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A B S T R A C T

Turbulence is a complex spatiotemporal behavior and a fundamental concept in fluid dynamics, which has
been extended to other systems out of equilibrium, such as nonlinear optics, chemistry, active matter, and
economics. Fingerprint patterns with sustained spatiotemporal dynamics in a liquid crystal light valve with
an optical feedback experiment are studied. We show that the light intensity field presents a dynamical
regime simultaneously exhibiting phase and amplitude turbulence. This bi-turbulent behavior of patterns is
characterized by power-law spectra with exponents close to −2 and −3 spatially and −2 temporally, for
the phase and amplitude respectively. The pattern orientation field also presents power-law spectra with
exponents close to −2 and −3∕4, spatially and temporally. We characterize the observed chaotic dynamics by
estimating the largest Lyapunov exponent. We provide a theoretical model of pattern formation that explains
the experimental observations with good qualitative agreement.
1. Introduction

Under the injection and dissipation of energy, macroscopic systems
exhibit periodic spatial structures resulting from self-organization [1–
3]. Often, these patterns emerge from a homogeneous steady state
through spontaneous symmetry-breaking instabilities with an intrinsic
wavelength. They have been observed in various fields of natural
sciences, ranging from chemical, biological, and physical to optical sys-
tems (see recent overview [4]). As the bifurcation parameter increases,
secondary instabilities give rise to more complicated but stationary
patterns [2,3], such as quasi-crystals or disordered steady state pat-
terns [3–7]. This issue has been extensively discussed and is now
fairly well understood [1–4]. If the bifurcation parameter is further
increased, patterns can exhibit complex spatiotemporal or turbulent
type behaviors. Indeed, experiments supported by numerical simula-
tions of various systems such as fluid convection [8], atmospheric,
oceanic, and biological systems [9–13] show evidences of nonperi-
odic spatiotemporal dynamics. This feature was extended in other
contexts, including fiber lasers [14–16], nonlinear optics [17], active
matter [18,19], interfacial dynamics [20], chemical reactions [21],
financial market features [22,23], and Bose–Einstein condensates [24].
In all these systems, the observed dynamics is of turbulent-like nature,
that is, unpredictable, enhancing mixing properties, and involving a
wide range of spatial wavelengths [9]. Classical turbulence exhibits
power laws over several decades of wavenumber due to the different
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sizes of coherent structures, such as vortices. However, in other systems
where turbulence-like behavior take place, a power law decay over one
decade of wavenumber is typically observed in the power spectrum due
to the absence of different coherent structures [14–23]. Theories such
as weak turbulence, which accounts for the weak interaction of waves
in various contexts, played a relevant role in the generalization of the
notion of turbulence in ‘‘non-fluid’’ physical systems [25].

The statistical approach is the main technique used to characterize
turbulence and turbulence-like behaviors, which yields relationships
between coherent structures, defects, spatial modes, and waves present
in the system. A prototype model for studying complexity is the two-
dimensional complex Ginzburg–Landau equation, which accounts for
oscillatory instabilities of homogeneous states [26]. This simple am-
plitude equation exhibits spatiotemporal behaviors such as phase and
amplitude turbulence and spatiotemporal intermittency. Phase turbu-
lence is characterized by power spectra with exponent −2 in the
phase [27] and non-polynomial behavior in the amplitude. On the other
hand, defect turbulence is characterized by power spectra of −5 in
amplitude and −3 in phase [28]. A complementary approach to under-
stand nonperiodic spatiotemporal chaotic evolution is to use dynamical
systems tools such as Lyapunov exponents [29], which provides in-
formation about exponential sensitivity to initial conditions. Despite
theoretical and experimental progress, combined statistical and dy-
namical studies of nonperiodic spatiotemporal patterns are scarce. For
960-0779/© 2024 Elsevier Ltd. All rights reserved.
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Fig. 1. Experimental observation of fingerprint pattern bi-turbulence. (a) Snapshot of bi-turbulent fingerprint pattern with the top inset accounting for the global Fourier transform
averaged over time, showing a powder-like spectrum of typical wavenumber 𝑘0 ≃ 0.18 μm−1. The bottom inset accounts for the spatiotemporal averaged windowed Fourier transform,
highlighting the dominance of a single wavenumber 𝑘𝑐 at short scales. We considered windows of size 2.2 𝑙0, where 𝑙0 is the characteristic wavelength. (b) Spatiotemporal evolution
of the disordered fingerprint patterns obtained for times 𝑡1 < 𝑡2 < 𝑡3. Black color denotes zero intensity, and bright red denotes the highest intensity detected by the camera. (c)
Schematic representation of a liquid crystal light valve (LCLV) with optical feedback, and its spatiotemporal evolution. The setup is composed of a coherent light source (He–Ne
laser) sent through a spatial light modulator (SLM) and a polarizing beam splitter (PBS) before hitting the LCLV. After reflection, the light is brought to the fiber bundle (FB)
with a beam splitter (BS) and to a complementary metal–oxide–semiconductor (CMOS) with a mirror (M). 𝑓 represents achromatic lenses, and 𝐿 is the free propagation length.
The red arrows indicate the propagation of light.
example, experimental [8,13,14,16,21,24,30] or numerical [9,15] stud-
ies on nonperiodic patterns have been carried out in recent decades, but
from a single perspective, statistical or dynamical.

