient of the magnetic anisotropy energy by an external voltage. In the case
of a Magnetic metal/nonmagnetic insulator bilayer, a transverse voltage generates a screening layer at the interface. Since all the
magnetic properties of metals depend on the conduction-electron density, it is unsurprising that the voltage-induced density change
modulates the perpendicular-anisotropy coefficient. The VCMA effect assists and induces magnetic switching [35,36], ferromagnetic
resonance [37,38], and parametrically driven spin waves [39–43] and localized states [44]. Therefore, enhancing the VCMA’s
strength [45] and designing insulating magnets with VCMA capabilities [46,47] is a matter of current interest.

The VCMA-induced dissipative structures in single magnetic films with relatively large lateral dimensions have attracted
substantial attention [35–45]. On the other hand, however, the dynamical responses induced by a VCMA field on several small
interacting nano-oscillators remain mostly unknown and could have potential applications. For example, an oscillator array coupled
with dipolar fields has been proposed as a reservoir computing structure [48]. Given that only one nano-oscillator under a time-
periodic voltage exhibits a period-doubling route to chaos and vast regions of multi-stability in the parameter space [49], the dipolar
coupling of several magnets may generate complexity. This article is devoted to predicting and characterizing the formation of Small
and Weak magnetic chimeras, fully synchronized states, and transient/meta chaos in a set of VCMA-driven nano-oscillators. The system is
described by the Landau -Lifshitz model and integrated numerically for several parameter values and initial conditions, as described
in the next section.

2. Review of the single VCMA-driven nano-oscillator

Ferro- and ferrimagnetic materials are described by their magnetization vector 𝐌 = 𝑀𝑠𝐦, where the norm 𝑀𝑠 is conserved at
a fixed temperature, and 𝐦 is the unit magnetization. In the absence of chiral interactions, magnets of dimensions below ∼ 100 nm
exhibit uniform dynamics and evolve according to the dimensionless Landau–Lifshitz equation [23],

( )
𝐦̇ = −𝐦 × 𝐡ef f − 𝛼𝐦 × 𝐦 × 𝐡ef f , (1)
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where 𝐦̇ stands for the derivative of 𝐦(𝑡) against the dimensionless time 𝑡, 𝐡ef f is the effective magnetic field, and 𝛼 is the
phenomenological damping parameter. The first torque of Eq. (1) generates counter-clockwise rotations of 𝐦 around 𝐡ef f . On the
other hand, the term proportional to 𝛼 in Eq. (1) dissipates the system energy. Then, the combination of both torques induces
damped magnetization precessions that end when 𝐦 becomes parallel to 𝐡ef f .

When the magnet is a thin film, 𝐡ef f combines the external magnetic field 𝜇0𝑀𝑠𝐡 and the perpendicular-magnetic anisotropy
ield 𝜇0𝑀𝑠𝛽 𝑚𝑧𝐞𝐳, with 𝐡 and 𝛽 𝑚𝑧𝐞𝐳 being their dimensionless counterparts, respectively. The symbol 𝜇0 stands for the magnetic
ermeability of free space and 𝛽 the perpendicular-magnetic anisotropy coefficient. Let us consider the Cartesian representation
hown in Fig. 1(a), where the plane 𝑥 − 𝑦 is parallel to the magnet, and the 𝑧-axis is perpendicular to it. Using the Cartesian unit

vectors {𝐞𝐱 , 𝐞𝐲 , 𝐞𝐳} that point along the respective {𝑥, 𝑦, 𝑧} axes, the magnetization vector is decomposed as 𝐦 = 𝑚𝑥𝐞𝐱 +𝑚𝑦𝐞𝐲 +𝑚𝑧𝐞𝐳,
with the norm constraint 𝐦2 ≡ 𝑚2

𝑥 + 𝑚2
𝑦 + 𝑚2

𝑧 = 1. The effective field is the 𝐦−gradient of the magnetic energy 𝐸, and in its
dimensionless form is

