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Optical feedback-induced spatiotemporal patterns
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Pattern formation can be induced by coupling electromag-
netic fields to a polarizable and lossy medium. Increasing
energy injection patterns can exhibit aperiodic behav-
iors. We investigate the self-organization of unidimensional
aperiodic patterns. Based on a liquid crystal light valve
(LCLV) with optical feedback, we observed aperiodic one-
dimensional patterns with power laws in the temporal and
spatial spectrum density of the light intensity, and their
pseudo envelope and phase characteristic of spatiotemporal
complexity. Theoretically, a local model describes the system
close to nascent bistability and spatial instability. Numeri-
cal simulations of this model show chaotic spatiotemporal
patterns whose temporal and spatial spectra have exponents
similar to those observed experimentally. © 2024 Optica Pub-
lishing Group
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Non-equilibrium processes often lead to the emergence of pat-
terns, which evolve from a homogeneous state by spontaneously
breaking spatial symmetry [1,2]. In optics, coupling an electro-
magnetic field to a polarizable medium and losses can induce
a diffraction–diffusion mechanism of pattern formation [3]. For
example, transverse patterns have been observed in gas [4,5] and
semiconductor laser [6], photorefractive media (see the textbook
[7] and reference therein), sodium vapor [8] and liquid crystal
cells [9] with single-mirror feedback, and liquid crystal light
valve (LCLV) with optical feedback [10], to mention a few. As
one injects energy, secondary instabilities can generate oscilla-
tions and complex spatiotemporal behaviors of optical patterns
[5,11]. Dissipative systems far from equilibrium can exhibit non-
periodic spatiotemporal dynamics. These include fiber lasers
[12,13], nonlinear optics [14,15], active matter [16], interfa-
cial dynamics [17], chemical reactions [18], financial markets
[19], and Bose–Einstein condensates [20], among others. In all
of these systems, the observed dynamics from a statistical per-
spective are turbulent-like, i.e., unpredictable (spatiotemporal
chaos), and a wide range of spatial wavelengths participate in
the permanent dynamics (power law spectra). The power law
spectrum density has been observed for different quantities such
as kinetic energy, light intensity, information, intensity correla-
tion, and phase gradient. A pioneering example of this type of
behavior is the phase turbulence [21]. In most of the previous
systems where turbulence-like behavior is observed, a power law

is typically observed for a decade or a few decades of wavenum-
ber in the spectrum due to the absence of different structures or
defects at different scales [12–20]. Spatiotemporal complexity
of fingerprint patterns with turbulent-like behavior has recently
been observed in an LCLV with optical feedback [15].

This Letter aims to investigate spatiotemporal self-
organization behaviors for one-dimensional aperiodic optical
patterns. Based on a liquid crystal light valve with optical
feedback and a spatial light modulator, we observe aperiodic
one-dimensional patterns (see Fig. 1) when one increases the
intensity of the illumination light or the free propagation length
L of the optical feedback. The temporal and spatial intensity
spectral densities exhibit power laws. The pattern’s dynamical
behavior is characterized by determining its pseudo envelope
and phase using the Hilbert transform [22]. This pseudo phase
field exhibits spatial and temporal spectra with power laws.
The phase exhibits k−2 and ω−2 spectra, which are typical
of phase turbulence [21]. The amplitude (light intensity) and
pseudo envelope of the pattern spatial and temporal spectral
density show defect turbulence with an exponent close to −3
and −2, respectively. The structure functions of the amplitude
fluctuations at different exponents allow us to conclude that
the observed dynamics are self-similar. Theoretically, close to
the nascent bistability and spatial instability, Lifshitz point, a
local model describes the system. Numerical simulations of this
model present spatiotemporal chaotic patterns [23]. The numer-
ically observed dynamics are characterized by complex defect
dynamics, whose temporal and spatial spectra tend to follow
power laws. The envelope and phase of the observed patterns
are characterized by spatial and temporal spectra with similar
exponents to those observed experimentally.