Here, we evidence pattern bi-turbulence in a liquid crystal light
valve (LCLV) with an optical feedback experiment (see Fig. 1). Pat-
tern bi-turbulence is characterized by simultaneously presenting phase
and amplitude turbulence. The light intensity field exhibits disordered
fingerprint patterns with a sustained dynamics. Typical power-laws
observed in the power spectra of the intensity field brought us to
investigate the spatiotemporal evolution of the constitutive phase and
amplitude fields. This led us to use statistical and dynamical tools
to describe pattern bi-turbulence. Statistically, this dynamical behavior
presents a spatial power spectrum law with a decay exponent close
to −2 for the phase and −3 for the amplitude. Likewise, temporally,
the phase and amplitude spectra present a power law close to −2.
Note that the liquid crystal is a viscous and non-dispersive medium.
The origin of phase turbulence is attributed to sharp jumps between
spatial domains. Likewise, amplitude turbulence results from the con-
stant nucleation and destruction of local defects and dynamics between
them. Additionally, we compute the pattern orientation field, which
accounts for the dynamics of the pattern wavevector, and show that
its spatial and temporal power spectra are governed by power-laws
with exponents close to −2 for the spatial spectrum and −3∕4 for the
temporal one. Statistical behaviors of light intensity fluctuations allow
us to establish the intermittent nature of the dynamics, i.e., irregular
alternations between different behaviors [9,10]. Dynamically, using the
three-dimensional spatiotemporal evolution, we estimate the largest
global and local Lyapunov exponents. These exponents suggest that
2

the observed dynamics is chaotic. Finally, we discuss bi-turbulent pat-
terns using a scalar model that describes the liquid crystal light valve
with optical feedback close to the nascent of bistability and spatial
instability. This scalar model exhibits qualitative agreement with the
experimentally observed dynamics.

2. Pattern bi-turbulence: experimental observation

The liquid crystal light valve (LCLV) with optical feedback is a
flexible experimental setup that exhibits a wide range of dynamical
behaviors, such as multistability, front propagation, pattern formation,
localized states, and nonperiodic spatiotemporal dynamics (see the
review [31] and references therein).

2.1. Experimental setup

Fig. 1 shows a schematic representation of the LCLV with an optical
feedback setup. The liquid crystal light valve consists of a nematic
liquid crystal LC-654 (NIOPIK) with dielectric anisotropy constant 𝜖𝑎 =
10.7 sandwiched between two glass layers separated by a distance 𝑑 =
15 μm. To apply an electrical voltage to the liquid crystals, transparent
indium tin oxide (ITO) electrodes and a photoconductive layer are
deposed on the glasses. A dielectric Bragg mirror with optimized reflec-
tivity for 632.8 nm light is placed in the back layer of the liquid crystal
cell. The molecules on the cell wall are attached parallel to it, corre-
sponding to a planar anchoring in the diagonal direction of the cell. The
LCLV can be electrically addressed by applying an oscillatory voltage
𝑉 rms and frequency 𝑓 = 1.0 kHz across the liquid crystal layer. The
0 0
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optical valve is optically forced with a He–Ne laser, 𝜆 = 632.8 nm. The
LCLV is placed in a 4𝑓 optical configuration (𝑓 = 25 cm), as indicated in
Fig. 1. The optical feedback circuit is closed with an optical fiber bundle
(FB) placed at a distance of 4𝑓 from the LCLV front face. The optical
fiber bundle injects the light into the photoconductive layer, applying
an additional local voltage to the liquid crystal material depending on
the local light intensity. The optical feedback loop is designed so that
light simultaneously presents diffraction propagation (characterized by
the length 𝐿) and polarization interference induced by the polarizing
beam splitter (PBS). A spatial light modulator (SLM) is considered to
carry out two-dimensional or one-dimensional experiments with differ-
ent geometries. The SLM prevents optical feedback in non-illuminated
areas, generating an absorbing boundary condition. The experiment
is monitored by a complementary metal–oxide–semiconductor (CMOS)
camera.