𝐡ef f = − 𝜕
𝜕𝐦

(

𝐸
𝐸0

)

= 𝐡 + 𝛽 𝑚𝑧𝐞𝐳 , (2)

where 𝐸0 = 𝜇0𝑀2
𝑠 𝑉0 is the energy scale of the magneto-dipolar interaction, 𝑉0 is the volume, and the energy is

𝐸 = −𝐸0

(

𝐦 ⋅ 𝐡 +
𝛽 𝑚2

𝑧
2

)

. (3)

It is worth noting that the energy of the perpendicular-magnetic anisotropy, −𝐸0𝛽 𝑚2
𝑧∕2, is invariant against the 𝑚𝑧 → −𝑚𝑧

transformation. Then, if 𝐡 = 0, the magnetization will have two equilibria with the same stability properties, namely, 𝐦 = ±𝐞𝐳,
.e., the magnetic film is a memory unit. The energy barrier to change the magnetic state depends on 𝛽. Indeed, for smaller 𝛽 it is
asier – and, then, energetically cheaper – to transit from one equilibrium to another. On the other hand, a large 𝛽 favors the stability
 and, therefore, the endurance – of the recorded state. Hence, the voltage-controlled magnetic anisotropy effect allows efficient
ynamic control of 𝛽, interesting both from the technological viewpoint and the nonlinear dynamics perspective, particularly because

𝛽 modulates the saturation mechanisms around magnetic equilibria.
Typically, the role of the external field 𝐡 is to rotate the magnetization towards a direction of interest, e.g., to break the 𝑚𝑧 → −𝑚𝑧

nvariance. Since the 𝛽-dependent torque, −𝛽𝐦×
(

𝑚𝑧𝐞𝐳
)

, vanishes if the magnetization points along the 𝑧-axis due to the cross product,
then it is convenient to tilt the external field by an angle 𝜑 (in radians) from the vertical axis, i.e.,

𝐡 = ℎ
[

cos (𝜑) 𝐞𝐳 + sin (𝜑) 𝐞𝐱
]

. (4)

On the other hand, an alternating voltage produces a sinusoidal contribution to the anisotropy coefficient, 𝛽(𝑡) = 𝛽0+𝛽1 cos (𝜔𝑡), where
𝜔 is the forcing angular frequency and 𝛽1 is proportional to the applied voltage (see [46] and references therein). Fig. 1(b) shows a
typical trajectory of the magnetization component 𝑚𝑦(𝑡) and 𝛽(𝑡). Both functions have the same oscillation period 𝑇 = 2𝜋∕𝜔. When
the injection of energy is small, any initial condition reaches this periodic solution after transients, obeying 𝐦 (𝑡 + 𝑇 ) = 𝐦 (𝑡). This
ycle appears as a single point for each 𝛽1 value in the stroboscopic map, cf. Fig. 1(c). Note that for larger alternating voltages, 𝛽1, the
olution suffers a series of bifurcations that double its period, satisfying 𝐦 (𝑡 + 2𝑛𝑇 ) = 𝐦 (𝑡) for an integer 𝑛. This cascade continues
ntil reaching a chaotic state [49], as accounted by a positive largest Lyapunov exponent (LLE). A positive LLE demonstrates that

initially close trajectories exponentially separate in the phase space. The bifurcation diagram, Fig. 1(c), also reveals the coexistence
of other stable periodic solutions. The multi-stability of this single-oscillator system hints at the presence of complex solutions when
several of these magnets interact, which is confirmed in the next section.