The LCLV with optical feedback is a flexible setup that
exhibits a wide range of dynamic behaviors, such as multi-
stability, front propagation, pattern formation, localized states,
and aperiodic spatiotemporal dynamics (see Ref. [10] and ref-
erences therein). Figure 1(a) shows a schematic representation
of the setup. The LCLV consists of a nematic liquid crystal LC-
654 (NIOPIK) with a dielectric anisotropy constant ϵa = 10.7 ϵ0
sandwiched between two glass layers separated by a distance
d = 15 µm. To apply an electrical voltage to the liquid crystals,
transparent indium tin oxide (ITO) electrodes and a photocon-
ductive layer are deposed on the glasses. The back layer of
the liquid crystal cell contains a dielectric Bragg mirror with
optimized reflectivity for 632.8 nm light. The molecules on the
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Fig. 1. Experimental aperiodic patterns in a liquid crystal light
valve with optical feedback. (a) Schematic liquid crystal light valve
(LCLV) representation with optical feedback. The setup is com-
posed of a coherent light source (He–Ne laser) sent through a spatial
light modulator (SLM) and a polarizing beam splitter (PBS) before
hitting the LCLV. After reflection, the light is filtered in a transversal
slit (TSL) placed in the Fourier plane, and then the light is brought
to the fiber bundle (FB) with a beam splitter (BS) and to a comple-
mentary metal–oxide–semiconductor (CMOS) with a mirror (M). f
represents achromatic lenses, and L is the free propagation length.
The applied voltage of the LCLV is V0 = 9.72 Vrms. The red arrows
indicate the propagation of light. The illuminated region of the
LCLV is a quasi-one-dimensional region of dimensions 1440× 352
µm2. (b) Snapshot and middle plane profile (pattern intensity and
their pseudo envelope and phase φ) of a one-dimensional pattern in
which different colors account for different average inclinations of
liquid crystal molecules. k0 and k∗ are the pattern and characteris-
tic coupling wavenumber (k0<k∗). (c) Spatiotemporal evolution of
one-dimensional patterns.

cell wall are anchored parallel to it, corresponding to a pla-
nar anchoring in the cell’s diagonal direction. The LCLV can
be electrically addressed by applying an oscillatory voltage V0

Vrms and a frequency f0 = 1.0 kHz across the layer. The opti-
cal valve is optically forced with a He–Ne laser of intensity
Iin and wavelength λ0 = 632.8 nm. The LCLV is placed in a
4f optical configuration (f = 25 cm) as shown in Fig. 1(a).
A transversal slit (TSL) is placed in the Fourier plane to fil-
ter spatial modes. The optical feedback circuit is closed with
a fiber bundle (FB) placed 4f from the LCLV front surface.
Depending on the local light intensity, the optical fiber bun-
dle injects the light into the photoconductive layer and applies
an additional local voltage to the liquid crystal material. The

Fig. 2. Experimental spatiotemporal complexity of patterns in
a liquid crystal light valve with optical feedback. (a) Spatial and
(b) temporal spectra of the light intensity I(x, t) (left panel) and
pseudo phase and enveloped field (right panel). The points show the
experimental results and the straight continuous curves help show
the power law trend. Vertical dashed lines account for characteristic
wavenumbers. (c) Spatial exponent ζ r

p of the structure function Sp(r)
as a function of the p index. The inset accounts for the temporal
exponent ζτp as a function of the p index. The points and their
respective error bars are the exponents obtained experimentally.
The straight solid lines show the trend of the points.

optical feedback loop is designed so that the light simultane-
ously undergoes diffraction propagation (characterized by the
length L) and polarization interference induced by the polariz-
ing beam splitter (PBS). For one-dimensional experiments of
dimensions lx = 1440 µm and ly = 352 µm, a spatial light mod-
ulator (SLM) is considered. The SLM prevents optical feedback
in unilluminated areas, thereby creating an absorbing boundary
condition. The experiment is monitored by a complementary
metal–oxide–semiconductor (CMOS) camera.