2.2. Orientation field of the disordered pattern

The LCLV exhibits stationary hexagonal patterns when the valve is
illuminated with a negative optical free propagation length 𝐿 under
a specific range of applied voltage 𝑉0. The scenario shifts, leading to
disordered spatiotemporal patterns when the voltage or free propa-
gation length is increased. This behavior is illustrated in Fig. 1(a).
The corresponding sustained spatiotemporal dynamics with defects is
shown in Fig. 1(b); see video in the Supplementary Materials [32].
To characterize the observed pattern, we perform a Fourier analysis
at each instant and average it over time to extract the spatial structure,
evidencing a ring powder-like spectrum with a typical wavenumber
𝑘0 = 2𝜋∕𝑙0 [see top inset in Fig. 1(a)]. This spectrum is a characteristic
sign of disordered patterns, with a typical length but oriented in all
directions [7]. Note that the aspect ratio is ∕𝑙0 ≃ 17, where  and
𝑙0 are the system size and wavelength, respectively. To shed light on
the local organization, we compute the averaged windowed Fourier
transform [see bottom inset in Fig. 1(a)] [5,32]. The spatial averaged
windowed Fourier transform technique is described in Appendix A.
From this analysis, one concludes that the pattern is of the labyrinthine
or fingerprint type; that is, a single spatial mode with a wavenumber
around 𝑘0 dominates the local dynamics of the patterns. Hence, we
can define a local wave vector 𝑘⃗(𝑥, 𝑦, 𝑡) and its corresponding pattern
orientation phase 𝜑(𝑥, 𝑦, 𝑡) with respect to the horizontal direction [33].
We use a local approximation of the intensity field of the form 𝐼(𝑟 =
{𝑥, 𝑦}, 𝑡) ≈ 𝐴 cos[𝜑(𝑟, 𝑡)] where 𝐴 and 𝜑 are the amplitude and phase.
The associated local wave vector is 𝑘⃗(𝑟) ≡ ∇⃗𝜑(𝑟). It is then possible to
build the pattern orientational field 𝜑(𝑟) = arctan[𝑘𝑦(𝑟)∕𝑘𝑥(𝑟)] being the
angle of the wave vector with respect to a given direction (here, the
horizontal one). To soften the orientational field, a Gaussian filter of
parameter 𝑙0 = 2𝜋∕𝑘0 is applied where 𝑘0 is the critical wavenumber of
the pattern. Fig. 2(b) shows the orientational field 𝜑 associated with the
respective disordered patterns. The spatial power spectrum is taken as
the squared Fourier transform of the time-averaged of the orientation
field while temporal power spectra have been averaged over 10,000
points. Figs. 2(c) and 2(d) show these power spectra as a function of the
wavenumber 𝑘 and frequency 𝜔, where 𝑘 is the radial wavenumber of
the field averaged azimuthally. These charts provide evidence of power-
law tails close to 𝑘−2 and 𝜔−3∕4, respectively. This experimental result
indicates the turbulent-like nature of the observed disordered pattern.
The exponent −2 suggests a phase turbulence in the orientation field.
Phase turbulence is a dynamical behavior first discovered numerically
for coupled oscillators by Kuramoto [27,34], and later Manneville for
an equivalent phase model numerically establishes a power law for the
power spectrum [35]. Analytical explanations for this behavior were
proposed in Refs. [36,37]. The origin of the exponent corresponds to
non-correlated abrupt transitions between two typical values of the
phase; see inset of Fig. 2(c) [38,39]. Then, the tail of the power
spectrum is dominated by sharp jumps of the phase. Those can be
approximated by a translated Heaviside function, 𝐻(𝑥 − 𝑥 ), such that
3
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Fig. 2. Orientation domains of the disordered patterns: characterization and dynamics.
(a) Snapshots of the light intensity 𝐼(𝑥, 𝑦, 𝑡) and (b) the respective orientation field
𝜑(𝑥, 𝑦). The white arrow shows the local wavevector 𝑘⃗(𝑥, 𝑦, 𝑡) orthogonal to the local
stripe pattern and forming an angle 𝜑(𝑥, 𝑦, 𝑡) with respect to the horizontal direction. (c)
Spatial power spectrum of the orientation field 𝜑. 𝑘0 is the intrinsic wavenumber of the
pattern. The full line 𝑘−2.0±0.1 accounts for the power-law behavior of the tail, while the
dashed line 𝑘−1.7±0.1 is a fit considering more data points from the power spectrum. The
inset shows a one-dimensional spatial cut. (d) Temporal power spectrum. The dashed
line 𝜔−3∕4±0.05 describes the power-law regime before the noise-induced flattening of
the curve. The inset shows the temporal evolution measured at a single point.

𝜑𝑗𝑢𝑚𝑝(𝑥, 𝑡) = 𝜑0 + 𝛥𝜑𝐻(𝑥 − 𝑥0), where 𝜑0 and 𝛥𝜑 are constants.
The power spectrum of these function decays as 𝑘−2. In fluids, the
power spectra exhibit several decades of wavenumber as a result of
the interaction of coherent structures (eddies) of different scales [10].
In the case of disordered patterns, the coherent structures driving
the turbulence are local defects, which have a size of the order of 𝑙.
Therefore, the turbulent window of the spectrum cannot cover a wide
range of wavenumbers.

Because the system lacks a dispersion relationship, spatial and
temporal spectra are not directly related (cf. Fig. 2). The exponent
close to −0.75 is due to the different states that the orientational field
explores. Note that the temporal power spectrum for large frequencies
deviates from the power law and tends to flatten out. This phenomenon
is due to the effect of noise inherent in the experimental system, such
as thermal and electronic fluctuations in the control elements [40].