3. Coupled VCMA-forced nano-oscillators

3.1. Magnetization equations for coupled oscillators

Let us consider a linear array of magnetic oscillators with a first-neighbor spacing 𝑑, as shown in Fig. 2(a). The oscillators are
equal, and they are subject to identical magnetic field and voltage, i.e., the parameters 𝑀𝑠, 𝑉0, 𝛼, 𝐡, 𝛽0, 𝛽1, and 𝜔 are the same. The
ipolar energy between two small magnetic momenta 𝝁𝑖 at 𝐫𝑖 and 𝝁𝑗 at 𝐫𝑗 reads

𝐸(dip)
𝑖𝑗 =

𝜇0
4𝜋

𝑟2𝑖𝑗𝝁𝑖 ⋅ 𝝁𝑗 − 3 (𝝁𝑖 ⋅ 𝐫𝑖𝑗
) (

𝝁𝑗 ⋅ 𝐫𝑖𝑗
)

𝑟5𝑖𝑗
, (5)

where 𝐫𝑖𝑗 = 𝑟𝑖𝑗 𝐫̂𝑖𝑗 ≡ 𝐫𝑗 − 𝐫𝑖 and 𝝁𝑖 = 𝑀𝑠𝑉0𝐦𝑖. The dimensionless dipolar field exerted by 𝐦𝑗 on 𝐦𝑖 is

𝐡(dip)
𝑖𝑗 = −

𝜕 𝐸(dip)
𝑖𝑗

𝜕
(

𝐸0𝐦𝑖
) =

𝑉0
4𝜋 𝑟3𝑖𝑗

[

3𝐫̂𝑖𝑗
(

𝐦𝑗 ⋅ 𝐫̂𝑖𝑗
)

−𝐦𝑗
]

, (6)

which is added to the Landau–Lifshitz equation of each 𝑖th oscillator,

𝐦̇𝑖 = −𝐦𝑖 ×

(

𝐡 + 𝛽 𝑚𝑧,𝑖𝐞𝐳 +
∑

𝑗≠𝑖
𝐡(dip)
𝑖𝑗

)

− 𝛼𝐦𝑖 ×

[

𝐦𝑖 ×

(

𝐡 + 𝛽 𝑚𝑧,𝑖𝐞𝐳 +
∑

𝑗≠𝑖
𝐡(dip)
𝑖𝑗

)]

, (7)

Note that this type of coupling is non-local because dipolar fields are long-range, i.e., they decay as 𝑟−3 with distance 𝑟 and then
they reach beyond a few neighbors.
3 
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Fig. 2. Small Magnetic Chimera in a set of 𝑁 = 4 VCMA-driven interacting oscillators. (a) Schematic representation of the setup of a system of four magnets.
The dipolar fields couple the magnetizations with a strength that decays as 𝑑−3. (b) Color map of the 𝑚𝑦,𝑖 magnetization component plotted every forcing period
𝑇 for the 𝑖th oscillator for 𝛽1 = 0.16. The initial and final times are 𝑡𝑖 = 835620 and 𝑡𝑓 = 838620. The vertical axis labels the oscillator number (𝑖), and a blank
space is left between them for illustrative purposes. This kind of map allows identifying periodic motions, such as the one displayed by oscillators 𝑖 = 2 and
𝑖 = 3, which have period 3𝑇 , and the aperiodic dynamics of 1st and 4th oscillators. (c) and (d) show the three-dimensional parametric plot of the magnetization
trajectories and the Fourier spectrum of their 𝑚𝑦 components for oscillators numbers 1 and 2. The largest Lyapunov exponent is 𝜆LLE = 2 × 10−3.

3.2. Geometric configuration

Given that typical magnetization trajectories have a large 𝑚𝑧 component, a linear arrangement of the oscillators along the 𝑧-
axis may favor synchronization since their dipolar fields will approximately lie along the magnetization direction. Note also that,
according to Fig. 2(a), each magnet is sandwiched by a nonmagnetic metal and a nonmagnetic insulator, such as Cu and MgO.
This configuration ensures that all magnets are subject to the same change in the interfacial charge density and, therefore, the 𝛽(𝑡)
function is identical, 𝛽1 becoming the control parameter associated with the energy injection of all oscillatory units. Motivated by
Ref. [48], we consider a radius and a thickness of 20 nm and 1 nm, respectively, and then each magnetic volume is 𝑉0 = 1256.64𝑛𝑚3.
In addition, let us consider 𝑑 = 50 nm. Also, 𝑟𝑖,𝑗 = 𝑑(𝑗 − 𝑖) and 𝐫̂𝑖𝑗 = 𝐞𝐳 for 𝑗 > 𝑖. The interaction strength is ruled by the 𝑉0∕𝑑3 ratio.
Note that Eq. (5) is only valid for very small magnets (𝑉0∕𝑑3 ≪ 1 limit), but it is still a good approximation that we may use for
the sake of simplicity.