Figures 1(b) and 1(c) show a snapshot of a one-dimensional
aperiodic pattern with k0 wavenumber and its respective spa-
tiotemporal evolution. This chart shows that the pattern also
exhibits other wavelengths (k∗), which are coupled with the
dynamics of the pattern’s global mode (k0). Likewise, one infers
an aperiodic complex dynamics the pattern defects. The patterns
observed are chaotic in nature [11]. To characterize the dynam-
ics statistically, we calculate the spatial and temporal spectrum
density of light intensity I(x, t) defined in the spatial case by
⟨
∫

eikx |I(x, t)|2dx⟩/T , where x and t stand for the spatial coordi-
nate and time, respectively, k is the wavenumber, and the symbol
⟨ ⟩ accounts for the temporal average in a long period T . The tem-
poral spectrum is defined in a similar manner. Figure 2 shows the
spectrum densities obtained, characterized by tails with power
laws of approximately k−3.5 and ω−2.5. This manifests the spa-
tiotemporal complexity of the patterns [12–20], characterized
by the dynamics of defects and coupling of modes with the dif-
ferent wavenumbers, which includes a decade of wavenumber.
Note that the liquid crystal is a strongly overdamped waveless
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medium. Due to the inherent fluctuations of the experimental
system, noise, the spectra for large wavenumbers or frequencies
deviate from the power law and tend to flatten out [24].

To understand complex dynamics, the pattern evolution can
be decomposed into the pseudo envelope and phase of the
patterns using the analytical signal buildup with the Hilbert
transform [22,25]. This type of method has been implemented
to understand complex patterns in the catalytic oxidation of
carbon monoxide [25] and linear [26] and nonlinear optics
[15]. Figure 2 shows the spectral density of the pseudo phase
and envelope of the pattern. The spectrum of this phase has
an exponent close to k−2 and ω−2, which is a characteristic
of phase turbulence [21]. The origin of this exponent corre-
sponds to non-correlated abrupt transitions between two typical
values of the phase. For the pseudo envelope field, we find
that the tails of the spectra are close to k−3 and ω−2, which
accounts for the defect dynamics. In addition, one can study
the higher-order correlations, also called structure functions
[27], to better understand the pattern’s dynamics and whether
they have characteristic scales. Let us introduce temporal struc-
ture functions Sp(τ) ≡ ⟨∥I(t) − I(t + τ)∥p⟩, where the symbols
∥∥ and ⟨⟩ account for the spatial norm and the temporal average,
respectively. For spatial self-similar turbulent fluid dynamics,
the Kolmogorov theory predicts a scaling law of type Sp(τ) ∝ τ

ζ τ
p

[27], where ζ τp is the exponent of the structure function. Namely,
the system does not have characteristic scales in the turbulent
window. Analogously, one can introduce spatial structure func-
tions Sp(r). We also expect Sp(r) ∝ rζ r

p for temporal self-similar
turbulence. Figure 2(c) summarizes the results found. From this
chart, we infer that the observed behavior is self-similar.

To account for the experimental observations, we consider
the LCLV with optical feedback simultaneously close to the
nascent bistability and spatial instability, the Lifshitz point [28],
the dynamics of the system is described by

∂tu = η + ϵu − u3 − ν∂xxu − ∂xxxxu + c(∂xu)2 + κu∂xxu, (1)

where the order parameter u(x, t) accounts for the devi-
ation of the average molecular orientation θ(x, t) with
respect to a critical value θc and the light intensity I
reaching the camera is related to u(x, t) by I(x, t) ≈ Iin(1 −

cos
[︁
0.4dλ0 cos2(θc)(1 − 2 tan(θc)u/u0)

]︁
) with u0 a normaliza-

tion constant [28]. ϵ is the bifurcation parameter, which is
proportional to the voltage minus the critical one; η is a param-
eter that controls the size of bistability, which is proportional to
the intensity of the input laser; ν is the anti-diffusion coefficient,
which is proportional to the elastic diffusion minus the square
of the diffraction propagation length; and c and κ account for
the nonvariational advection and nonlinear diffusion; both are
proportional to the diffraction propagation length. The detailed
relationship between the parameters of Eq. (1) and the phys-
ical parameters of the LCLV with optical feedback is given
in [29].