In brief, we observed nonperiodic spatiotemporal dynamics for
the orientational field characterized by a phase turbulence type of
behavior. As for the orientation field, the observation of a power-law
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Fig. 3. Amplitude and phase of the fingerprint pattern. (a) Instantaneous intensity field and corresponding amplitude (b) and phase (c) computed using the generalized Hilbert
transform. The white rings illustrate the position of a defect. The inset in (b) accounts for the surface plot of an amplitude defect. The color bar shows the respective values of
fields. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
spectrum for the measured intensity field motivated us to analyze in
more details the experimental result by studying separately the phase
and amplitude fields of the pattern.

2.3. Analysis of amplitude and phase of the disordered pattern

One can obtain the instantaneous amplitude 𝐴(𝑟, 𝑡) and phase 𝜙(𝑟, 𝑡)
of the disordered pattern through the generalized Hilbert transform
[41]. This method is described in Appendix B. This transformation
allows us to separate the pattern dynamics into two scalar fields that
provide information about the envelope of the pattern and its respective
phase, which is a useful technique for the analysis of signal and
telecommunications. Fig. 3 depicts a typical snapshot of the disordered
pattern and the corresponding amplitude and phase fields, respec-
tively. We perform spatial and temporal statistical analysis from these
fields. Fig. 4 shows the respective spatial power spectra. The phase 𝜙
presents similar dynamical behavior to that obtained for the pattern
orientation 𝜑, namely the 𝑘−2 decay characteristic of phase turbulence.
Unexpectedly, for the pattern amplitude 𝐴, we find that the critical
behavior of the power spectrum tail is close to 𝑘−3. It is well-known that
local singularities or defects arising from nonlinear evolution produce
power-law tails in the short-wavelength turbulence spectrum [38,39].
Notice the amplitude presents local defects responsible for having the
exponent −3. This is because the amplitude vanishes linearly at the core
of the defect and decays exponentially away from it. A local defect
and its amplitude profile is highlighted with a white ring in Fig. 3.
Hence, the system exhibits patterns with phase and defect turbulence si-
multaneously, pattern bi-turbulence. Prototype complexity models, such
as the complex Ginzburg–Landau equation, show these behaviors in a
disjoint way [26]. Experimentally, we show that the amplitude and the
intensity field are characterized by similar power-laws (see Fig. 4).

In this subsection, the analysis provides information on the spatial
behavior of the dynamical patterns. Because the liquid crystal is an
overdamped system, it does not present a wave dispersion relation.
Namely, dynamics are not driven by waves. Thus, temporal analysis can
also provide information on the coupling between modes and defects.
We consider a spatial point in the system, calculate its temporal Fourier
transform, and then spatially average over all information points. Fig. 5
gathers the power spectra found for intensity, amplitude, and phase
in the frequency domain. In all these spectra, we find exponents for
the tails close to −2. Hence, temporal dynamics are characterized by
exhibiting abrupt changes that are not correlated with each other (cf.
insets in Fig. 5). As in Fig. 2 we observe that the power spectra deviate
from the power laws for large frequencies.

2.4. Characterization of the spatial and temporal fluctuations

Due to their deterministic character, turbulent fields present fluctua-
tions near equilibrium that have non-Gaussian behavior [10], as shown
4

Fig. 4. Spatial power spectra of intensity (◦), amplitude (◦), and phase (◦). Dashed
lines account for the power-law tendencies of the tails. The critical exponents are
determined by fitting the tails of the spectra, and minimum squares determine the
error. Insets: one-dimensional spatial cuts in the respective fields. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

in Fig. 6. We observe that the fluctuations do not follow a Gaussian law
characteristic of additive white noise processes, in accordance with the
deterministic character of the observed dynamics. To better understand
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Fig. 5. Temporal power spectra of intensity (◊), amplitude (◊), and phase (◊). Dashed
lines account for the power-law tendencies of the tails. The critical exponents are
determined by fitting the tails of the spectra, and minimum squares determine the
error. Insets: one-dimensional temporal cuts in the respective fields. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

the fluctuations and if they have characteristic scales, one can study the
higher-order correlations, also called structure functions [10], defined at
order 𝑝 as 𝑆𝑝(𝜏) ≡ ⟨‖𝐼(𝑡0) − 𝐼(𝑡0 + 𝜏)‖𝑝⟩, where the symbol ⟨⟩ accounts
for the temporal average. For self-similar turbulent fluid dynamics,
Kolmogorov theory predicts a scaling law of type 𝑆𝑝(𝜏) ∝ 𝜏𝜁

𝜏
𝑝 , with

𝜁 𝜏𝑝 = 𝑝∕3 [10]. This means the system does not have characteristic
scales in the turbulent window. Discrepancies from this law account
for intermittent behavior and the breaking of self-similarity. Using the
structure functions, we have determined the evolution of the scaling
exponents with the order 𝑝. Fig. 7 summarizes the observed results.
The temporal exponent has been computed from a linear fit in the
turbulent window of the structure functions. We observe that a close
to 𝑝∕6 law is well followed until order 4, from which the curve bends
away. Therefore, the light intensity exhibits intermittent behavior (see
Fig. 7a). To illustrate this dynamical behavior, we show profiles of
the moments 𝑚𝑝 for different exponents 𝑝 in the insets of Fig. 7a,
where 𝑚𝑝 ≡ ⟨(𝐼(𝑡) − ⟨𝐼⟩)𝑝⟩∕𝜎𝑝, 𝐼(𝑡) and ⟨𝐼⟩ are the total intensity at
time 𝑡 and average intensity, and 𝜎 is the standard deviation. From
these charts, we can clearly observe the loss of self-similarity at large
𝑝 and the intermittent behavior (see also inset of the top panel of
Fig. 5). A similar analysis can be performed for spatial fluctuations.
5

Fig. 6. The probability density function of the normalized experimental intensity
fluctuations 𝜈 (circles) is compared with a Gaussian fit (full line), where 𝜎 is the
standard deviation.