Note that given the small dimensions of this magnetic chain, all oscillators interact among them, which can be interpreted as a
global type of coupling.

3.3. Numerical methods and dynamical indicators

For 𝑁 interacting oscillators, we numerically integrate the corresponding 𝑁 Landau–Lifshitz (vector) Eqs. (7), using a 4th-order
Runge–Kutta algorithm [50] with a fixed step size 𝛥𝑡 = 𝑇 ∕1000 = 0.0785 for 𝜔 = 0.08. Each Landau–Lifshitz equation is decomposed
in the Cartesian representation, and the |𝐦𝑗 | = 1 constraint is monitored through the temporal integration. The other parameters are
𝛼 = 0.005, ℎ = 0.1, 𝜑 = 0.3, and 𝛽0 = 0.05. The evolution is recorded from the end of the transient temporal interval 0 ≤ 𝑡 ≤ 6 × 105,
and the total integration time is 18000𝑇 = 1.4 × 106.

While several states with complicated trajectories are expected to emerge in this system of 𝑁 oscillators, the characterization
of their largest Lyapunov exponent (LLE) allows us to differentiate them as chaotic or non-chaotic. The LLE was calculated by
characterizing the difference between two initial close trajectories, 𝛿 ⃗𝑚, in the extended space of 3𝑁 Cartesian variables with 𝑁
constraints from the norm conservation. In this notation 𝛿 ⃗𝑚T =

(

𝛿𝐦1, 𝛿𝐦2,… 𝛿𝐦𝑁
)T and 𝐴T stands for the transpose of 𝐴. The

trajectory difference 𝛿 ⃗𝑚 is small, i.e., ||𝛿 ⃗𝑚|| ≪ 1, where ||𝑚⃗|| is the euclidean norm of the vector 𝑚⃗ ∈ R3𝑁 and it evolves according
to the linear equation, 𝛿 ̇⃗𝑚 = J (𝐦; 𝑡)⋅𝛿 ⃗𝑚, J being the Jacobian. To account for the norm conservation, for each oscillator, the deviation
function is normal to the magnetization, 𝛿𝐦𝑖 ⋅𝐦𝑖 = 0, i.e., the deviations lie in the (locally defined) tangent space of each spherical
surface. Then, the largest Lyapunov exponent is given by

𝜆LLE = lim
𝑡→∞

lim
𝛥0→0

1
𝑡
ln
[

||𝛿 ⃗𝑚 (𝑡) ||
𝛥0

]

, (8)

where 𝛥0 ≡ ||𝛿 ⃗𝑚 (0) || is the initial distance between the nearby trajectories in the phase space.

3.4. Small magnetic chimeras

Fig. 2 summarizes the typical dynamics observed in a system of four interacting units [see the schematic setup in Fig. 2(a)].
Since the magnetic multilayer has 3 × 4 = 12 magnetization components, it is convenient to represent the 𝑚𝑦,𝑖(𝑡) of each magnet
𝑖th using a color map. Fig. 2(b) shows the stroboscopic evolution of the 𝑚𝑦,𝑖(𝑡) components plotted every forcing period 𝑇 . The
horizontal axis is the (dimensionless) time, and the vertical axis is the oscillator label 𝑖. In the vertical axis, an empty space between
4 
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Fig. 3. Weak Magnetic Chimeras for a set of four and six coupled oscillators. The color maps, three-dimensional trajectories, and Fourier spectra are the same
type of representation used in Fig. 2. (a) System of 𝑁 = 4 oscillators, where 𝑖 = 2 is desynchronized from the rest by displaying a quasi-periodic motion, the
𝑖 = 1, 3, 4 units have a period 𝑇 . (b) For 𝑁 = 6, the 4th unit exhibits (an almost) close orbit of period 8𝑇 , while the others have a period-𝑇 motion. For the
states of (a) and (b), 𝛽1 = 0.126, and the largest Lyapunov exponent is very small, i.e., |𝜆LLE| ∼ 10−5, and falls within the numerical error.