It is known that model Eq. (1) presents chaotic spatiotempo-
ral patterns [23]. Figure 3(a) shows the typical spatiotemporal
chaotic patterns, which present complex defect dynamics. Anal-
ogously to the experimental case, we have calculated the spatial
and temporal spectrum density of the order parameter u, which
is illustrated in Figs. 3(b) and 3(c). In this case, the spectra have
many oscillations related to the harmonics of the main wavenum-
ber and frequency. However, the spectra follow a power law trend
close to k−3.5 andω−2.2, which are qualitatively in agreement with
the experimental observations (see Fig. 2). We have determined

Fig. 3. Numerical spatiotemporal complexity of patterns in model
Eq. (1) by η = −0.04, ϵ = −0.092, ν = 1.0, c = 10.4, and κ = −3.05.
(a) Spatiotemporal diagram of the aperiodic pattern. Inset accounts
for the profile of an extract of the pattern. Dashed circumferences
show defects in the pattern. (b) and (c) Spatial and temporal spec-
trum density of the order parameter u(x, t) (left panels) and the
pseudo phase and envelope field of the pattern (right panels). The
points are the results obtained numerically, and the straight lines
show the power law trend of the numerical data.

the pseudo envelope and phase field to characterize the observed
dynamics analogously to the experimental analysis. Figures 3(b)
and 3(c) show the pseudo phase and envelope spatial and tem-
poral spectra, respectively. This phase again exhibits a typical
spectrum of phase turbulence [21]. On the other hand, the spec-
trum density of the envelope follows the behavior close to k−2.5

and ω−2. Hence, the dynamics presented by local model Eq. (1)
are qualitatively similar to those observed experimentally. How-
ever, the experiment is carried out far from the region where
model Eq. (1) is valid since, in that region, the inherent fluctua-
tions and imperfections of the experiment make the experimental
study a thorny task.

Because the effect of the wavenumber of the pattern k0 is
dominant in the numerical simulation, we have filtered this wave-
length from the spatial spectra. Figure 4(a) shows the spectrum
of the scalar and pseudo phase and envelope field found when
filtering. In this case, all the spectra tend to be close to k−2.
Alternatively, if one considers a bandstop filter [30], one obtains
the result shown in Fig. 4(b). Again, one obtains spectra close
to k−2. Therefore, all these filters allow us to detect the complex
aperiodic pattern dynamics of model Eq. (1).
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Fig. 4. Spatial spectrum densities. The spatial spectra of the scalar
and pseudo phase and envelope field when (a) the pattern wavenum-
ber k0 is filtered in model Eq. (1), and (b) a Butterworth bandstop
filter is applied to the pattern of model Eq. (1). (c) Spatial spec-
trum of the light intensity I(x, t) (left panel) and the pseudo phase
and envelope of the pattern (right panel) for an optical channel of
dimensions lx = 2550 µm and ly = 431 µm with a voltage V0 = 8.48
Vrms. The points show the experimental results and the straight con-
tinuous curves help show the power law trend. Inset accounts for a
snapshot of the observed pattern.

Experimentally, it is not possible to study a one-dimensional
pattern; one always considers a quasi-one-dimensional system
of dimensions lx × ly (lx = 1440 µm, lx = 352 µm, and ly ≪ lx,
ly/lx ≈ 0.24). To study the effect of the aspect ratio ly/lx of the
optical channel, we have decreased the aspect ratio by lx = 2550
µm and ly = 431 µm (ly/lx ≈ 0.17). Unexpectedly, the tail of
the spatial spectrum for the light intensity changes dramati-
cally close to k−2. Figure 4(c) illustrates the spatial spectrum
density found. Likewise, we calculated the pseudo phase and
envelope field associated with the pattern based on the Hilbert
transform’s analytical signal. Figure 4(c) summarizes the spec-
tra found for these fields. Note that both spatial spectra present
power laws close to −2. Hence, quasi-dimensional dynamics
can significantly impact the complex dynamics established by
aperiodic patterns by altering the structure of defects, as shown
in Figs. 1(b) and 4(c).

In conclusion, based on a liquid crystal light valve with
optical feedback and a spatial light modulator, we have
observed aperiodic one-dimensional patterns with temporal and
spatial spectra with power laws. Likewise, through a valid
mathematical model close to a Lifshitz point, we numer-
ically find chaotic spatiotemporal patterns whose temporal

and spatial spectra have exponents similar to those observed
experimentally.
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