Fig. 7b shows the behavior of 𝜁 𝑟𝑝 exponent as a function of 𝑝, where
spatial structure function satisfies 𝑆𝑝(𝑟) ≡ ⟨‖𝐼(𝑟0) − 𝐼(𝑟0 + 𝑟)‖𝑝⟩ ∝ 𝑟𝜁

𝑟
𝑝 ,

with 𝑟 the radial coordinate. We observe a precise self-similarity along
the computed linear curve, as indicated by the profiles of the spatial
moments for different values of 𝑝 (see insets). Those are defined by
𝑚′
𝑝 = ⟨(𝐼(𝑟) − ⟨𝐼⟩)𝑝⟩∕𝜎𝑝, where 𝐼(𝑟) is the total intensity at position

𝑟. We infer that the spatial turbulent behavior is not intermittent, as
first suggested by the inset of the top panel of Fig. 4. Hence, the
turbulent patterns are self-similar in space but not in time. Notably,
the nonperiodic spatiotemporal behavior differs from traditional fluid
and weak turbulence.

2.5. Chaotic dynamics: experimental characterization

From the theory of dynamical systems, one of the main turbulence
features is its exponential unpredictability [9], i.e., its sensitivity to ini-
tial conditions characterized by the Lyapunov exponents [29]. Spatial
and temporal power spectra are indicators of complex spatiotemporal
dynamics (strange attractors); however, complex behaviors such as
quasi-periodicity and behaviors with polynomial sensitivity are not
chaotic [42]. Due to the experimental difficulties inherent in estab-
lishing the Lyapunov spectrum [43], we can only measure the largest
global and local Lyapunov exponents. By considering different slices in
the spatiotemporal diagram, one can determine the largest Lyapunov
exponents [43].

Fig. 8a shows a two-dimensional section of the spatiotemporal
dynamics (spatiotemporal slice) of disordered patterns, from which
two excerpts with similar initial conditions are extracted (see Fig. 8b).
The local largest Lyapunov exponents {𝜆𝑚𝑎𝑥(𝑥), 𝜆𝑚𝑎𝑥(𝑦)} are determined
using the expressions

𝜆𝑚𝑎𝑥(𝑥) = 1
𝑇

‖𝐼(𝑥, 𝑦, 𝑇 ) − 𝐼 ′(𝑥, 𝑦, 𝑇 )‖𝑥
‖𝐼(𝑥, 𝑦, 𝑡0) − 𝐼 ′(𝑥, 𝑦, 𝑡0)‖𝑥

,

𝜆𝑚𝑎𝑥(𝑦) = 1
𝑇

‖𝐼(𝑥, 𝑦, 𝑇 ) − 𝐼 ′(𝑥, 𝑦, 𝑇 )‖𝑦
‖𝐼(𝑥, 𝑦, 𝑡0) − 𝐼 ′(𝑥, 𝑦, 𝑡0)‖𝑦

, (1)

where 𝐼(𝑥, 𝑦, 𝑡) and 𝐼 ′(𝑥, 𝑦, 𝑡) account for the intensity of light in the
different excerpts. 𝑇 is the elapsed time in the temporal window long
enough to characterize the spatiotemporal dynamics. The symbols ‖ ⋅‖𝑥
and ‖ ⋅ ‖𝑦 account for the integration along the 𝑦- and 𝑥-direction,
respectively. We integrate the spatiotemporal evolution over the dif-
ferent slices to understand the spatial sensitivity to initial conditions,
obtaining the local largest Lyapunov exponents depending on the slice
position (see Fig. 8c). From these local largest Lyapunov exponents, we
extract the global largest Lyapunov exponent 𝜆0 as the mean value of
the local ones. We get 𝜆 = 0.009±0.006 s−1. Note that the global largest
0
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Fig. 7. Temporal intermittency and spatial self-similarity. (a) Scaling exponents 𝜁 𝜏𝑝 of
the temporal structure functions 𝑆𝑝(𝜏) ≡ ⟨‖𝐼(𝑡0) − 𝐼(𝑡0 + 𝜏)‖𝑝⟩ ∝ 𝜏𝜁𝑝 as a function of 𝑝.
The blue points are obtained from the experimental data, and the blue curve allows
us to visualize their trend. The dashed line shows a scaling of 𝑝∕6 and emphasizes
the deviation from it. Insets accounts for the temporal evolution of the moments
𝑚𝑝 = ⟨(𝐼(𝑡) − ⟨𝐼⟩)𝑝⟩∕𝜎 where 𝐼(𝑡) and ⟨𝐼⟩ are, respectively, the total intensity at time 𝑡
and the average intensity, and 𝜎 is the standard deviation. (b) Spatial scaling exponents
𝜁 𝑟𝑝 of the spatial structure functions 𝑆𝑝(𝑟) ≡ ⟨‖𝐼(𝑟0)−𝐼(𝑟0 + 𝑟)‖𝑝⟩ ∝ 𝑟𝜁

𝑟
𝑝 as a function of 𝑝.