the color sequences is left to illustrate that magnets are not in contact, but they interact via their long-range dipolar fields. As this
graph reveals, there are two oscillators with an almost periodic motion and two others being aperiodic. The second (𝑖 = 2) and the
third (𝑖 = 3) oscillators repeat their trajectories after three forcing periods, as seen from the color pattern. However, the aperiodic
dynamics of the first (𝑖 = 1) and fourth (𝑖 = 4) oscillators affects the periodic motion of 𝐦2(𝑡) and 𝐦3(𝑡) via the dipolar fields. This
perturbation is illustrated in Fig. 2(c) for the three-dimensional trajectories 𝐦2(𝑡) and 𝐦3(𝑡). Therefore, while strictly speaking, the
whole system is aperiodic due to the global (dipolar) coupling, we shall call the slightly disturbed periodic dynamics simple as
periodic in the rest of this document, e.g., 𝑖 = 2 and 𝑖 = 3 will be referred to as periodic, or coherence, units. On the other hand,
the 𝑖 = 1 and 𝑖 = 4 oscillators exhibit a complex dynamics, as exemplified in Fig. 2(c) by the 𝐦1(𝑡) trajectory that almost fill the
upper region of unit spherical surface. Indeed, the largest Lyapunov exponent is 𝜆LLE = 2 × 10−3, showing the chaotic character of
this incoherent unit. This implies that, the 1st and 4th oscillators have an exponential sensibility to the initial conditions. Another
useful representation is the Fourier spectrum of the temporal series 𝑚𝑦,𝑖(𝑡). In the case of the periodic magnets, there is a clear set
of peaks with the fundamental frequency 𝑓 = 𝑓𝛽∕3, where the forcing frequency is 𝑓𝛽 = 𝜔∕ (2𝜋), c.f., Fig. 2(d). The small noise-like
disturbances to this spectrum are attributed to the aperiodic dipolar fields generated by 𝐦1(𝑡) and 𝐦4(𝑡). Since this state combines
a coherent and non-coherent behavior, it corresponds to a Small Magnetic Chimera.

3.5. Weak magnetic chimeras

Another example of chimeric behavior is shown in Fig. 3(a) and Fig. 3(b) for systems of 𝑁 = 4 and 𝑁 = 6 units, respectively. In
this case, one periodic magnetization is embedded in a set of other periodic oscillators with a different frequency, resulting in a quasi-
periodic motion for the whole system. Indeed, as Fig. 3(a) illustrates, the 𝑖 = 1, 3, 4 oscillators have three dominant frequencies that
are equal to one, two, and three times the forcing frequency. However, the 𝑖 = 2 unit has a clean Fourier spectrum with a large peak
at half of the forcing frequency (and its harmonics). Regarding this single oscillator as a small region, and following Refs. [15,16],
we refer to this state as a Weak Magnetic Chimera, to emphasize that this dissipative structure is composed of two regions displaying
different coherent states. In Fig. 3(a), the 𝑖 = 2 oscillators exhibit a limit cycle with a large Fourier peak at 𝑓𝛽∕2, while the 𝑖 = 1, 3, 4
units have a fundamental frequency equal to 𝑓𝛽 . It is worth noting that the fourth unit, which is farther apart from the second
oscillator, has a well-defined closed orbit in the three-dimensional plot of 𝐦4(𝑡), which corresponds to a clean Fourier spectrum. On
the other hand, the three-dimensional trajectories and Fourier spectra of 𝑖 = 2 and 𝑖 = 3 reveal their interaction effects by dipolar
fields, i.e., they introduce their frequency by dipolar fields, generating additional Fourier peaks. In a similar way, in the system of
𝑁 = 6 oscillators, the 4th unit has a period of 8𝑇 , different from the 𝑇 period of the rest of the magnets. Indeed, for 𝑖 = 1, 2, 3, 5, 6,
the color map shows an almost constant texture, as expected from a stroboscopic map that plots the 𝑚𝑦,𝑖(𝑡 + 𝑛𝑇 ) with 𝑛 an integer.
Comparing the Fourier spectrum of 𝑖 = 1 and 𝑖 = 3 we can see that small additional peaks are introduced in the surroundings of
𝑖 = 4, but decay fast with the distance 𝑟 as expected from the 𝑟−3 scaling of the dipolar interaction. Since the oscillators are periodic,
except for the small response to the dipolar field of the desynchronized unit, their LLE is negative. The non-zero largest Lyapunov
exponent of the cycle originates from the locking oscillation phase, i.e., the magnetizations lock their oscillation phase due to the
a.c. voltage.