The blue points are obtained from the experimental data, and the blue curve allows us
to visualize their trend. The dashed line shows a scaling of 𝜁 𝑟𝑝 = 𝑝. Insets accounts for
the spatial variation of the moments 𝑚𝑝 = ⟨(𝐼(𝑟) − ⟨𝐼⟩)𝑝⟩∕𝜎 where 𝐼(𝑟) and ⟨𝐼⟩ are the
total intensity at position 𝑟 and the average intensity and 𝜎 is the standard deviation.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Lyapunov exponent value is the same in each direction. As a result, the
disordered patterns under investigation are chaotic, i.e., exponentially
sensitive to initial conditions.

The characteristic predictability time of the system is of the order
of one minute (1∕𝜆0). Therefore, the dynamics of the pattern are slow
compared to the typical temporal dynamics of the LCLV, which is of
the order of milliseconds. Hence, from Fig. 8c, the observed dynamical
behavior is of a chaotic nature. Because of the inherent heterogeneities
in the experiment, it can also be deduced from this chart that the
sensitivity to the initial conditions depends on the perturbed region.
Imperfections are responsible for nucleation or trapping pattern defects.
We have considered different spatial regions of the LCLV and observed
a similar bi-turbulent behavior.

3. Theoretical description of disordered fingerprint patterns

Due to optical feedback, the dynamics of the liquid crystal molecular
average orientation field is nonlocal in space and local in time. Then,
its dynamic behavior is difficult to understand. To shed light on the
6

Fig. 8. Experimental largest Lyapunov exponents. (a) Two-dimensional section of
spatiotemporal dynamics of the disordered fingerprint patterns. The bottom panels are
two excerpts with similar initial conditions. (b) Profile of the initial conditions for the
different excerpts. (c) The local largest Lyapunov exponents 𝜆𝑚𝑎𝑥 are measured for the
respective local spatiotemporal slide extending in the respective direction. The black
line accounts for the global largest Lyapunov exponent 𝜆0 = 0.009 ± 0.006 𝑠−1. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

pattern dynamics from a theoretical point of view, we study the LCLV
simultaneously close to nascent bistability and spatial instability. In the
neighborhood of this so-called Lifshitz critical point [44–46], the system
can be described by the non-variational Swift–Hohenberg equation

𝜕𝑡𝑢 = 𝜂 − 𝛽𝑢3 − 𝜈∇2𝑢 − ∇4𝑢 + 𝜅(∇𝑢)2∇2𝑢, (2)

where the scalar field 𝑢 = 𝑢(𝑟⟂, 𝑡) accounts for the angular deviation
from the critical average orientation angle 𝜃𝑐 at the Lifshitz critical
point and 𝑟⟂ = (𝑥, 𝑦) stands for transversal coordinates [46]. 𝜂 is
the control parameter and accounts for the asymmetry between the
bistable states. The cubic term accounts for the nonlinear saturation
of the system (𝛽 > 0). 𝜈 characterizes resultant (anti) diffusion effect
when it is (positive) negative. This term accounts for the balance
between the liquid crystal diffusion and the feedback light diffraction
effect. Note that 𝜈 is negative when diffusion is dominant. The ∇2 =
𝜕𝑥𝑥 + 𝜕𝑦𝑦 is the Laplace operator acting on the transverse plane (𝑥, 𝑦).
The fourth term, ∇4𝑢, stands for the hyperdiffusion; which is a term
that describes the stabilization of large spatial gradients and tends to
homogenize the system. When the system exhibits anti-diffusion, the
characteristic length of the pattern 𝑘0 =

√

𝜈 is determined by the
balance between anti-diffusion and hyper-diffusion. The last term is
non-variational and accounts for nonlinear diffusion. The complete and
extensive expressions of the coefficients, based on the LCLV parameters,
and their derivation in a more general form can be found in Ref. [47].
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Fig. 9. Numerical bi-turbulent pattern obtained from non-variational Swift-Hohenberg
Eq. (2) with 𝜂 = 0.03, 𝛽 = 0.01, 𝜈 = 0.5, and 𝜅 = −0.1. (a) Colormap of the scalar
field 𝑢(𝑥, 𝑦, 𝑡) at given time. (b) Spatiotemporal diagram of the disordered pattern. (c)
Power spectra of the amplitude (◦) and phase (◦) of the bi-turbulent patterns. Straight
lines account for the power-law tendency of the tails in the power spectra. Insets:
one-dimensional spatial cuts in the respective scalar fields. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Similar scalar models as Eq. (2) have been derived in many contexts
of nonlinear science, including optics, chemistry, and biology, and
are frequently referred to as nonvariational Swift-Hohenberg equations
[44–46,48]. Besides, these types of non-variational equations have
been proposed to explore stripe patterns far from equilibrium [49,50].
The model (2) accounts for bistability between homogeneous states,
periodic solutions, fronts between these states, localized structures,
and spatiotemporal chaos, among other dynamical behaviors. In a
particular region of parameters, the model Eq. (2) presents disordered
fingerprint patterns with sustained dynamics (cf. Fig. 9). Notice that the
dynamics of the disordered fingerprint patterns are qualitatively similar
to that observed experimentally, that is, a sustained dynamics of the
defects is observed on the disorder patterns. Based on the generalized
Hilbert transform [41], we can characterize the pattern phase and am-
plitude dynamics. Fig. 9 summarizes the numerical findings obtained.
From this chart, we can infer that the model Eq. (2) exhibits patterns
bi-turbulence. Hence, the obtained dynamics behaviors agree with the
experimental observations. All numerical simulations are performed
without taking into account material imperfections. In spite of this
approximation, the system exhibits pattern bi-turbulence (see Fig. 9).

Numerical integrations of the model Eq. (2) are implemented by
using a pseudospectral code in a 256 × 256 square simulation box
with periodic boundary conditions and a spatial discretization 𝑑𝑥 =
7

𝑑𝑦 = 0.8. The temporal integration is performed with the Runge–Kutta
order-4 algorithm with a time-step 𝛥𝑡 = 0.1. The initial conditions are
numerically prepared static disordered patterns.

To characterize the nature of the observed dynamics, we have
considered a smaller integration domain (128 × 128). The Lyapunov
spectrum can be determined numerically. In Appendix C, the numerical
method to calculate the Lyapunov spectrum is detailed. Fig. 10 shows
the Lyapunov spectrum associated with pattern bi-turbulence along
with the four most unstable eigenvectors. The most unstable modes
are dominated by defects as shown in Fig. 10 where two domain
walls drive the nonperiodic dynamics. To illustrate the role of defects
near the region of spatiotemporal chaos emergence, we observe that
the dynamics is driven by a small number of dislocations. Fig. 11
shows the Lyapunov spectrum with only two unstable modes and the
corresponding eigenvectors. We can see the influence of defects in the
most unstable eigenvector modes. In brief, the numerically computed
dynamics is spatiotemporal chaotic in nature.

4. Conclusions

We have considered an experimental set-up based on the liquid
crystal light valve with optical feedback in two-dimensional settings.
We investigated the formation of spatiotemporal waveless fingerprint
patterns far from the onset of primary symmetry-breaking instabilities,
experimentally and theoretically. We performed a complete character-
ization combining statistical and dynamical approaches.

Using statistical tools, such as averaged global and local windowed
Fourier transforms, power spectral densities, fluctuations distributions
and higher order cumulants (structure functions), we characterized the
spatial and temporal behaviors of the system. From the local wave
vector of the pattern, we constructed the orientation field and showed
evidence of a power-law decay in the associated temporal and spatial
power spectra. From the spatial exponent close to −2, we infer that
this orientation field’s dynamics undergoes a phase turbulence. We also
observed a power-law decay in the recorded intensity field with expo-
nents close to −3 in space and −2 in time. Further, we have addressed
the question whether this observed behavior is due to the well-known
phase or amplitude turbulence regime. For this purpose, we separated
the intensity field into constitutive amplitude and phase fields by using
a generalized Hilbert transform in two dimensions. Performing a similar
analysis, we have shown that the spatial power spectra possess power-
laws with exponents close to −2 for the phase and −3 for the amplitude.
For the temporal spectra, these exponents are −2 for both the phase and
the amplitude. These results suggested that the experimentally recorded
signal support simultaneously both phase and amplitude turbulence.
We coined this behavior pattern bi-turbulence. In addition, we have
shown that the fluctuations followed non-Gaussian statistics and, by
means of temporal and spatial structure functions, we evidenced the
intermittent nature of the temporal dynamics.

Using dynamical tools such as Lyapunov largest local and global ex-
ponents, we established the exponential sensitivity to initial conditions
which is typical for a chaotic nature of the observed dynamical pattern.
We found that the dynamics is characterized by a Lyapunov exponent
𝜆0 = 0.009 s−1. Due to spatial inhomogeneities that are inherent to the
liquid crystal material, we have considered different spatial regions of
the liquid crystal and observed similar bi-turbulent behavior.