3.6. Fully synchronized states and meta-chaos

Finally, a general third kind of dynamics observed in this system corresponds to a Fully Synchronized State, as shown in Fig. 4(b).
In this state, all units have the same oscillation frequency and phase. Furthermore, when the system is integrated from a set of
randomly chosen initial conditions, the most commonly observed attractor is totally synchronized. However, in the particular case
of Fig. 4, the system exhibits chaotic dynamics for a long time before converging to the synchronized state; that is, it shows a
5 
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Fig. 4. Meta-chaos (also known as transient chaos) for a system of 𝑁 = 4 units. The Fourier spectrum and color-map representations are the same of the previous
figures. The left panel, (a), shows the dynamics in a chaotic regime characterized by a positive LLE, 𝜆LLE = 2 × 10−3. This state is not a chimera because there
is no coherent region. Indeed, 𝑖 = 1 and 𝑖 = 3 are aperiodic and 𝑖 = 2 and 𝑖 = 4 display nearly periodic motions with period 3𝑇 and 2𝑇 , respectively. However,
if the transient time is incremented by a factor 10, the system fully synchronizes into an orbit with period 2𝑇 , as revealed in (b), where 𝜆LLE = −5 × 10−4. The
time limits of the graph are 𝑡1 = 835620, 𝑡2 = 838620, 𝑡3 = 14005620, and 𝑡4 = 14008620, and 𝛽1 = 0.16.

meta (or transient) chaos [51]. Therefore, 𝜆LLE = 2 × 10−3 if the Lyapunov exponent is calculated in a large enough time window.
However, if the system integration time is about 10 times larger, the fully synchronized state has a 𝜆LLE = −5 × 10−4, as expected.
In Fig. 4, the Fourier spectra at the left and right are noisy and clean, respectively, as characteristic spectra of chaotic and periodic
attractors.

3.7. Bifurcation diagram

Fig. 5 summarizes the dynamics of 𝑁 = 10 oscillators and compares them with results for systems with 𝑁 = 4 and 𝑁 = 6 in
the bifurcation diagram of Fig. 5(a). This phase diagram was obtained by integrating 100 randomly chosen initial conditions and
analyzing the resulting dynamics after the transient time of 12000 (2𝜋∕𝜔). For each one of the 100 initial conditions, the classification
of each state was conducted via the visual inspection of the colormaps, parametric plots, and Fourier spectra. As this figure reveals,
the most robust state is a fully synchronized magnetization motion where all units have the same frequency. This state is present
for all 𝑁 and 𝛽1 values, except for 𝛽1 = 0.13. Is it worth noting that weak magnetic chimeras are also robust. Fig. 5(b) shows a small
magnetic chimera state, where the 𝑖 = 2, 3, 4, 7, 8, 9 units are synchronized in periodic oscillations (3T), while the units 𝑖 = 1, 5, 6, 10
are chaotic. Similar to the 𝑁 = 4 and 𝑁 = 6 systems, the periodic oscillators are perturbed by the chaotic ones. On the other hand,
Fig. 5(c) shows a frequency-synchronized state with a frequency 𝑓 = (2𝑇 )−1. Finally, Fig. 5(d) reveals a weak magnetic chimera
number of oscillators (𝑖 = 1, 2, 3, 4, 9, 10) with periodic motion of period 2T, while 𝑖 = 5, 6, 7, 8 have period 3T.