By using combined statistical and dynamical approaches, we were
able to conduct a thorough analysis of the observed dynamical patterns
and to highlight many of its features such as the simultaneous phase
and amplitude turbulence, i.e., pattern bi-turbulence, and its inter-
mittent and chaotic nature. To support these experimental findings,
we investigated through theoretical description of the liquid crystal
light valve with optical feedback, the formation of two-dimensional
patterns far from the symmetry-breaking instability. The theoretical
predictions were in good qualitative agreements with the experimental
observations.
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Fig. 10. Chaotic dynamics of a bi-turbulent pattern obtained from model Eq. 9 with 𝜂 = 0.03, 𝜈 = −0.5, 𝛽 = 0.01, and 𝜅 = −0.1. (a) Snapshot of a typical numerical disordered
pattern, (b) Lyapunov spectrum (the first 30 exponents of the associated Lyapunov spectrum), and (c)–(f) largest eigenvectors Lyapunov modes, where the lowest index is associated
with the most unstable mode, respectively.
Complex spatiotemporal dynamics are common in driven dissipative
out-of-equilibrium systems such as in biology, chemistry, nonlinear
optics, active matter, financial markets, and Bose–Einstein condensates.
The strategy of considering auxiliary fields such as phase, amplitude,
and orientation field, rather than the directly measured physical vari-
able, provides a systematic framework for identifying and classify-
ing nonperiodic spatiotemporal phenomena from disordered patterns
observed in various nonequilibrium systems.
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Appendix A. Spatial averaged windowed Fourier transform

The spatial averaged windowed Fourier transform characterizes the
short-range order of the pattern [5]. This is achieved by partitioning
the original image under study into small boxes on scales larger than
the length of the pattern and smaller than the scale at which the
disordered pattern is observed. Then, the scale of small boxes must be
such that their Fourier transform must be qualitatively different from
the global Fourier transform. We consider a large number of boxes of
the same length 𝑙, calculate the Fourier transform, rotate the wave-
vector space so that a peak of the transformation is always horizontal
and average over these windowed transforms. Note that the boxes can
be taken in a random or ordered manner. In this study, we focus only on
regular partitions. Differentiating between different globally disordered
patterns is made possible by the spatial averaged windowed Fourier
transform.

Appendix B. Generalized Hilbert transform

We used a generalized Hilbert transform method to extract the
amplitude 𝐴(𝑥, 𝑦) and phase 𝜙(𝑥, 𝑦) fields from the 2D patterns observed
in the experiment and the numerical simulations [41]. This formalism
allows filtering the characteristic wavelength 𝜆 of the 2D patterns in a
9

rotational invariant manner. The procedure supposes that the 2D spatial
signal (pattern) 𝑢(𝑥, 𝑦) behaves locally as a curved stripe pattern with
amplitude 𝐴, direction 𝜃, curvature 𝜅, and phase 𝜙. The whole pattern
is embedded into a 3D conformal space to perform the generalized
Hilbert transform. For numerical simplicity, this space is chosen as a
sphere [41]. Then, the algorithm is a 2D convolution on a sphere.
The convolution filter size is 2𝜆. This choice is related to the size of
defects, which on average is between 𝜆 and 2𝜆 in the experiment and
the numerical simulations. Finally, the local features of the patterns
(𝐴 and 𝜙 in our case) are extracted by angular change of variables on
the sphere. In the numerical simulation, after the Hilbert transform,
the amplitude and the phase fields are filtered with a Gaussian width
function 𝜆∕2 to eliminate higher harmonic effects.

Appendix C. Lyapunov spectrum from the numerical model

The spatiotemporal dynamics exhibited by the bi-turbulent patterns
(solution 𝑢̄ of Eq. (2)) can be characterized with a by number (𝑛) of
Lyapunov exponents 𝜆𝑖 (𝑖 = 1,… , 𝑛), where 𝜆𝑖 > 0 is a feature of chaos.

Part of the Lyapunov spectra was obtained by following the nu-
merical procedure detailed in [51]. Several perturbations (𝑛) around
̄ are performed and then monitored on time. Each perturbation is
governed by the linearized equation 𝜕𝑡𝛿𝐮 = 𝐉(𝑢̄)𝛿𝐮, where 𝛿𝐮 is a
perturbation around the solution 𝑢̄ and 𝐉(𝑢̄) is the respective discretized
Jacobian. Considering 𝑛 orthonormal vectors 𝐯𝑖 (perturbations) with
𝑑 elements, where 𝑑 is the dimension of the dynamical system, one
can introduce the matrix 𝐋(𝑡𝑜) = [𝐯1 ... 𝐯𝑛]. The temporal evolution
of 𝐋 after a time increment 𝑑𝑡 is 𝐿(𝑡𝑜 + 𝑑𝑡) = 𝑒𝑑𝑡𝐉𝐋(𝑡𝑜). In each time
step, the modified Gram–Schmidt 𝐐𝐑 decomposition is performed on
𝐿(𝑡 +𝑑𝑡), and the diagonal elements of 𝐑 are recorded. After repeating
𝑜
Fig. 11. Chaotic dynamics of model Eq. 9 close to emergence of spatiotemporal chaos. (a) Snapshot of a dislocations dynamics, (b) Lyapunov spectrum (the first 30 exponents of
the associated Lyapunov spectrum), and (c) largest eigenvectors Lyapunov modes, where the lowest index is associated with the most unstable mode, respectively.
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the previous algorithm for 𝑁 iterations, the Lyapunov exponents can
e approximated by

𝑖 =
1

𝑁𝑑𝑡

𝑁
∑

𝑘=1
ln[𝐑𝑖𝑖(𝑡𝑜 + 𝑘𝑑𝑡)], (C.1)

hen 𝑁 is sufficiently large.
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