3.8. Localization of the complexity

To deepen the discussion on the system complexity, let us stress that for a chaotic state, the initially small separation of
trajectories amplifies with time, i.e., the solution of the Jacobian equation reads

𝛿 ⃗𝑚(𝑡) ≈ 𝛿 ⃗𝑚0𝑒
𝜆LLE𝑡, (9)

𝛿 ⃗𝑚T
0 =

(

𝛿𝐦1,0, 𝛿𝐦2,0,… 𝛿𝐦𝑁 ,0
)T , (10)

where 𝛿 ⃗𝑚0 is a characteristic function of time and 𝑒𝜆LLE𝑡 accounts for the exponential growth (for 𝜆LLE > 0) or decay (for 𝜆LLE < 0).
The case 𝜆LLE = 0 usually corresponds to a cycle where the phase is a neutral mode. Non-exponential, such as polynomial, growth,
and decay, are also characterized by a zero LLE. In our system, however, the magnetic oscillators attempt to synchronize with the
external magnetic field, fixing both their frequency and phase. This breaking of the oscillation-phase invariance results in periodic
motions with 𝜆LLE < 0. The general solution of the Jacobian equation is expanded in a set of eigenfunctions, whose corresponding
eigenvalues are referred to as the Lyapunov spectrum. However, since the largest Lyapunov exponent is the maximum value of this
spectrum, the 𝑒𝜆LLE𝑡 function dominates the general solution for 𝛿 ⃗𝑚(𝑡).

Let us concentrate on a chaotic state. The growth of 𝛿 ⃗𝑚(𝑡) is not uniformly distributed in the 3𝑁 space, but it depends on the
relative size of the 𝛿𝐦𝑖,0 functions, implying that the system can be more sensitive to the initial conditions in some oscillators than
in others, which depends on the |𝛿𝐦𝑖,0|, as accounted by

||𝛿 ⃗𝑚0||
2 =

𝑁
∑

𝑖=1
|𝛿𝐦𝑖,0|

2. (11)

Then, if the temporal average of |𝛿𝐦𝑖,0| is larger than the one of |𝛿𝐦𝑗 ,0|, it implies that the exponential sensibility of the system to
the initial conditions of the 𝑖th oscillator is larger than the one of the 𝑗th unit. The same analysis is conducted for 𝜆 < 0, where
LLE

6 
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Fig. 5. Phenomenology of an 𝑁 = 10 system and its comparison with the dynamics for 𝑁 = 4 and 𝑁 = 6. (a) Bifurcation diagram of the system. The Fully
Synchronized State, Small and Weak Magnetic Chimeras, Meta-Chaos, and a Desynchronizd State are shown as a function of the number of oscillators and the
energy injection parameter, 𝛽1. This plot was obtained by integrating 300 randomly chosen initial conditions for each 𝑁 and 𝛽1. The horizontal step size is
𝛥𝛽1 = 0.01 (b) Small magnetic chimera, where the oscillators 𝑖 = 2, 3, 4, 7, 8, 9 have periodic motion with period 3𝑇 , while the 1st, 5th, 6th, and 10th units are
chaotic. (c) Fully synchronized state of period 2𝑇 . (d) Weak magnetic chimera, where the magnets 𝑖 = 5, 6, 7, 8 have an oscillation period of 3𝑇 , and the rest
ave a period of 2𝑇 . Here, 𝛽1 = 0.16, and the LLE for (b), (c), and (d) are 2 × 10−3, −5 × 10−5 and −5 × 10−5, respectively.

the oscillators with a larger |𝛿𝐦𝑖,0| have a larger convergence time, i.e., need more time to reach the attractor fully. For the case of
𝑁 = 10 oscillators, Fig. 6 shows the temporal average |𝛿𝐦𝑖

| ≡ 𝜏−1 ∫ 𝑡0+𝜏
𝑡0

𝑑 𝑡|𝛿𝐦𝑖,0| demonstrating that the complexity localizes around
the desynchronized units, particular, around the incoherent oscillators for the Small chimeras.

4. Conclusions

While coherent and non-coherent states are ubiquitous in nature and have been vastly studied in the last decades, their chimeric
coexistence has received less attention. This article studied Magnetic Chimeras in a linear array of magnetic oscillators driven by a
time-dependent voltage. The structure has insulating barriers that prevent the formation of a charge current. Then, the effect of the
voltage is to create screening charges at the system interfaces, which in turn modulate the magnetic anisotropies. This effect is known
as voltage-controlled magnetic anisotropies, and it has the capacity to induce magnetization dynamics without the undesirable Joule
heating, becoming a promising candidate for applications to memory technologies. Each magnet is described by the Landau–Lifshitz
equation within the macrospin approximation, that is, assuming that the magnetic materials are small enough to ensure the rigid
motion of their magnetizations and that they interact by their dipolar fields. Therefore, the system under study is a set of globally
coupled magnets subject to a periodic injection of energy. Integrating the set of coupled Landau–Lifshitz equations numerically, we
found that the voltage induces Fully Synchronized States where all units oscillate with the same frequency and phase. In addition, we
report Weak Magnetic Chimeras where one or a few periodic units are embedded in a periodic background of oscillators. The system
also exhibits Small Magnetic Chimeras, where domains of coherent (periodic) and non-coherent (chaotic) motions exist. Finally, a
Chaotic Transient (Meta-Chaos) was observed. Using the largest Lyapunov exponent (LLE), we could characterize the complexity of
the system. The eigenfunction of the LLE shows a clear localization around the magnet whose motion is aperiodic, confirming that
this oscillatory unit is particularly sensitive to the initial conditions. The bifurcation diagram of the system reveals that the Fully
Synchronized State and Weak Magnetic Chimeras are much more robust than the Small Magnetic Chimeras and Meta-Chaos.
7 
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Fig. 6. Spatial localization of the complexity for a system of 𝑁 = 10 oscillators. The difference between two initially close trajectories is an exponential function,
𝛿 ⃗𝑚(𝑡) ≈ 𝛿 ⃗𝑚0𝑒𝜆LLE 𝑡. Note that 𝛿 ⃗𝑚(𝑡) is not uniformly distributed in the 3𝑁 space, but it localizes more on some oscillators, as accounted by the relative size of the
|𝛿𝐦𝑖,0| norms. In this figure, the temporal average |𝛿𝐦𝑖

| ≡ 𝜏−1 ∫ 𝑡0+𝜏
𝑡0

𝑑 𝑡|𝛿𝐦𝑖,0|. Indeed, if 𝜆LLE > 0, a larger |𝛿𝐦𝑖
| implies that the 𝑖th magnet is more sensitive to its

initial conditions. (a) For a fully synchronized state, 𝜆LLE =, and the convergence of the oscillators is similar. (b) Weak magnetic chimeras are non-chaotic and,
for this case, 𝜆LLE =. As this plot illustrates, the 𝑖 = 5, 6, 7, 8 have a larger |𝛿𝐦𝑖

| since they are the desynchronized oscillators. (c) The Small magnetic chimera
has 𝜆LLE, and the |𝛿𝐦1

| is much larger, implying that the chaos (sensibility to the initial conditions) localized mostly around this unit. For this figure, 𝛽1 = 0.16.
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